Index | a Advanced process control (APC) 554 Advanced regulatory control (ARC) 554 Application 497 - chemical reactor 528 - control simulation 508, 539, 544 - controller tuning 508, 544 - distillate concentration control 501, 508 - flue gas oxygen concentration control 529 - furnace load control 501 | predictive multicontroller 374 predictive multimodel control 372 predictive multiparameter control 372 predictive nonlinear control 429 predictive on-off control 132, 481 process identification 459 temperature control 131, 370, 375, 460, 473 two-tank pilot plant 424 two-tank plant 348 wastewater plant 477, 488 | |--|--| | – gas heated furnace 528 | – wastewater quality control 477, 488 | | – petrochemical distillation column 499 | Computational effort reduction | | predictive constrained linear MIMO
control 498, 515, 527 | blocking technique 176, 182–183, 580coincidence points 179, 183, 580 | | – pressure-compensated temperature | - cost function 183 | | control 501, 508, 517 | Constraint/limit | | – pressure control 501, 508, 517, 523 | – application 503, 518, 529, 541 | | real-time control 511, 523, 549 | – cost function extension 198 | | stripping column 515 | – end-point constraint 213 | | temperature control 529 | – feasible solution 576 | | | - hard constraint 198, 206, 502, 575 | | С | – physical constraints 193 | | Cascade control 581 | – prioritization 578 | | – application 478, 505, 509 | – soft constraint 198, 503, 518, 575 | | Case study | - typical constraint 194 | | – ammonium concentration control 489 | Controlled variable 4 | | - distillate composition control 321 | – application 502,529 | | - distillation column 318 | , | | – forced heating and free convective | d | | cooling 375 | Dead time (time delay) 30 | | - heat exchanger 131, 362 | Decoupling (static) 300 | | - hot air blower 458 | – by a postcompensator 303, 325 | | - injection molding machine 468 | - by a precompensator 301, 323 | | - level control 348, 426 | – by a precompensator and a | | linear MIMO predictive control 321 nitrate concentration control 489 | postcompensator 304, 326 Decoupling of a MIMO process 297 | | – PFC 437 | by changing the control error weighting | | - predictive linearized control 430 | factors 315 | | by control-error-dependent weighting | m | |--|--| | factors 316 | Manipulated variable 4 | | by slowing the reference signal | – application 502, 517, 529 | | change 312 | - future sequence 137 | | 0 | Model | | – by using a dynamic compensator 308 | | | – using a static compensator 300, 323 | - disturbance model 29, 36, 41 | | Difference operator 38 | - input/output 29 | | Disturbance | – linear 29 | | – measurable 29, 36 | – MIMO 252 | | – unmeasurable 29, 36 | – nonlinear 383 | | Disturbance model 29, 36, 41 | – nonparametric 31 | | - application 504, 519, 533 | – parametric 36 | | | – process model 29 | | Disturbance signal | - | | – measurable 10 | – SISO 29, 136 | | – nonmeasurable 10 | – state space 43 | | Disturbance variable | | | – application 518, 530 | n | | | Nonlinear predictive control 591 | | | based on a multicontroller 360 | | e
 | based on a multimodel 359 | | Economic benefit 565 | based on a multiparameter model 360 | | – application 513, 525 | based on the linearized model 422 | | | – multidimensional iterative | | f | optimization 410 | | Fusion technique 355 | - | | Tablott teetinique 555 | – suboptimal (constant control | | | increments) 407 | | g | suboptimal (constant control | | Gaussian validity function 356 | signal) 406 | | | using the one-dimensional solution 406 | | i | Nonlinear predictive equation | | Impulse regnence /weighting function 22 | – multimodel approach 359 | | Impulse response/weighting function 33 | multiparameter model approach 359 | | | Nonlinear process model | | 1 | – LPV model 354 | | Linear MIMO predictive control | – multimodel 355 | | – application 498, 515, 527 | | | – controller tuning 294 | – multiparameter model 358 | | – cost function 277 | – with direction-dependent | | | parameters 354 | | – polynomial form (RST) 284 | with signal-dependent parameters 354 | | – with matrix inversion (GPC) 278 | Nonparametric model | | Linear SISO predictive control | – linear SISO 31 | | – control function 158 | – nonlinear SISO 384 | | – controller tuning 172 | Nonparametric model (linear SISO) 31 | | – cost function 135, 165, 205 | – finite impulse response (FIR) 32 | | disturbance feed-forward 188 | – finite step response (FSR) 33 | | disturbance/robustness filter 159 | Nonparametric model (nonlinear SISO) | | generalized predictive control | | | (GPC) 135 | | | – multiparametric programming 200 | – Volterra series 384 | | | | | – polynomial RST form 145 | 0 | | – quadratic programming 199 | On-off control | | under constraints 202, 204 | – nonpredictive with hysteresis 105, 480 | | – with end-point