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Introduction to Predictive Control

Model-based predictive control is a relatively new method in control engineering.
The basic idea of the method is to consider and optimize the relevant variables, not
only at the current time point but also during their course in the future. This goal
is achieved first by a heuristic choice of the manipulated variable sequence and
simulation of the future course of the process variables. If the future course of the
controlled and the constrained variables is not satisfactory, then new manipulat-
ed variable sequences are tried out until the control behavior becomes satisfactory.
The expression “predictive control” arises from a forecast of the variables. A process
model is necessary to simulate the process; therefore, we have the attribute “mod-
el based”. In acquiring knowledge of the predicted process variables, constraints
on the manipulated, controlled, and other variables can be simply taken into ac-
count. Predictive control makes possible robust control, mostly at the expense of
slower performance. These algorithms are particularly suitable for petrochemical
plants, which are slow enough to allow the simulation of the future course of the
process values to consider both the controlled variables and the fulfillment of the
constraints.

In the sequel the basics of predictive control are dealt with, namely,

� preview of predictive control,
� manipulated, reference, and controlled signals,
� cost function of predictive control,
� receding horizon strategy,
� free and forced responses of the predicted controlled variable,
� minimization of the cost function.

Several simulation examples illustrate the predictive control principle and its ad-
vantage over proportional plus integral (plus derivative) (PI(D)) control for

� linear single-input, single-output (SISO) systems,
� linear multi-input, multi-output (MIMO) systems, and
� nonlinear processes.
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2 1 Introduction to Predictive Control

Finally, the possibility of handling constraints is demonstrated. Practical examples
are not dealt with in this introductory chapter. They are discussed in Chapters 12
and 13.

1.1
Preview of Predictive Control

There is a fundamental difference between predictive control and conventional on–
off or PID control:

� A conventional controller observes only the current (and remembers the past)
process variables.

� A predictive controller observes the current and also the future process variables
(and remembers the past variables).

Predictive thinking is more natural in everyday thinking, for example, during car
driving one observes the future shape of the road, brakes if one is approaching
a curve, pushes the gas pedal if one is nearing a hill, and decreases the speed
if another, slower car appears in the field of vision. Figure 1.1 compares the two
driver philosophies.

� Conventional control in driving would mean a driving style where the car driver
looks only through the side windows. In a curve the driver can correct the trace
following the position only after having observed an error.

� Any real driver on the route is a predictive controller, because he/she drives
depending on the curvature and what he/she sees in advance in front of the car.

The longer the preview distance, the better the position control, but the calcula-
tions are more time consuming. The horizon length has to be increased with the
car speed. Beyond a certain preview distance the control would not be better. A
minimum sampling time is necessary, otherwise the car cannot follow the driver’s
commands in due time.

(a) (b)nonpredictive control predictive control

Figure 1.1 Car driving strategies.
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1.1 Preview of Predictive Control 3

The aim of control is to follow the reference signal and reject (which means
eliminate) the effect of the disturbances. Therefore, the quality of the control de-
pends on how these signals can be known in advance and also on the quality of the
process model.

Sometimes there is no information about the future course of the reference sig-
nal or disturbance. Then the signal is assumed to remain constant, which is also a
prediction, though it is not optimal.

1.1.1
Prediction of the Reference Value

In some cases the course of the future reference signal is known. Examples are:

� the product quality changes are planned in advance,
� the desired temperature in rooms in offices, schools, and so on, according to a

schedule,
� the trajectory of a robot arm.

If the manipulated variable can be changed according to knowledge of the future
reference signal course and before the change of the reference signal, then the
desired value of the controlled variable can be achieved earlier than without this
knowledge. Table 1.1 illustrates this fact for temperature control.

1.1.2
Prediction of the Disturbance

In some cases the course of the future disturbances is known. Examples are:

� weather forecast,
� electrical consumption forecast (schedule of broadcasting an event, when many

people switch on their TV, lights, or heating).

Table 1.1 Decision about how to heat a school building before the teaching starts (8:00 in the
morning).

Strategy Heating before 8:00 Pupils in the class at 8:10

Decision based on the
current temperature set
point

Heating according to the
current (night) demand

Freezing pupils can not learn

Decision based on the
current and future
temperature set point

Heating starts at about 6:30
as the building warms up
slowly

Pupils learn in a pleasant
climate
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4 1 Introduction to Predictive Control

Table 1.2 Decision about taking or not taking an umbrella on an excursion.

Current weather
situation

Future weather
situation

Decision based on
the current weather
situation

Without a forecast,
one gets into
difficulties

Decision based on
the weather forecast

One can handle
disturbances by
planning in advance
(with a forecast)

If the manipulated variable can be changed with knowledge of the future course of
the disturbances and before the disturbances occur, then the desired course of the
controlled variable can be achieved earlier than without this knowledge. Table 1.2 il-
lustrates this fact for “weather control” in everyday life. The advantage of predictive
control is obvious: one will not get wet if an umbrella is taken on an excursion.

