Contents

A Personal Foreword XIII

Preface XV

List of Contributors XVII

- I Introduction 1
- 1 Administrative Optimization of Proteomics Networks for Drug Development 3 André van Hall and Michael Hamacher
- 1.1 Introduction 3
- 1.2 Tasks and Aims of Administration 4
- 1.3 Networking 6
- 1.4 Evaluation of Biomarkers 7
- 1.5 A Network for Proteomics in Drug Development 9
- 1.6 Realization of Administrative Networking: the Brain Proteome Projects 10
- 1.6.1 National Genome Research Network: the Human Brain Proteome Project *11*

۷

- 1.6.2 Human Proteome Organisation: the Brain Proteome Project 14
- 1.6.2.1 The Pilot Phase 15 References 17

2 Proteomic Data Standardization, Deposition and Exchange 19 Sandra Orchard, Henning Hermjakob, Manuela Pruess, and Rolf Apweiler

- 2.1 Introduction 19
- 2.2 Protein Analysis Tools 21
- 2.2.1 UniProt 21
- 2.2.2 InterPro 22
- 2.2.3 Proteome Analysis 22
- 2.2.4 International Protein Index (IPI) 23

- VI Contents
 - 2.2.5 Reactome 23
 - 2.3 Data Storage and Retrieval 23
 - 2.4 The Proteome Standards Initiative 24
 - 2.5 General Proteomics Standards (GPS) 24
 - 2.6 Mass Spectrometry 25
 - 2.7 Molecular Interactions 27
 - 2.8 Summary 28 References 28
 - II Proteomic Technologies 31
 - 3 Difference Gel Electrophoresis (DIGE): the Next Generation of Two-Dimensional Gel Electrophoresis for Clinical Research 33 Barbara Sitek, Burghardt Scheibe, Klaus Jung, Alexander Schramm and Kai Stühler
 - 3.1 Introduction 34
 - 3.2 Difference Gel Electrophoresis: Next Generation of Protein Detection in 2-DE 36
 - 3.2.1 Application of CyDye DIGE Minimal Fluors (Minimal Labeling with CyDye DIGE Minimal Fluors) 38
 - 3.2.1.1 General Procedure 38
 - 3.2.1.2 Example of Use: Identification of Kinetic Proteome Changes upon Ligand Activation of Trk-Receptors 39
 - 3.2.2 Application of Saturation Labeling with CyDye DIGE Saturation Fluors 44
 - 3.2.2.1 General Procedure 44
 - 3.2.2.2 Example of Use: Analysis of 1000 Microdissected Cells from PanIN Grades for the Identification of a New Molecular Tumor Marker Using CyDye DIGE Saturation Fluors 45
 - 3.2.3 Statistical Aspects of Applying DIGE Proteome Analysis 47
 - 3.2.3.1 Calibration and Normalization of Protein Expression Data 48
 - 3.2.3.2 Detection of Differentially Expressed Proteins 50
 - 3.2.3.3 Sample Size Determination 51
 - 3.2.3.4 Further Applications 52 References 52
 - 4 Biological Mass Spectrometry: Basics and Drug Discovery Related Approaches 57 Bettina Warscheid
 - 4.1 Introduction 57
 - 4.2 Ionization Principles 58
 - 4.2.1 Matrix-Assisted Laser Desorption/Ionization (MALDI) 58
 - 4.2.2 Electrospray Ionization 60
 - 4.3 Mass Spectrometric Instrumentation 62

- 4.4 Protein Identification Strategies 65
- 4.5 Quantitative Mass Spectrometry for Comparative and Functional Proteomics 67
- 4.6 Metabolic Labeling Approaches 69
- 4.6.1 ¹⁵N Labeling 70
- 4.6.2 Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) 71
- 4.7 Chemical Labeling Approaches 73
- 4.7.1 Chemical Isotope Labeling at the Protein Level 73
- 4.7.2 Stable Isotope Labeling at the Peptide Level 75
- 4.8 Quantitative MS for Deciphering Protein–Protein Interactions 78
- 4.9 Conclusions 80 References 81
- 5 Multidimensional Column Liquid Chromatography (LC) in Proteomics Where Are We Now? 89 Egidijus Machtejevas, Klaus K. Unger and Reinhard Ditz
- 5.1 Introduction 90
- 5.2 Why Do We Need MD-LC/MS Methods? 91
- 5.3 Basic Aspects of Developing a MD-LC/MS Method 92
- 5.3.1 General 92
- 5.3.2 Issues to be Considered 93
- 5.3.3 Sample Clean-up 94
- 5.3.4 Choice of Phase Systems in MD-LC 94
- 5.3.5 Operational Aspects 97
- 5.3.6 State-of-the-Art Digestion Strategy Included 98
- 5.3.6.1 Multidimensional LC MS Approaches 98
- 5.4 Applications of MD-LC Separation in Proteomics a Brief Survey 100
- 5.5 Sample Clean-Up: Ways to Overcome the "Bottleneck" in Proteome Analysis 104
- 5.6 Summary 109 References 110
- 6 Peptidomics Technologies and Applications in Drug Research 113 Michael Schrader, Petra Budde, Horst Rose, Norbert Lamping, Peter Schulz-Knappe and Hans-Dieter Zucht
- 6.1 Introduction 114
- 6.2 Peptides in Drug Research 114
- 6.2.1 History of Peptide Research 114
- 6.2.2 Brief Biochemistry of Peptides 116
- 6.2.3 Peptides as Drugs 117
- 6.2.4 Peptides as Biomarkers 118
- 6.2.5 Clinical Peptidomics 118
- 6.3 Development of Peptidomics Technologies 120
- 6.3.1 Evolution of Peptide Analytical Methods 120

