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  1.1 
  d  Wavefunctions 

 The wavefunction of an electron, in polar coordinates (Figure  1.1 ), is expressed by 
the formula   φ θ φn l m n l

mR r Y, , ,( ) ( , )= l , where  R n,l   is the radial part and   Y m
l  the angular 

part. Symmetry operations only alter the angular part, regardless of the value of  n  
(the principal quantum number).   

   Yl
m corresponds to what are known as spherical harmonics, which can be broken 

down into two independent parts,   Θ l
m  and  Φ   m  , which in turn depend on the angles 

 θ  and  φ  of the polar coordinates,   Yl
m

l
m

m= Θ Φ .   Φl
m are the standard Legendre poly-

nomials, which depend on sin θ  and cos θ ; and  Φ   m     =   (2 π )  − 1/2 e i m  φ  . 
 The wavefunctions of the orbitals s, p, d and f are expressed as follows:   Y0

0 refers 
to an s orbital;   Y1

0,   Y1
1 ,   Y1

1−  to the three p orbitals;   Y2
0,   Y2

1± ,   Y2
2±  to the d orbitals; 

and   Y3
0,   Y3

1± ,   Y3
2± ,   Y3

3±  to the f orbitals. The mathematical expressions of these 
functions have an imaginary part,  Φ   m     =   (2 π )  − 1/2 e i m  φ  . Given that e  ± i m  φ     =   cos( m l   φ )    ±   
 isin( m l   φ ), one usually works with linear combinations of the orbitals, which enable 
the imaginary part to be suppressed. Those functions in which the imaginary part 
has been suppressed are known as  real wavefunctions  of the atomic orbitals. Using 
the mathematical expressions that relate the polar to the Cartesian coordinates 
( r  2    =    x  2    +    y  2    +    z  2 ;  x   =   r sin θ  cos φ ;  y   =   r sin θ  sin φ ;  z   =   r cos θ ) it is possible to determine 
the equivalence between the real wavefunctions in polar and Cartesian coordi-
nates, which are those conventionally used to  ‘ label ’  the d orbitals ( xz, yz, xy, x  2  –  y  2 , 
 z  2 ) (Table  1.1 ).    

  1.2 
 Crystal Field Effect on Wavefunctions 

  1.2.1 
 Qualitative Aspects 

 In 1930 Bethe and Van Vleck studied the effect of isolating a Na +  cation by placing 
it inside an ionic lattice, such as NaCl. They sought to determine what happens 
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 Table 1.1     Imaginary and  real  angular wavefunctions of d orbitals  [1, 2] . 

    
Y m

2

  
  Imaginary function    Real function 

(combination)  
  Real function    Real function  [a]      Orbital  

  Normalizing 
factor  

  Angular 
function  

    Y2
0

    (5/8) 1/2 (3cos 2  θ     −    1)(2 π )  − 1/2     |0 >     ( √ 5/ π )/4    (3cos 2  θ     −    1)    2 z  2     −     x  2     −     y  2     d  z 2   

    Y2
1

    (15/4) 1/2 sin θ  cos θ  (2 π )  − 1/2  e +i φ      2  − 1/2 [|1 >    +   | − 1 > ]    ( √ 15/ π )/2    sin θ  cos θ  cos φ      xz     d  xz    

    Y2
1−

    (15/4) 1/2 sin θ  cos θ  (2 π )  − 1/2  e  − i φ      2  − 1/2 [|1 >     −    | − 1 > ]    ( √ 15/ π )/2    sin θ  cos θ  sin φ      yz     d  yz    

    Y2
2

    (15/16) 1/2 sin 2  θ  (2 π )  − 1/2  e +2i φ      2  − 1/2 [|2 >    +   | − 2 > ]    ( √ 15/ π )/4    sin 2  θ  cos2 φ      x  2     −     y  2     d  x  2  −  y  2    

    Y2
2−

    (15/16) 1/2 sin 2  θ  (2 π )  − 1/2  e  − 2i φ      2  − 1/2 [|2 >     −    | − 2 > ]    ( √ 15/ π )/4    sin 2  θ  sin2 φ      xy     d  xy    

     a  Cartesian coordinates.   