1.2
Manipulated, Reference, and Controlled Signals

Figure 1.2 shows the course of the manipulated, reference, and controlled signals
during the control. The following symbols are introduced:

u: manipulated variable (also called control signal)
y , yr : controlled and reference signals
Oy : predicted controlled signal
t, k: current continuous and discrete times
ΔT : sampling time
d: discrete physical dead time relative to the sampling time.

Predictive control performs the following tasks:

� minimizes the control error several steps ahead of the current time point (be-
tween k C N1 and k C N2),

� penalizes the control increments several steps (nu � 1) ahead of current time
point (e.g., to eliminate valve wear),

� takes into account limitations in the control, controlled, and other computed
(e.g., state) variables.
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1.3 Cost Function of Predictive Control 5

Figure 1.2 Manipulated, reference, and controlled signals during the control.

A sudden, for example, stepwise change of the reference signal can produce a too
large, nonrealizable change in the manipulated variable. Sometimes a reference
trajectory is introduced, which is the filtered value of a set value (reference signal)
change. In the sequel only the reference signal and not the reference trajectory will
be used, unless it is mentioned explicitly.

The future course of the controlled signal can be calculated only if a model of the
process is known. Therefore, predictive control is often called model-based predic-
tive control.

The difference between predictive and nonpredictive control is shown in Fig-
ures 1.3 and 1.4. Nonpredictive control (like PI(D) control) works with current (and
through the internal memory also with past) values, whereas predictive control
considers also future reference and/or measurable or observable disturbance and
predicted manipulated and controlled signal sequences. (The connections with the
predicted signals are drawn with double arrows as these signals usually contain
several values. The selector generates the current control signal from the calculat-
ed manipulated variable sequence.)

1.3
Cost Function of Predictive Control

Any reasonable criterion can be defined to be achieved by the predictive controller.
Some possible aims may be:
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6 1 Introduction to Predictive Control

Non-
predictive
controller

ProcessCurrent manipulated
variable

Controlled
 signal

Current controlled
 signal

Nonmeasurable
disturbance

  Measurable and
    observable disturbances

Reference
 signal

Figure 1.3 Block scheme of a nonpredictive controller.

Optimizer Process Controlled
 signal

Current controlled
 signal

Predictor

Predicted controlled
variables

Selec-
tor

manipulated variable
CurrentPredicted

Nonmeasurable
disturbance

Measurable, observable
and known future disturbances

Current and future

reference signal

Figure 1.4 Block scheme of a predictive controller.

� fastest control,
� fastest control without overshoot in the controlled signal,
� fastest control with limitation of the manipulated signal, and so on.

A possible criterion of predictive control is to minimize a quadratic cost function
of the control error and the manipulated variable increments during the corre-
sponding prediction horizons. Clarke et al. [2] derived the control algorithm called
Generalized Predictive Control (GPC) for linear input/output models. In the un-
constrained case, the solution is explicit.

The quadratic cost function for the SISO case is

J D
N2X

iDN1

λ y i
�
yr(k C i) � Oy (k C ijk)

�2 C
nuX

j D1

λu j Δu2(k C j � 1) ) min
Δ u

,

(1.1)

with the notation
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1.3 Cost Function of Predictive Control 7

yr(k C ijk): reference signal i steps ahead of the current time,
Oy (k C ijk): predicted (and controlled) output signal i steps ahead,
Δu(k C i): controller output increment i steps ahead,

where (k C ijk) denotes that the future signal is predicted on the basis of the infor-
mation available till the current time point k.

The tuning parameters of the control algorithm are:

N1: first point of the prediction horizon beyond the current time,
N2: last point of the prediction horizon beyond the current time,
nu: length of the control horizon (the number of supposed consecu-

tive changes in the control signal),
λ y ,N1 , . . . , λ y ,N2 : weighting factors of the control error, usually assumed to be equal

to 1 (λ y D 1 in the SISO case),
λu1, . . . , λu,nu : weighting factors of the control increments, usually assumed to

be equal (and denoted then by λu).

As the current manipulated variable can influence the controlled signal only after
the dead time, the first and last points of the control error horizon are considered
by ne1 and ne2:

ne1: first point of the prediction horizon beyond the current time point and the
dead time,

ne2: last point of the prediction horizon beyond the current time point and the
dead time

ne1 D N1 � d � 1 I ne2 D N2 � d � 1 . (1.2)

With these denotations (1.1) becomes

J D
ne2X

neDne1

�
yr(k C d C 1 C ne) � Oy (k C d C 1 C nejk)

�2

C
nuX

j D1

λu Δu2(k C j � 1) ) min
Δ u(k )

. (1.3)

The cost function consists of two parts:

� costs due to control error during the control error horizon, which is also called
the optimization or prediction horizon,

� costs to penalize the control signal increments during the manipulated variable
horizon, which is also called the control horizon.