6.3.2 6.3.3 6.4 6.4.1 6.4.2 6.5	Peptidomic Profiling121Top-Down Identification of Endogenous Peptides123Applications of Differential Display Peptidomics124Peptidomics in Drug Development124Peptidomics Applied to in vivo Models127Outlook129References130
7	Protein Biochips in the Proteomic Field137Angelika Lücking and Dolores J. Cahill
7.1 7.2 7.2.1 7.2.2 7.2.3 7.3 7.4	Introduction 137 Technological Aspects 139 Protein Immobilization and Surface Chemistry 139 Transfer and Detection of Proteins 141 Chip Content 142 Applications of Protein Biochips 144 Contribution to Pharmaceutical Research and Development 150 <i>References</i> 151
8	Current Developments for the In Vitro Characterization of ProteinInteractions159Daniela Moll, Bastian Zimmermann, Frank Gesellchen andFriedrich W. Herberg
8.1 8.2 8.3 8.4 8.5 8.6 8.7	Introduction 160 The Model System: cAMP-Dependent Protein Kinase 161 Real-time Monitoring of Interactions Using SPR Biosensors 161 ITC in Drug Design 163 Fluorescence Polarization, a Tool for High-Throughput Screening 165 AlphaScreen as a Pharmaceutical Screening Tool 167 Conclusions 170 <i>References</i> 171
9	Molecular Networks in Morphologically Intact Cells and Tissue–Challenge for Biology and Drug Development 173 Walter Schubert, Manuela Friedenberger and Marcus Bode
9.1	Introduction 173
9.2	A Metaphor of the Cell 174
9.3	Mapping Molecular Networks as Patterns:Theoretical Considerations176
9.4	Imaging Cycler Robots 177
9.5	Formalization of Network Motifs as Geometric Objects 179
9.6	Gain of Functional Information: Perspectives for Drug Development 182 References 182

III Applications 185

- 10 From Target to Lead Synthesis 187 Stefan Müllner, Holger Stark, Päivi Niskanen, Erich Eigenbrodt, Sybille Mazurek and Hugo Fasold
- 10.1 Introduction 187
- 10.2 Materials and Methods 190
- 10.2.1 Cells and Culture Conditions 190
- 10.2.2 In Vitro Activity Testing 190
- 10.2.3 Affinity Chromatography 190
- 10.2.4 Electrophoresis and Protein Identification 191
- 10.2.5 BIAcore Analysis 191
- 10.2.6 Synthesis of Acyl Cyanides 192
- 10.2.6.1 Methyl 5-cyano-5-oxopentanoate 192
- 10.2.6.2 Methyl 6-cyano-6-oxohexanoate 193
- 10.2.6.3 Methyl-5-cyano-3-methyl-5-oxopentanoate 193
- 10.3 Results 193
- 10.4 Discussion 201 References 203
- **Differential Phosphoproteome Analysis in Medical Research** 209 Elke Butt and Katrin Marcus
- 11.1 Introduction 210
- 11.2 Phosphoproteomics of Human Platelets 211
- 11.2.1 Cortactin 213
- 11.2.2 Myosin Regulatory Light Chain 213
- 11.2.3 Protein Disulfide Isomerase 214
- 11.3 Identification of cAMP- and cGMP-Dependent Protein Kinase Substrates in Human Platelets 216
- 11.4 Identification of a New Therapeutic Target for Anti-Inflammatory Therapy by Analyzing Differences in the Phosphoproteome of Wild Type and Knock Out Mice 218
- 11.5 Concluding Remarks and Outlook 219 References 220
- 12 Biomarker Discovery in Renal Cell Carcinoma Applying Proteome-Based Studies in Combination with Serology 223 Barbara Seliger and Roland Kellner
- 12.1 Introduction 224
- 12.1.1 Renal Cell Carcinoma 224
- 12.2 Rational Approaches Used for Biomarker Discovery 225
- 12.3 Advantages of Different Proteome-Based Technologies for the Identification of Biomarkers 226