    Figure 1.1     Relationship between cartesian and polar coordinates.  

to the energy levels of the free ion when it is placed inside the electrostatic fi eld, 
known as the  crystal fi eld , which exists in the crystal. It was known that, prior to 
being subjected to the crystal fi eld, the energy levels of the free ion are degenerate. 
They demonstrated that, depending on the symmetry of the crystal fi eld, this 
degeneracy is lost; at the same time they developed a theory which they applied to 
3D ionic solids. However, 20 years were to pass before chemists applied the theory 
to coordination compounds. The essential idea of the model applied to complexes 
is to assume that the coordination sphere of the anions or ligands surrounding a 
metal ion behave as a set of negative point charges which interact repulsively with 
respect to the electrons of the central metal cation. The two single electrons of a 
ligand act like a negative point charge (or like the partial negative charge of an 
electric dipole), which undergoes a repulsive effect with respect to the electrons 
of the d orbitals of the central metal ion. The theory is very simple, easy to visual-
ize and correctly identifi es the importance of the symmetry of the orbitals. The 
bond is thus essentially electrostatic: there is cation(+)/ligand( − ) attraction but, at 
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the same time, repulsion between the ligands and the electrons of the central 
cation. 

 In this fi rst chapter, the theory will only be used to explain the bonding in coor-
dination compounds. The concept of term, multiplet, state, etc. will be dealt with 
in Chapter  8 . Group theory is of great use in both situations. 

 Starting from a cyclic point group it is possible to obtain the irreducible repre-
sentations for any value of the quantum number  l , by means of the following 
formula:

   χ α α α( ) sin /sin( / )= +( )⎡
⎣⎢

⎤
⎦⎥

l
1

2
2     (1)  

( α    =   angle of rotation corresponding to the cyclic group;  α   ≠  0) 
 This formula can be used to calculate the  qualitative  splitting of the atomic orbit-

als for any crystal fi eld of a given symmetry (Tables  1.2  and  1.3 ).     
 It can be seen that the p orbitals do not split under the effects of octahedral or 

tetrahedral fi elds. However, if the symmetry is reduced they do split. Obviously, 
the s orbital never splits, regardless of the symmetry. 

 For the two main symmetries ( O  h  and  T  d ) the splitting caused by the crystal fi eld 
can be visualized intuitively by drawing the d orbitals together with the ligands. 
Figure  1.2  illustrates the splitting of d orbitals for octahedral symmetry, while 
Figure  1.3  does the same for tetrahedral symmetry.     

 In an octahedral complex ( O  h ) the six ligands are situated along cartesian axes 
(Figure  1.2 ) whose origin is the metal ion. Therefore, the ligands are close to the 

 Table 1.2     Splitting of the atomic orbitals in  O  h  symmetry. 

  Orbital     l      c ( E )     c ( C  2 )     c ( C  3 )     c ( C  4 )    Irreducible 
representation  

  s    0    1    1    1    1    a 1g   
  p    1    3     − 1    0    1    t 1u   
  d    2    5    1     − 1     − 1    e g    +   t 2g   
  f    3    7     − 1    1     − 1    a 2u    +   t 1u    +   t 2u   

 Table 1.3     Splitting of the orbitals in  T  d ,  D  4h ,  D  3  and  D  2d  symmetry fi elds. 

       T  d      D  4h      D  3      D  2d   

  s    a 1     a 1g     a 1     a 1   
  p    t 2     a 2u    +   e u     a 2    +   e    b 2    +   e  
  d    t 2    +   e    a 1g    +   b 1g    +   b 2g    +   e g     a 1    +   2e    a 1    +   b 1    +   b 2    +   e  
  f    a 2    +   t 2    +   t 1     a 2u    +   b 1u    +   b 2u    +   2e u     a 1    +   2a 2    +   2e    a 1    +   a 2    +   b 2    +   2e  
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    Figure 1.2     Representation of the d orbitals and point charges in an  O  h  crystal fi eld.  

    Figure 1.3     Representation of the d orbitals and point charges in a  T  d  crystal fi eld.  

d  z 2  and d  x 2 −  y 2  orbitals, whose symmetry label is e g . The other three d orbitals (d  xy  , 
d  xz  , d  yz  ) are further away from the ligands. Their symmetry label is t 2g . If we con-
sider the repulsions between the d orbitals and the ligand electrons, it is logical 
to assume that these repulsions are greater between the ligands and the e g  orbitals 
than between the same ligands and the t 2g  orbitals (which are directed toward the 
bisectors of the planes  xy, xz, yz ). Therefore, a simple logical deduction tells us 
that the fi ve d orbitals have split into two groups: e g  and t 2g . This same logic enables 
us to deduce that the potential energy of the three degenerate t 2g  orbitals is less 
than the energy of the two degenerate e g  orbitals. 