After the control horizon, that is, after nu steps, the manipulated variable is kept
constant. That means that if the reference signal is a constant value, then the last
manipulated variable is the steady-state value of the corresponding manipulated
variable.
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8 1 Introduction to Predictive Control

The above cost function can be minimized with knowledge of the process model
for different controller parameters. This will be done for linear SISO processes in
Chapter 5 and for MIMO processes in Chapter 7. Now let us consider a practical
example of a complex task.

Example 1.1 Control of the economy: decision about increase or reduction of taxes

The global goal is to maximize the satisfaction of the citizens (as the government
would like to win the next parliamentary election). More precisely, sometimes this
global goal is reduced to a current goal of maximizing the satisfaction of the citizens
on the day of the election (without consideration of the problems after the election,
e.g., guaranteeing pensions).

The target (cost) function consists of several parts:

� maximizing the incomes of the state,
� maximizing the incomes of the citizens (satisfaction feeling),
� minimizing the working time (satisfaction feeling), and so on.

The following variables are defined:

� Controlled variable: satisfaction of the citizens
� Disturbances: effects of the world economy
� Manipulated signal: tax change (increase or reduction)
� Constraints: Each citizen must receive the subsistence level, daily working time

maximum 8 h, and so on.

Model-based prognosis: To compute the target function some years ahead, models
are used which simulate (predict) the consequences of a tax change.

Model-based control: On the basis of minimization of the target function, a new,
optimal tax (manipulated variable) is computed.

Sampling time of discrete-time control: The tax is changed each 1 January, which
means ΔT D 1 year.

A sequence of tax changes is calculated for the next years, but only the current
tax change is realized. The calculation is repeated every year in the knowledge of
the current (measured) values, considering also the situation of the world market.

1.4
Reference Signal and Disturbance Preview, Receding Horizon, One-Step-Ahead,
and Long-Range Optimal Control

In the sequel the basic principles of predictive control are illustrated by some sim-
ulation results.

As predictive control minimizes the future control error, the future values of the
reference signal have to be known. There are two possibilities:
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1.4 Characteristic Features of Predictive Control 9

� the future reference signal course is known;
� the future reference signal course is not known.

If there is no other information, then the current set value is assumed to be con-
stant in the future.

Example 1.2 Predictive control of a linear third-order process without knowing the
future reference signal

Figure 1.5 shows the predictive control of a linear third-order process without a
reference signal and disturbance prediction. The process parameters are as follows:
static gain Kp D 1, and three equal time constants of T1 D 1/3 s. The set value is
increased stepwise at t D 1 s from 0 to 1 and a load disturbance of �1 is added
to the input of the process at t D 6 s. The sampling time is ΔT D 0.1 s and the
controller parameters are ne1 D 0, ne2 D 9, nu D 3, and λu D 0.1.

Example 1.3 Predictive control of a linear third-order process knowing the future
reference signal

Figure 1.6 shows the predictive control of a linear third-order process if the future
reference signal course is known for nyr ,p r e steps. All other parameters are as in
Example 1.2. In the case of the reference signal preview, the control starts nyr ,p r e

steps before the set point change and achieves the new set value earlier than with-
out a preview. As is seen, a part of the control error after the set point change is
shifted to before the set point change. As the disturbance is not known in advance,
its compensation starts after its occurrence (and measurement).

(a) controlled variable manipulated variable(b)

Figure 1.5 Predictive control of a linear third-order process without knowing the future refer-
ence signal.

(a) controlled variable manipulated variable(b)

Figure 1.6 Predictive control of a linear third-order process knowing the future reference signal
for some nyr ,p re steps in advance.
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10 1 Introduction to Predictive Control

t

y

ndist,pre

ndist,pre

yr y

(a) controlled variable manipulated variable(b)

dist,pre dist,pre

Figure 1.7 Predictive control of a linear third-order process without knowing the future refer-
ence signal but knowing the disturbance ndist,p re steps ahead.

Disturbances can be divided into three groups:

� Nonmeasurable (or unobservable) disturbances
Only the controlled output signal is measured and used in the control algorithm.

� Measurable (or observable) disturbances
Both the disturbance and the controlled output signals are measured and used
in the control algorithm. The control starts only if the disturbance occurred.
If the process has a long delay and/or dead time, the manipulated signal can
compensate for the effect of the disturbance with delay.

� Future course of the measurable (or observable) disturbances is known
The control can start in advance to compensate for the disturbance. In the opti-
mal case, the disturbance does not influence the controlled output.

Example 1.4 Predictive control of a linear third-order process knowing the distur-
bance in advance

Figure 1.7 shows the predictive control of a linear third-order process if the future
course of the disturbance signal is known for nd i s t,p r e steps. All other parameters
are as in Example 1.2. In the case of a preview, the control starts nd i s t,p r e steps
before the disturbance change and compensates for the disturbance earlier than
without a preview. As is seen, a control error occurs before the appearance of the
disturbance and acts to eliminate it. As the future course of the reference signal
is not known in advance, the control starts to move to the new set point after the
change of the reference signal. For comparison, the controlled and the manipulated
signals are also plotted for the case when the disturbance is not known.