- **X** Contents
 - 12.4 Type of Biomarker 228
 - 12.5 Proteome Analysis of Renal Cell Carcinoma Cell Lines and Biopsies 229
 - 12.6 Validation of Differentially Expressed Proteins 234
 - 12.7 Conclusions 235 References 235

13 Studies of Drug Resistance Using Organelle Proteomics 241 Catherine Fenselau and Zongming Fu

- 13.1 Introduction 242
- 13.1.1 The Clinical Problem and the Proteomics Response 242
- 13.2 Objectives and Experimental Design 243
- 13.2.1 The Cell Lines 243
- 13.2.2 Organelle Isolation 244
- 13.2.2.1 Criteria for Isolation 244
- 13.2.2.2 Plasma Membrane Isolation 245
- 13.2.3 Protein Fractionation and Identification 247
- 13.2.4 Quantitative Comparisons of Protein Abundances 249
- 13.3 Changes in Plasma Membrane and Nuclear Proteins in MCF-7 Cells Resistant to Mitoxantrone 252 References 254
- 14 Clinical Neuroproteomics of Human Body Fluids: CSF and Blood Assays for Early and Differential Diagnosis of Dementia 259 Jens Wiltfang and Piotr Lewczuk
- 14.1 Introduction 259
- 14.2 Neurochemical Markers of Alzheimer's Disease 260
- 14.2.1 β-Amyloid Precursor Protein (β-APP): Metabolism and Impact on AD Diagnosis 261
- 14.2.2 Tau Protein and its Phosphorylated Forms 263
- 14.2.2.1 Hyperphosphorylation of Tau as a Pathological Event 264
- 14.2.2.2 Phosphorylated Tau in CSF as a Biomarker of Alzheimer's Disease 265
- 14.2.3 Apolipoprotein E (ApoE) Genotype 266
- 14.2.4 Other Possible Factors 267
- 14.2.5 Combined Analysis of CSF Parameters 267
- 14.2.6 Perspectives: Novel Techniques to Search for AD Biomarkers Mass Spectrometry (MS), Differential Gel Electrophoresis (DIGE), and Multiplexing 270
- 14.3 Conclusions 271 References 272

15 Proteomics in Alzheimer's Disease 279 Michael Fountoulakis, Sophia Kossida and Gert Lubec

15.1 Introduction 279

- 15.2 Proteomic Analysis 280
- 15.2.1 Sample Preparation 280
- 15.2.2 Two-Dimensional Electrophoresis 282
- 15.2.3 Protein Quantification 282
- 15.2.4 Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectroscopy 283
- 15.3 Proteins with Deranged Levels and Modifications in AD 284
- 15.3.1 Synaptosomal Proteins 290
- 15.3.2 Guidance Proteins 291
- 15.3.3 Signal Transduction Proteins 291
- 15.3.4 Oxidized Proteins 292
- 15.3.5 Heat Shock Proteins 293
- 15.3.6 Proteins Enriched in Amyloid Plaques 293
- 15.4 Limitations 294 References 294

16 Cardiac Proteomics 299 Emma McGregor and Michael J. Dunn

- 16.1 Heart Proteomics 300
- 16.1.1 Heart 2-D Protein Databases 300
- 16.1.2 Dilated Cardiomyopathy 300
- 16.1.3 Animal Models of Heart Disease 301
- 16.1.4 Subproteomics of the Heart 302
- 16.1.4.1 Mitochondria 302
- 16.1.4.2 PKC Signal Transduction Pathways 304
- 16.1.5 Proteomics of Cultured Cardiac Myocytes 305
- 16.1.6 Proteomic Characterization of Cardiac Antigens in Heart Disease and Transplantation *306*
- 16.1.7 Markers of Acute Allograft Rejection 307
- 16.2 Vessel Proteomics 307
- 16.2.1 Proteomics of Intact Vessels 307
- 16.2.2 Proteomics of Isolated Vessel Cells 308
- 16.2.3 Laser Capture Microdissection 311
- 16.3 Concluding Remarks 312 References 312

IV To the Market 319

- 17 Innovation Processes 321 Sven Rüger
- 17.1 Introduction 321
- 17.2 Innovation Process Criteria 322
- 17.3 The Concept 322
- 17.4 Market Attractiveness 323

- XII Contents
 - 17.5 Competitive Market Position 323
 - 17.6 Competitive Technology Position 324
 - 17.7 Strengthen the Fit 325
 - 17.8 Reward 325
 - 17.9 Risk 325
 - 17.10 Innovation Process Deliverables for each Stage 326
 - 17.11 Stage Gate-Like Process 326
 - 17.11.1 Designation as an Evaluation Project (EvP) 327
 - 17.11.2 Advancement to Exploratory Project (EP) 329
 - 17.11.3 For Advancement to Progressed Project (PP) 331
 - 17.11.4 Advancement to Market Preparation 334
 - 17.12 Conclusion 335

Subject Index 337