 A tetrahedral fi eld also splits the fi ve d orbitals into two sets, t 2  (d  xy  , d  xz  , d  yz  ) and 
e (d  z 2  and d  x 2 −  y 2 ). It can easily be seen that the splitting of the d orbitals must be 
less than and the reverse of what occurs in the octahedral case. Indeed, with tet-
rahedral geometry none of the ligands moves toward the central ion according to 
the direction of the orbitals. In this case the t 2  orbitals are closer to the ligands, as 
they are directed toward the mid - point of the edges, whereas the e orbitals are 
directed towards the center of the faces (Figure  1.3 ).  
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  1.2.2 
 Quantitative Aspects 

 Group theory does not tell us anything about the relative energies of the different 
groups of orbitals. In order to determine the corresponding energies it is necessary 
to use energy calculations with the corresponding operators. 

  1.2.2.1   Energy Operator of the Ligand Field 
 The potential created by six point charges (assuming  O  h  geometry) at a point  x,y,z  
is:

   V ez rx y z ij

i

( , , ) /=
=
∑ 1

1

6

 

where  r ij   is the distance from the charge  i  to the point  x,y,z.  1/ r ij   can be written 
according to the abovementioned spherical harmonics.  

  1.2.2.2   Effect of V oct  on  d  Functions 
 The energy calculation is complicated and beyond the scope of this book. Further 
information can be found in specialized books, such as that of Figgis and Hitch-
man  [1] . The fi nal result for the energy involved in splitting the d orbitals is 10 Dq , 
where  D    =   35 ze /4 a  5  and  q    =   2 e  <  r  >  4 /105. Therefore,  Dq    =   (1/6)( ze  2  <  r  >  4 / a  5 ). If point 
charges representing the ligand atoms are replaced by point dipoles, which pro-
vides a more realistic representation of ligands such as water or ammonia, a similar 
expression for  Dq  is obtained:  Dq    =   5 μ  <  r  >  4 /6 a  6 . In both expressions  ze  is the charge 
of the anion,  a  is the internuclear distance between the metal and the anion or 
dipole and  <  r  >  is the average distance of the d orbital electron from its nucleus. 

 The splitting of the d orbitals, with their corresponding energies, is shown in 
Figure  1.4 . Although the functions |1 >  ( xz ) and | − 1 >  ( yz ) have been written sepa-
rately, they can be combined linearly. Any linear combination is permitted, as in 
a cubic fi eld they are degenerate functions. The linear combinations of |2 >  and 

    Figure 1.4     Splitting of the d orbitals in a crystal fi eld of  O  h  symmetry.  
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| − 2 >  are  necessary  because the corresponding orbitals belong to different symme-
tries. They cannot be indicated as |2 >  and | − 2 > .   

 The energy difference 10 Dq    =    Δ  o  is termed the  crystal fi eld splitting parameter . 
The fact that there are only two types of orbitals (e g  and t 2g ) means that if the sepa-
ration between them is 10 Dq , the energy of the t 2g  orbitals will be  − 4 Dq  and that 
of the e g  orbitals 6 Dq , in order to fulfi l the principle of energy conservation.  

  1.2.2.3   Crystal Field Splitting Parameter 
 The parameter 10 Dq  varies according to the identity of the ligands and the central 
ion. On the basis of many empirical observations, ligands can be grouped into 
what is known as the  spectrochemical series  according to the intensity of the crystal 
fi eld they create, from lesser to greater energy. As regards some of the main 
ligands, the order of the spectrochemical series is:

   I Br <SCN Cl NO N F OH ox O H O NCS

CH CN

− − − − − − − − − − −< < < < < < < < < <
< <

S2
3 3

2
2

3

,

NNH py en bpy phen NO PPh CN CO3 2 3≈ < < < < < < <− −

  

 From the point of view of crystal fi eld theory, the relationship F  −      >    Cl  −      >    Br  −      >   
 I  −   is logical, as the smallest anion has more repulsion energy ( q  1  q  2 / r ) with decreas-
ing  r . However, crystal fi eld theory cannot explain why an anionic ligand such as 
OH  −   creates a weaker fi eld than H 2 O, or why CN  −   and CO are among the ligands 
with the strongest fi eld. This is one of the theory ’ s weak points, and the explana-
tion for it is to be found in the theory of molecular orbitals. 

 The values of 10 Dq  also depend on the metal ion. In general, the most important 
variations are as follows: 

   •      10 Dq  increases with the oxidation number. For example, for the divalent ions of 
the fi rst transition series the value of  Dq  varies between 700 and 3000   cm  − 1 , 
whereas for trivalent ions it varies between 1200 and 3500   cm  − 1 .  