In Example 1.1 it was mentioned that a sequence of tax changes is calculated for the
next years but only the current tax change is realized. The calculation is repeated
every year.

Receding horizon control strategy: The manipulated variable and its future val-
ues are computed in each control sampling step. Only the current manipulated
signal is realized. The advantage is that changes in the model, in the reference sig-
nal, in the disturbances, and/or in the constraints during the prediction horizon
(which means in the future) can be actually considered.
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1.4 Characteristic Features of Predictive Control 11

(a) controlled variable manipulated variable(b)

Figure 1.8 Predictive control of a linear third-order process with and without a receding hori-
zon, without knowing the future reference and disturbance signal.

Example 1.5 Control of a disturbed plant without and with the receding horizon
technique

The control scenario is the same as in Example 1.2. The variable nu,hor shows how
many elements of the manipulated variable are taken from the control signal se-
quence without a new calculation. nu,hor D 1 corresponds to the receding horizon
case. As is seen, the control is faster if the manipulated variable is calculated in
every control step in the case of a disturbance (shown in Figure 1.8) or of a process
parameter change (not shown here).

Depending on the control error horizon bounds, one can distinguish two types of
cost function:

� One-step-ahead control:
The start and the end of the control error horizon are equal; the cost function is
optimized only at one time point in the future (ne1 D ne2).

� Long-range optimal control:
The end point of the control error horizon is larger than the start point; the cost
function is optimized at more time points in the future (ne2 > ne1).

Example 1.6 One-step-ahead and long-range optimal control of a linear third-order
process

Figure 1.9 compares the one-step-ahead and long-range optimal control of a lin-
ear third-order process if the future reference signal course is unknown. All other
parameters are as in Example 1.2. The one-step ahead control with a short predic-
tion ne1 D ne2 D 1 caused overshoot and oscillations, and with a long prediction
ne1 D ne2 D 9 it was very slow. The overshoot could be decreased and the control
becomes faster if a long-range optimal control is used with nearly the same start
and end values of the control error horizon as in the one-step-ahead cases before.

The simulations show that

� a too short prediction horizon may cause overshoot for higher-order systems;
� a too long prediction horizon results in slow control without overshoot;
� a long-range optimal control with a low starting value and high end value of the

horizon may lead to fast control with a small overshoot.
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12 1 Introduction to Predictive Control

(a) controlled variable manipulated variable(b)

Figure 1.9 One-step-ahead and long-range optimal predictive control of a linear third-order
process without knowing the future reference and disturbance signals.

1.5
Free and Forced Responses of the Predicted Controlled Variable

The predicted process response Oy (k C 1 C d C nejk) is the effect of the free and the
forced response (Figure 1.10):

� The free response Oyfree(k C 1 C d C nejk) is obtained if the last value of the
manipulated signal is kept unchanged.
– u(k � 1) D u(k) D u(k C 1) D . . . D u(k C nu � 1) or Δu(k C j � 1) D 0

with j D 1, 2, . . . , nu

– with the initial values y (k), y (k � 1), . . . , y (k � n) (n is the model order)
� The forced response Oy f or c(k C 1 C d C nejk) is the effect of the consecutive

changes in the manipulated variable at the current and future time points.
– Δu(k), Δu(k C 1), . . . , Δu(k C nu � 1), and Δu(k C i) D 0 for i � nu

– with the initial values y (k) D 0, y (k � 1) D 0, . . . , y (k � n) D 0.

For linear processes the predicted controlled output can be calculated as the sum
of the free and forced responses (superposition principle). Unfortunately, the su-
perposition is not valid for nonlinear processes.

Figure 1.10 Splitting the predicted controlled variable into a free and a forced response for
linear systems.
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1.6 Minimization of the Cost Function 13

Figure 1.11 Preview of the reference value, free response, and controlled variable by the pro-
gram INCA from IPCOS Technologies.

Figure 1.11 shows the prediction of the free response and the predicted con-
trolled variable (as the sum of the free and the forced response) in a display hard
copy of the commercial program INCA from IPCOS Technologies, Boxtel, The
Netherlands. The operator can see a preview of the above-mentioned variables and
can stop the automatic control, change the set value, or change the manipulated
variable if the predicted values are not satisfactory.

1.6
Minimization of the Cost Function

The controlled output also depends on future manipulated variable values. Accord-
ingly, future values of the current manipulated variable have to be optimized as
well. The sequence of the changes in the manipulated variable to be calculated is

Δu D �
Δu(kjk), Δu(k C 1jk), . . . , Δu(k C nu � 1jk)

�T

� �
Δu(k), Δu(k C 1), . . . , Δu(k C nu � 1)

�T (1.4)

and the first term of vector (1.4) is used as the current manipulated variable. For
simplicity, Δu(k C ijk) is written as Δu(k C i) in the sequel, although the future
manipulated variable is calculated at the current time point k.
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14 1 Introduction to Predictive Control

1.6.1
Minimization Algorithms for Nonlinear Processes with or without Constraints

Generally there is no analytical solution: the cost function is computed by simula-
tion in the prediction horizon for all sequences of the manipulated variable and the
manipulated variable sequence is calculated by a numerical algorithm such as

� the simplex or gradient method (this is faster, however sometimes no global
minimum is found),

� an evolutionary algorithm (this is slower, but mostly the global minimum is
found).

