TABLE OF CONTENTS

FOREWORD	xiii
PREFACE	XV
UK FOREWORD	xix
NOTATION	xxix

Chapter 1

INT	RODU	CTION	1	
1.1	Gener	al	1	
	1.1.1	Aims of the book	1	
	1.1.2	Brief description of the contents of the book	10	
	1.1.3	Types of structural systems and joints covered	11	
	1.1.4	Basis of design	12	
1.2	Defini	itions	12	
	1.2.1	Joint properties	14	
	1.2.2	Sources of joint deformation	15	-
	1.2.3	Beam splices and column splices	19	V
	1.2.4	Beam-to-beam joints	20	
	1.2.5	Column bases	21	
	1.2.6	Hollow section joints	22	
1.3	Mater	ial choice	22	
1.4	Fabric	cation and erection	26	
1.5	Costs		27	
1.6	Applie	cation of the "static approach"	27	
	1.6.1	Component approach	29	
	1.6.2	Hybrid joints aspects	35	
1.7	Desig	n tools	35	
	1.7.1	Types of design tools	36	

	1.7.2	Examples of design tools	37
1.8	Worke	ed examples	40

Chapter 2	
-----------	--

vi

STR	UCTUI	RAL ANALYSIS AND DESIGN	43
2.1	Introd	uction	43
	2.1.1	Elastic or elastoplastic analysis and verification process	44
	2.1.2	First order or second order analysis	45
	2.1.3	Integration of joint response into the frame analysis and	
	design	n process	46
2.2	Joint r	nodelling	47
	2.2.1	General	47
	2.2.2	Modelling and sources of joint deformation	49
	2.2.3	Simplified modelling according to EN 1993	50
	2.2.4	Concentration of the joint deformation	51
2.3	Joint i	dealisation	56
	2.3.1	Elastic idealisation for an elastic analysis	57
	2.3.2	Rigid-plastic idealisation for a rigid-plastic analysis	58
	2.3.3	Non-linear idealisation for an elastic-plastic analysis	59
2.4	Joint o	classification	59
	2.4.1	General	59
	2.4.2	Classification based on mechanical joint properties	60
2.5	Ductil	ity classes	62
	2.5.1	General concept	62
	2.5.2	Requirements for classes of joints	65
Cha	pter 3		
<u>CO</u>	NECT	IONS WITH MECHANICAL FASTENERS	67
3.1	Mecha	anical fasteners	67
3.2	Catego	ories of connections	69
	3.2.1	Shear connections	69
	3.2.2	Tension connections	71

TABLE OF CONTENTS

3.3	Positio	ning of bolt holes	72
3.4	Design of the basic components		74
	3.4.1	Bolts in shear	74
	3.4.2	Bolts in tension	75
	3.4.3	Bolts in shear and tension	76
	3.4.4	Preloaded bolts	77
	3.4.5	Plates in bearing	85
	3.4.6	Block tearing	86
	3.4.7	Injection bolts	87
	3.4.8	Pins	88
	3.4.9	Blind bolting	91
	3.4.10	Nails	94
	3.4.11	Eccentricity of angles	95
3.5	Design	of connections	97
	3.5.1	Bolted lap joints	97
	3.5.2	Bolted T-stubs	101
	3.5.3	Gusset plates	113
	3.5.4	Long joints	117

Chapter 4

WEI	LDED C	ONNECTIONS	119	
4.1	Types of welds			vii
	4.1.1	Butt welds	119	
	4.1.2	Fillet welds	120	
	4.1.3	Fillet welds all round	121	
	4.1.4	Plug welds	122	
4.2	4.2 Construction constraints 1		122	
	4.2.1	Mechanical properties of materials	122	
	4.2.2	Welding processes, preparation of welds and weld quality	123	
	4.2.3	Geometry and dimensions of welds	127	
4.3	Design	of welds	130	
	4.3.1	Generalities	130	
	4.3.2	Fillet welds	131	
	4.3.3	Fillet welds all round	134	

	4.3.4	Butt welds	135
	4.3.5	Plug welds	136
	4.3.6	Concept of full strength fillet weld	136
4.4	Distril	oution of forces in a welded joint	139
	4.4.1	Generalities	139
	4.4.2	Particular situations	141