   •      10 Dq  increases upon moving down a group. If, for an M 3+  ion of the fi rst 
transition series,  Dq  has a value of 1200 – 3500   cm  − 1 , then the value for the second 
and third series will be 2000 – 4000   cm  − 1 . In general, the value of 10 Dq  increases 
by 50% when moving from the fi rst to the second transition series, and by 25% 
when passing from the second to the third series.    

 On the basis of a wide variety of experimental data, it is possible to calculate 
empirically the value of 10 Dq , as the part corresponding to the metal and the 
part corresponding to the ligand can be parametrized: 10 Dq   =   M Σ n  i  L  i     ×    10 3  (cm  − 1 ) 
 [3, 4] .  

  1.2.2.4   Weak and Strong Fields. Crystal Field Stabilization Energy 
 Placing one, two or three electrons in the d orbitals of an octahedral complex does 
not present a problem, as their placement is necessary (t 2g ) 1 , (t 2g ) 2  and (t 2g ) 3 . The 
problem arises when we want to place a fourth electron (or more). The new elec-
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tron may be placed in two different sites: it may remain in the t 2g  orbitals and pair 
with an existing electron, which results in energy destabilization due to the pairing 
energy of the electrons,  P ; alternatively, it may jump to the (free) e g  orbitals, and 
thus it will not have to pair, although it will have to overcome the positive energy 
10 Dq . Naturally, which of the two phenomena occurs will depend on the  relative  
values of 10 Dq  and  P . If 10 Dq    >  >    P  the electrons will tend to be paired in the t 2g  
orbitals; if 10 Dq    <  <    P  the electrons will tend to jump to the e g  orbitals. The former 
case is known as  strong fi eld  or  low spin , whereas the latter is referred to as  weak 
fi eld  or  high spin . This situation occurs for d 4 , d 5 , d 6  and d 7  confi gurations. The 
electron confi gurations d 8 , d 9  and d 10  only have one possibility, as is the case for 
d 1 , d 2  and d 3 . 

 Figure  1.5  illustrates these possibilities for all confi gurations. For each one of 
the confi gurations the fi gure in brackets is what is termed the  crystal fi eld stabiliza-
tion energy  (CFSE). It can be calculated by multiplying the number of electrons in 
the t 2g  orbitals by  − 4 Dq  and the number of electrons in the e g  orbitals by 6 Dq . The 
pairing energy,  P , is always positive. The fi nal energy calculation will be given by 

    Figure 1.5     d - orbital occupancy in a crystal fi eld of  O  h  
symmetry (for both weak and strong fi eld).  
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adding the value of  P  as many times as there are numbers of electron pairs in the 
confi guration. There is one important detail to bear in mind here: if, in the four 
confi gurations in which a strong or weak fi eld is possible, the energies of the two 
fi elds are mathematically equal, the two confi gurations will be in equilibrium. Any 
small external perturbation (temperature, pressure, etc.) may easily result in a 
switch from one confi guration to the other. This phenomenon, known as  spin 
transition , is of great importance when studying the magnetism of this series of 
complexes.   

     Remark:     for the calculation of the pairing repulsion energy it is necessary to take 
into account the pairing energy in the spherical shell, before the application of the 
crystal fi eld  [5] . For d 6    =    P ; d 7    =   2 P ; d 8    =   3 P ; d 9    =   4 P  and d 10    =   5 P . 

 All the above is valid for elements of the fi rst transition series. Complexes of 
the second and third series generally adopt the low spin (strong fi eld) confi guration 
because, even with ligands that create a weak fi eld, the fi eld produced by the ion 
is suffi ciently intense.    

  1.2.2.5   Splitting of d Orbitals in a Tetrahedral Field 
  V  tet    =    − (4/9) V  oct , and therefore  Dq  tet    =    − (4/9) Dq  oct . This relationship can be verifi ed 
by means of the angular overlap model of molecular orbital theory (see below). As 
a consequence, tetrahedral complexes are exclusively weak fi eld complexes and 
there is no need to distinguish between two types, as in the case of octahedral 
complexes.  