The initial value for the minimization can be the manipulated signal sequence in
the previous sampling step.

1.6.2
Minimization of the Quadratic Cost Function for Linear Processes without Constraints

The free response can be calculated with knowledge of the model parameters from
the current and past input/output values. The forced response is a linear function
of the manipulated variable sequence in the future horizon. A quadratic cost func-
tion of the manipulated signal sequence can be minimized analytically without
iteration if there are no constraints.

Table 1.3 summarizes the cases mentioned.
Figure 1.12 shows the general structure of a predictive controller. If the mini-

mization of the cost function leads to an analytical solution, then the control algo-
rithm is a difference equation like with PID control. Then the online computation

Table 1.3 Comparison of the minimization algorithms.

Linear model and no
technological
constraints

Linear model with
technological
constraints

Nonlinear model
with or without
technological
constraints

Model type Linear Linear Nonlinear
Hard constraint No Possible Possible
Prediction of the
controlled signal

Sum of the free and
forced system
responses

Direct calculation or
sum of the free and
forced system
responses

Direct calculation

Minimization
algorithm

Analytical solution Minimization of the
cost function in an
iterative way

Minimization of the
cost function in an
iterative way

Computational
demand

Low High Very high
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Optimizer

Predictor

Data storage

Process

Current
 values

Old
values

Future controlled
signals

Manipulated
signal sequence

Future reference
signals

Current
 state

Manipulated
signal

Controlled
 signal

Figure 1.12 Structure of a predictive controller.

time is comparable with that of PID control, which is usually negligible related
to the sampling time. If iterative minimization is necessary, then the online com-
putational demand is higher, depending on the dimension of the minimization
problem and on the algorithm applied. There are some algorithms known for lin-
ear processes with hard constraints which work with a series of a priori computed
control laws and with knowledge of the state variables the linear control algorithm
has to search for in a lookup table.

1.7
Simple Tuning Rules of Predictive Control

The advantage of predictive control over PI(D) control is obvious when the pro-
cess has nonaperiodic characteristics or it contains significant dead time. This is
illustrated by two examples.

Example 1.7 Level control in a tank and in a boiler

The relation between the water flow and the level in a tank results in an aperiodic
process (without boiling water), and the level control is an easy task. In a boil-
er, however, the cold water increase leads temporarily to a decrease of the level
as bubbles in the boiling water collapse. If the water feed becomes warmer, the
level increases and achieves its new, higher steady-state value. Such processes are
called inverse repeat or non-minimum-phase processes. Figure 1.13 shows both
cases with the step responses. The tanks and boilers in Figure 1.13 also show the
sequences of the level changes.

The sampling time is ΔT D 0.1 s. First, a PID controller is tuned according to
Chien et al. [1] for the tank level control. The simulated process is approximated by
a first-order lag element with dead time and the following parameters: static gain
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16 1 Introduction to Predictive Control

(a) tank boiler(b)

Figure 1.13 Level step responses of a tank and a boiler.

Kp D 1, apparent dead time TL D 0.2 s, and apparent time constant TT D 1.4 s (of
course, such a process is much slower in practice). The controller parameters are
as follows:

Kc D 0.6
Kp

� TT

TL
D 0.6

1
� 1.4 s

0.2 s
D 4.5 I

TI D TT D 1.4 s I TD D 0.5 � TT D 0.5 � 0.2 s D 0.1 s .

The set value was increased stepwise at t D 1 s from 0 to 1 and a step disturbance
was added to the input of the process at t D 11 s from 0 to �1. The control with an
overshoot of about 50% is seen in Figure 1.14.

The same process was controlled by GPC. All controller parameters were selected
with their minimum value, ne1 D 0, nu D 1, and λu D 0, except for the end of the
control error horizon, ne2 D 30. The fast, aperiodic control is seen in Figure 1.15.

Now the level controller is designed for the boiler. Again, first a PID controller is
tuned according to Chien et al. [1]. The inverse-response step response is approxi-
mated as an aperiodic process with dead time. The process parameters are given by
the static gain Kp D 1, the apparent dead time TL D 1.1 s, and the apparent time
constant TT D 0.8 s. The controller parameters are as follows:

Kc D 0.6
Kp

� TT

TL
D 0.6

1
� 0.8 s

1.1 s
D 0.436 I

TI D TT D 0.8 s I TD D 0.5 � TT D 0.5 � 1.1 s D 0.55 s .

The set value and the disturbance were changed as before. The control behavior
became significantly slow and oscillating (Figure 1.16).