Chapter 5

SIM	PLE JC	DINTS	147
5.1	Introd	uction	147
5.2	Beam-	to-column and beam-to-beam joints	149
	5.2.1	Introduction	149
	5.2.2	Scope and field of application	150
	5.2.3	Joint modelling for frame analysis and design requirements	153
	5.2.4	Design resistance	156
	5.2.5	Practical ways to satisfy the ductility and rotation	
	require	ements	163
5.3	Column bases		174
	5.3.1	Introduction	174
	5.3.2	Basis for the evaluation of the design resistance	176
	5.3.3	Resistance to axial forces	177
	5.3.4	Resistance to shear forces	185

Chapter 6

viii

MOMENT-RESISTING JOINTS			
6.1	Introduction		
6.2 Component characterisation			190
	6.2.1	Column web panel in shear in steel or composite joints	190
	6.2.2	Column web in transverse compression in steel or composite	2
	joints		192
	6.2.3	Column web in transverse tension	196
	6.2.4	Column flange in transverse bending	197
	6.2.5	End plate in bending	203

TABLE OF CONTENTS

ix

	6.2.6	Flange cleat in bending	205
	6.2.7	Beam or column flange and web in compression	207
	6.2.8	Beam web in tension	209
	6.2.9	Plate in tension or compression	210
	6.2.10	Bolts in tension	211
	6.2.11	Bolts in shear	212
	6.2.12	Bolts in bearing (on beam flange, column flange, end plate	
	or clea	t)	213
	6.2.13	Concrete in compression including grout	213
	6.2.14	Base plate in bending under compression	214
	6.2.15	Base plate in bending under tension	214
	6.2.16	Anchor bolts in tension	215
	6.2.17	Anchor bolts in shear	215
	6.2.18	Anchor bolts in bearing	215
	6.2.19	Welds	216
	6.2.20	Haunched beam	216
6.3	Assem	bly for resistance	217
	6.3.1	Joints under bending moments	217
	6.3.2	Joints under axial forces	225
	6.3.3	Joints under bending moments and axial forces	226
	6.3.4	M - N - V	233
	6.3.5	Design of welds	234
6.4	Assem	bly for rotational stiffness	238
	6.4.1	Joints under bending moments	238
	6.4.2	Joints under bending moments and axial forces	247
6.5	Assem	bly for ductility	249
	6.5.1	Steel bolted joints	250
	6.5.2	Steel welded joints	252
6.6	Applic	ation to steel beam-to-column joint configurations	253
	6.6.1	Extended scope	253
	6.6.2	Possible design simplifications for end plate connections	256
	6.6.3	Worked example	257
6.7	Applic	ation to steel column splices	281
	6.7.1	Common splice configurations	281

	6.7.2	Design considerations	283
6.8	Applie	cation to column bases	284
	6.8.1	Common column basis configurations	284
	6.8.2	Design considerations	287

Chapter 7

LATTICE GIRDER JOINTS		295	
7.1	Gener	295	
7.2	Scope and field of application		296
7.3	Design models		298
	7.3.1	General	298
	7.3.2	Failure modes	299
	7.3.3	Models for CHS chords	300
	7.3.4	Model for RHS chords	301
	7.3.5	Punching shear failure	302
	7.3.6	Model for brace failure	303
	7.3.7	<i>M-N</i> interaction	304

Chapter 8

	JOI	NTS UNDER VARIOUS LOADING SITUATIONS	305
Х	8.1	Introduction	305
	8.2	Joints in fire	306
	8.3	Joints under cyclic loading	307
	8.4	Joints under exceptional events	308
	Chaj	pter 9	
	DESIGN STRATEGIES		311
	9.1	Introduction	311
	9.2	Traditional design approach	314

9.3	Integrated design approach	317
9.4	Economic considerations	319

TABLE	OF	CONTENTS	S
-------	----	----------	---

	Fabrication and erections costs Savings of material costs Summary and conclusions	319 322 323
BIBLIOGRAPHIC REFERENCES		325
Annex A Practical values for required rotation capacity		337
Annex B Values for lateral torsional buckling strength of a fin plate		339