constraint 213 | nonpredictive without hysteresis 104 | | with end-point weighting 216 | – predictive 103 | | p Pairing of controlled and manipulated | implementation 559, 561, 566long-range optimal 11 | |---|--| | variables 287 | – of linear MIMO processes 251 | | – RGA method 287, 290 | – of linear SISO processes 135 | | Parameter estimation | – of nonlinear SISO processes 406 | | – LS estimation 336 | – one-step-ahead optimal 11 | | – of predictive equation 335 | - PFC 437 | | of the process model 336 | – practical aspects 553 | | Parametric model | Predictive equation | | - difference equation 37 | – based on MIMO 271 | | – linear MIMO 252 | based on Millio 2,7 based on the pulse-transfer function 64 | | - linear SISO 36 | - in the case of autoregressive additive | | – nonlinear SISO 385–386, 388 | noise 74 | | • | | | - pulse-transfer function 37 | - in the case of nonautoregressive additive | | Parametric model (linear MIMO) | noise 81 | | - CARIMA matrix fraction model 254 | in the presence of measurable disturbance 78 | | - CARIMA state space model 258 | | | - CARMA matrix fraction model 252 | - incremental 397, 405 | | - CARMA state space model 256 | – nonincremental 392 | | Parametric model (linear SISO) | - of Hammerstein series 392 | | - CARIMA (ARIMAX) 51 | - of the first-order model 65 | | - CARMA (ARMAX) 41,48 | – of the generalized Hammerstein model | | - incremental 42 | 394, 401 – of the Hammerstein series 398 | | - state space model 43 | | | Parametric model (nonlinear SISO) | - of the impulse response model 56 | | - bilinear 389 | – of the parametric Volterra model | | – block-orientated 386 | 396, 403 | | - cascade 385 | - of the second-order model 68 | | – generalized Hammerstein 387, 389 | - of the state space model 93 | | – linear-in-parameters 388 | - of the step response model 61 | | - NARMAX 390 | – of the Volterra series 400 | | – parametric Volterra model 389 | – of Volterra series 393 | | – simple Hammerstein 385 | Predictive equation estimation | | – simple Wiener 386 | - based on one step ahead 337 | | PI(D) control 221 | - long-range optimal (LRPI) 339 | | PI(D) controller | – multistep ahead (MSPI) 344 | | discretization of continuous form 240 | Predictive functional control (PFC) | | – Kuhn's <i>T</i> -sum rule 241 | - constraint handling 454 | | – set point weighting 242 | – of a first-order linear process 443 | | – Åström and Hägglund's tuning | – of a nonlinear process with | | rules 242 | signal-dependent parameters 457 | | Prediction | – of a process with dead time 449 | | forced response | – of a second-order linear process 446 | | 12, 59, 73, 81, 97, 100, 136, 274 | – of the LPV model 457 | | – free response | – reference trajectory 438 | | 12, 59, 73, 81, 97, 100, 136, 274 | – with disturbance feed-forward 451 | | – of disturbance 57, 423 | Predictive on–off control | | Predictive control | – gap control 118, 126, 481–482 | | – cascade control 581 | – set point control 107, 473 | | - controller tuning 17, 151, 566 | – start-up control 112, 473, 475 | | – cost function 6, 13, 506, 570, 572 | Predictive on–off control algorithm | | – future trends 585 | limit-violation-time-point-dependent cost | | – GPC 138, 278 | function 121 | | using genetic optimization 110, 118 using quasi continuous-time optimization 119 using the online start-up strategy 124 using the selection strategy 108 Predictive PI control 222 long-range horizon algorithm 224 of a first-order process with dead time 225 | Receding horizon strategy 10 Reference signal 4,578 - future values 3 - reference trajectory 579 - set point 578 - set range 578 - set range funnel 580 | |---|---| | - one-step-ahead algorithm 223 Predictive PI(D) control - equivalance with GPC 234 - robust Smith predictor 246 - robustifying filter 245 - set point weighting 243 - structure 222 - tuning 240 Predictive PID control 221, 228 - long-range horizon algorithm 230 - of a second-order process with dead time 231 - one-step-ahead extended horizon algorithm 229 Predictive SISO linear control - cost function 137 - using matrix inversion (GPC) 138 Predictive transformation | s Sampling time 30 Scaling of variables 290, 293, 572 Shift operator 32 State space model - linear MIMO 255 - linear SISO 43 State space model (linear SISO) - incremental 43-44 - minimal order 44 - nonincremental 43 - nonminimal order 48 State variable 43 Step response 35 t Three-level control | | by repeated substitution 65 by solving the Diophantine equation 70, 260, 394 with filtering of the input and output signals 84 | nonpredictive 489predictive 489Time delay (dead time) 30 | | with the matrix calculation method 88 Process identification 336, 562, 585 application 504, 531 | W Weighting function/impulse response 33 | | Process model - application 504, 519, 530 | z
Zero-order holding 30 | | | |