The same process was controlled by GPC. The controller parameters were select-
ed as before with the tank level control, only the control error horizon started at
ne1 D 11 because of the apparent dead time TL D 1.1 s. The control became fast
and aperiodic (Figure 1.17).
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Figure 1.14 PID control of an aperiodic process (tank level).
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Figure 1.15 GPC of an aperiodic process (tank level).
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Figure 1.16 PID control of an inverse-response process (boiler level).

The example shows that GPC can be tuned more easily than a PI(D) controller and
the controller parameters can be derived from the physical parameters of the step
response.

� The control error horizon should be started immediately after the dead time
(with inverse-response characteristics the time duration of the initial inverse
response is considered as a dead time).
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Figure 1.17 GPC of an inverse-response process (boiler level).

� The control error horizon should be finished at the settling time of the open-
loop step response (it can be chosen to be longer, but this has no effect on the
control behavior any more).

1.8
Control of Different Linear SISO Processes

Predictive control can be used for different process types.

Example 1.8 Predictive control of different linear SISO processes

Table 1.4 shows the open-loop step responses of different linear processes to a unit
step at t D 1 s and the control of a set value change from 0 to 1 at t D 1 s for given
values of the tuning parameters.

1. Oscillating process (second order):
Process parameters: static gain Kp D 1, damping factor � D 0.5, and time
constant T2 D 2 s. The transfer function of the process is

G(s) D 1
1 C 2 � 0.5 � 2s C 22 s2 .

where s denotes the Laplace operator.
Controller parameters: ΔT D 0.2 s, ne1 D 0, ne2 D 19, nu D 5, and λu D 0.01.

2. Integrating process:
Process parameters: integrating time constant TI D 2 s and time constant T1 D
1 s:

G(s) D 1
2s(1 C s)

.

Controller parameters: ΔT D 0.2 s, ne1 D 0, ne2 D 19, nu D 5, and λu D 0.01.
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1.8 Control of Different Linear SISO Processes 19

Table 1.4 Control of different linear processes.

No. Open-loop step response Set value and controlled signal

1. Oscillating

0 2 4 6 8 10 t [s]
0

1

h
h

0 2 4 6 8 10 t [s]
0

1

y

y
yr

2.
Integrating

0 1 2 3 4 5
0

1

t [s]

h
h

0 1 2 3 4 5 t [s]
0

1

y

yyr

3.
Inverse
response

0 1 2 3 4 5
0

1

t [s]

h

h

0 1 2 3 4 5 t [s]
0

1

y

y
yr

4.
Unstable

0 1 2 3 4 5
0

1

t [s]

h
h

0 1 2 3 4 5 t [s]
0

1

y

y
yr

3. Process with inverse-response characteristics:
Process parameters: static gain Kp D 1, three equal time constants T1 D T2 D
T3 D 1/3 s, and time constant corresponding to non-minimum-phase zero τ D
1/3 s:

G(s) D 1 � (1/3)s
(1 C (1/3)s)3 .

Controller parameters: ΔT D 0.2 s, ne1 D 5, ne2 D 19, nu D 3, and λu D 0.01.
4. Unstable process:

Process parameters: static gain Kp D 1 and time constants T1 D 1/3 s and
T2 D �1/3 s:

G(s) D 1
(1 C (1/3)s) (1 � (1/3)s)

.

Controller parameters: ΔT D 0.2 s, ne1 D 0, ne2 D 9, nu D 3, and λu D 0.1.
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20 1 Introduction to Predictive Control

(a) controlled variable manipulated variable(b)

Figure 1.18 Predictive control of a linear third-order process with different dead times without
knowing the future reference signal.

(a) controlled variable manipulated variable(b)

Figure 1.19 Predictive control of a linear, third-order process with dead time with knowledge of
the future reference signal.

As can be seen, different processes can be controlled fast and nearly without over-
shoot. Control of the unstable process is possible without any problems.

The next example shows the control of a dead-time process.

Example 1.9 Control of processes with different dead times

Figure 1.18 shows the predictive control of the same linear third-order process
without dead time (Td D 0) as in Example 1.2. As the future course of the reference
signal is not known, the manipulated signal changes only after the change in the set
value. Furthermore, the control of the same process with dead time is also shown
for Td D 1 s and Td D 2 s. As is seen, the controlled signal is shifted by the dead
time and the manipulated variable is the same in all cases until the time point
when the disturbance appears.

The simulations are repeated for the case when the future course of the reference
signal is known, see Figure 1.19. Now, all controlled signals for the reference track-
ing control are identical and the manipulated variable starts before the set value
change by the process dead time.

A process with known dead time can be controlled as if the dead time were not
present if the future reference values are known in advance. (This is also valid for
the disturbance signal, but in the simulated cases the disturbance was not assumed
to be known in advance.) Predictive control has – in this respect – features similar
to those of the Smith predictor. However, predictive control is more robust than the
Smith predictor (see also Section 1.12).
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1.9
Control of Different Linear MIMO Processes

The next example shows how easily a MIMO process can be controlled according to
the predictive control principle minimizing a quadratic cost function. The simulat-
ed process is of two-input, two-output (TITO) type. Both terms of the cost function
of the SISO process (1.1) had to be extended by similar terms for the second ma-
nipulated and controlled variable.

Example 1.10 Predictive control of different TITO processes

Figure 1.20 shows three different structures:

1. two SISO processes,
2. a TITO process,
3. another TITO process where the main channels and the coupling terms are

interchanged.

All subprocesses have the same three time constants T1 D T2 D T3 D 1/3 s. The
static gains of the coupling terms are smaller than those of the main channels,
Kp11 D 1, Kp12 D 0.25, Kp 21 D 0.5, Kp 22 D 1, and the dead times of the coupling
terms are bigger than those of the main channels, Td11 D 0.4 s, Td12 D 0.8 s,
Td21 D 1.0 s, Td22 D 0.6 s.

With traditional PI(D) design, first a decoupling has to be designed and after-
wards the PI(D) parameters have to be determined. With predictive control, solely
the start and end points of both control error horizons and the lengths of the ma-
nipulated variable horizons have to be given – in addition to the process model.
The sampling time was ΔT D 0.2 s and the controller parameters were chosen for
both variables as in Example 1.2 for the SISO third-order process: ne1 D 0, ne2 D 9,
nu D 3, and λu D 0.1.

(a) SISO TITO TITO interchanged(b) (c)

Figure 1.20 SISO and different TITO processes.
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22 1 Introduction to Predictive Control

(a) control by two SISO controllers control by a MIMO controller(b)

Figure 1.21 Predictive control of two SISO processes (process (a) in Figure 1.20).

(a) control by two SISO controllers control by a MIMO controller(b)

Figure 1.22 Predictive control of the TITO process (process (b) in Figure 1.20).

In the sequel two cases are compared:

� control by two independent (decentralized) SISO controllers,
� control by a TITO controller.

Figure 1.21 shows the SISO and MIMO predictive control of the two noncoupled
processes. Of course, there is no difference between the control behaviors.

Figure 1.22 shows the SISO and MIMO control of the two coupled processes. As
expected, the SISO control is bad. With MIMO control the controlled signals are
very similar to those of the uncoupled case; the MIMO predictive control decouples
the process automatically.

Figure 1.23 shows the SISO and MIMO control of the coupled processes if the
main and coupling terms are interchanged. Because of the longer dead times of
the coupling terms than those of the main channels, the SISO control is very bad
(unstable). The MIMO control results in the same control behavior as in case when
the main and coupling channels were not interchanged. The only difference is in
the course of the manipulated variables (not shown here).

Example 1.10 has shown that

� a predictive controller can be tuned very easily for MIMO processes using simi-
lar controller parameters now for more variables,

� predictive MIMO control decouples the controlled variables and the degree of
the decoupling can be influenced by the choice of the controller parameters (not
shown here).
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(a) control by two SISO controllers control by a MIMO controller(b)

Figure 1.23 Predictive control of the TITO process (process (c) in Figure 1.20).

1.10
Control of Nonlinear Processes

Any predictive controller consists of a predictor, as shown in Figures 1.4 and 1.12.
As a prediction can be performed by repeated simulations, this technique can be
used both for linear and for nonlinear processes. (For linear systems more effec-
tive ways exist to calculate the predicted model output. This technique is dealt with
later on.)

Example 1.11 Prediction of a linear and a nonlinear model

Consider the first-order nonlinear (bilinear) difference equation

y (k) D �a1 y (k � 1) C b1u(k � 1) C c1u(k � 1)y (k � 1) .

The one-step-ahead prediction is a similar equation:

y (k C 1) D �a1 y (k) C b1u(k) C c1u(k)y (k) .

The two-steps-ahead prediction is obtained by shifting the one-step-ahead predic-
tive equation and substituting y (kC1) from the one-step-ahead predictive equation:

y (k C 2) D �a1 y (k C 1) C b1u(k C 1) C c1u(k C 1)y (k C 1)

D �a1
��a1 y (k) C b1u(k) C c1u(k)y (k)

�
C b1u(k C 1) C c1u(k C 1)

��a1 y (k) C b1u(k) C c1u(k)y (k)
�

.

This equation is predictive, as y (k C 2) depends only on known measured values
y (k) and u(k) and a future input value u(k C 1). The method for calculation of the
predictive equation is the same for the nonlinear case c1 ¤ 0 and for the linear
case c1 D 0.



�

� Robert Haber, Ruth Bars, and Ulrich Schmitz: Predictive~Control in~Process~Engineering —
Chap. haber4928c01 — 2011/6/28 — page 24 — le-tex

�

�

�

�

�

�
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1.11
Control under Constraints

During the control different variables can be constrained. Some typical constraints
concerning the manipulated and the controlled variable are shown in Figure 1.24.
Another variable, for example, a state variable, can be restricted as well.

In this case the cost function (1.1) should be minimized under constraints. Al-
ternatively, the cost function can be extended by a quadratic term that weights the
constraint violation. In the case of the so-called soft constraints, the unconstrained
minimization of the cost function is an easy task.

Example 1.12 Predictive control with constraints

Figure 1.25 is the same as Figure 1.5 for Example 1.10 where a linear third-order
process was controlled without constraints.

In Figure 1.26 the manipulated signal is limited to the interval 0 � u(k) � u up

D 2. As is seen, the control becomes a bit slower, mainly the compensation of the
disturbance after t D 6 s; however, no steady-state error occurs.

In Figure 1.27 the controlled output signal is limited to the interval 0 � y (k) �
yup D 0.9. As expected, the controlled variable never achieves the desired set value.

In both simulated cases constraint handling was very effective and the control re-
mained relatively fast. As with predictive control, the future course of the manip-
ulated and controlled variables is simulated in every step, and constraint handling
can be performed online with little additional computational demand. However, in
this case GPC does not have an analytical form.

(a) manipulated variable controlled variable(b)

Figure 1.24 Constraints.

(a) manipulated variablecontrolled variable (b)

Figure 1.25 Predictive control of a linear third-order process without constraints.
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(a) manipulated variablecontrolled variable (b)

Figure 1.26 Predictive control of a linear third-order process if the manipulated variable is limit-
ed below 2.

(a) manipulated variablecontrolled variable (b)

Figure 1.27 Predictive control of a linear third-order process if the controlled variable is limited
below 0.9.

1.12
Robustness

Predictive control is usually more robust to parameter changes than PI(D) control.

Example 1.13 Comparison of predictive control and PID control

This example shows control of the same linear third-order process as in Exam-
ple 1.2 but with dead time Td,m D 1 s. The weighting factor is raised from 0.1
to 10.0 to make the GPC similar to PID control. The GPC tuning parameters are
ne1 D 0, ne2 D 9, nu D 3, and λu D 10. The PID control is tuned manually
(Kp D 0.7, TI D 1.2 s, and TD D 0.5 s), because the usual tuning rules do not
work very well for processes with dead time. Figure 1.28 shows the control with
the process dead time equal to the model dead time Td,m D 1 s and with a value
increased by 10%, Td,p D 1.1 s.

Both controls show mostly the same sensitivity to the parameter change, even if
the PID controller generally produces more oscillations, bigger manipulated vari-
able changes (the initial change was from 0 to 4.22), and needs more considerations
for the tuning.

The next example shows a special case: the control of a dead-time process with a
PID controller using a Smith controller vs. predictive control.
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(c) manipulated variable of PID controlcontrolled variable of PID control (d)

(a) manipulated variable of predictive controlcontrolled variable of predictive control (b)

Figure 1.28 Control of a linear third-order dead-time process with dead-time mismatch.

(c) manipulated variable of PID with
Smith predictor control

controlled variable of PID with
Smith predictor control

(d)

(a) manipulated variable of predictive controlcontrolled variable of predictive control (b)

Figure 1.29 Control of a linear third-order dead time process and with dead-time mismatch.

Example 1.14 Comparison of predictive control and PID control using a Smith pre-
dictor

Figure 1.29 shows the predictive control of the same linear third-
order process as in Example 1.2 but with dead time Td,m D 2 s
and the weighting factor raised from 0.1 to 10.0 to make the GPC
as slow as the PID control. The predictive controller parameters are
as in Example 1.2. The same process was controlled by a PID con-
troller with a Smith predictor as well. The PID controller was tuned
for fast aperiodic control according to the tuning rule of the T-sum rule
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of Kuhn [3]:

Kp D 1.0 I TΣ D 1.0 s I Kc D 1
Kp

D 1
1.0

D 1.0 I

TI D 2
3

� TΣ D 2
3

� 1.0 s D 2
3

s I TD D 1
6

� TΣ D 1
6

� 1.0 s D 1
6

s .

Here TΣ is the sum of the time constants.
Now, the simulation was repeated with the dead time of the processes reduced

by 10% (the model remained unchanged) (Td,m D 2 s, Td,p D 1.8 s).

What Example 1.14 shows is generally valid: predictive control is usually more ro-
bust than PI(D) control, not only if a Smith predictor is used. (There are some
methods that ensure enhanced robustness for both predictive and PI(D) control
algorithms.)

1.13
Summary

The above-mentioned considerations, the industrial experiences, and the literature
show that predictive control is to be preferred to PID control if:

� the future course of the reference signal is known,
� the future course of the disturbances is known,
� the the process has a long dead time,
� the process has inverse-response (non-minimum-phase) characteristics,
� the process is unstable,
� constraints are to be considered,
� the process is nonlinear,
� the process parameters may change during the control,
� several control variables are to be controlled simultaneously,
� decoupling of a MIMO process is desired.

The advantages of predictive control are as follows:

� simple controller tuning based on physical process parameters,
� robust behavior against model parameter and disturbance changes,
� applicable both for input/output and for state space models,
� nonparametric models, such as finite impulse response and finite step response

models, can be used,
� predictive control works with physically interpretable parameters and therefore

this algorithm can be easily understood by engineers and operators.
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