  1.2.2.6   Splitting of d Orbitals in a Tetragonally - distorted Octahedral Field. 
Square - planar Complexes 
 According to group theory, when a crystal fi eld of  D  4h  symmetry is applied, the d 
orbitals split into a 1g ( z  2 )   +   b 1g ( x  2     −     y  2 )   +   b 2g ( xy )   +   e g ( xz, yz ) (Table  1.3 ). Let us begin 
by studying the effect of a tetragonal distortion on the relative energies of the t 2g  
and e g  orbitals of a complex with  O  h  symmetry. From the point of view of group 
theory, the new point group will be  D  4h , regardless of whether the distortion takes 
the elongated or compressed form. An elongation with respect to the  z  axis will 
result in the stabilization of all the orbitals with a  z  component, as the increasing 
distance between the two ligands will lead to lower ligand – electron repulsion 
energy. In contrast, in the case of compression the energy diagram will be the 
other way round: the orbitals with a  z  component will become more unstable due 
to greater repulsion. These effects are shown, for both cases, in Figure  1.6 .   

 If the distortion in the form of elongation is large enough the two ligands will 
separate in the  trans conformation , giving rise to a square - planar complex ( D  4h ). 
Figure  1.6 B shows the energy diagrams, starting from an elongated octahedral 
complex. It is demonstrated that  Δ  sp     ≈    1.3 Δ  o . 

 Although the same reasoning can be applied to other geometries it is generally 
the case, except for octahedral, tetrahedral and square - planar geometry, that molec-
ular orbital theory offers a much more realistic approach. Even in the case of the 
above - mentioned complexes, crystal fi eld theory ignores what are properly covalent 



    Figure 1.6     Compression or elongation of an  O  h  crystal fi eld. 
Extrapolation to a square - planar geometry.  

bond interactions between the metal ion and the ligands, and thus it tends to be 
replaced by  ligand fi eld theory  (see Chapter  8 ).    

  1.3 
 Molecular Orbital Theory 

 As for non - coordination compounds, two theories can be applied to explain cova-
lency: valence bond theory and molecular orbital theory. In the fi rst the electrons 
are assumed to be localized: it is thus easy to explain the geometry, and it is neces-
sary to introduce the  ‘ artifi cial ’  concept of  hybrid  orbitals. In all books on General 
and Inorganic Chemistry, the valence bond theory applied to complexes with the 
typical hybridizations sp 3 , sp 3 d, sp 3 d 2  etc. is explained, with more or less detail, 
emphasizing its current limitations. Thus, the interested reader can consult any 
of these books. Anyway, this concept of hybridization in coordination compounds 
has undergone a  ‘ renaissance ’  since the Hoffmann defi nition of the  ‘  isolobal 
analogy  ’  concept, which will be treated in Chapter  6 . 

 In molecular orbital (MO) theory it is assumed that the bond between the central 
ion and the ligands is essentially covalent, and produced by the overlap of the s, 
p, and d orbitals of the central ion and the ligand group orbitals of adequate 
symmetry. 

 In this approach it is necessary to distinguish between qualitative aspects (sym-
metry of the MOs formed) and quantitative ones (energy of the MOs). With regard 
to the qualitative aspects it is once again necessary to turn to group theory, and 
there is really no difference between determining the nature and symmetry of the 
molecular orbitals of a simple molecule such as water and those of a coordination 
compound. The only difference lies in the fact that in a complex the d orbitals 
 necessarily  play a role, as they are the most important in this type of molecule. 

 1.3 Molecular Orbital Theory  11
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 As clearly indicated by Y. Jean in his recent book  [6] , there are four stages to the 
general procedure for constructing the MOs of an ML  n   complex: (i) fi nd the appro-
priate point group symmetry; (ii) determine the symmetry properties of the orbit-
als of the central metal atom (character tables); (iii) do not consider the ligand 
orbitals individually, but use linear combinations of these orbitals adapted to the 
symmetry of the complex: symmetry - adapted orbitals [or symmetry - adapted linear 
combinations (SALCs)]; (iv) allow metal and ligand orbitals to interact. Only orbit-
als of the same symmetry can interact, since their overlap is not zero. 

 Tables  1.2  and  1.3  show the symmetry labels of the s, p and d orbitals for  O  h , 
 T  d  and other geometries. All that is required, therefore, is to construct the ligand 
group orbitals (by means of their projection operators) and combine them ade-
quately with the orbitals of the central ion. Obviously, this approach will be valid 
for both  σ  and  π  bonds. Two conditions must be met with these ligand orbitals: 
they must be close in energy to those of the metal, and their overlap must also be 
substantial. 

 In order to calculate the energies it is necessary to turn to quantum methods, 
which may be very simple or extraordinarily complicated. The simplest method is 
what is known as the Angular Overlap Model; this will be discussed below and 
offers solutions to the energy calculations which are accurate enough for the objec-
tives set within this book. Another more sophisticated method is the extended -
 H ü ckel model, which can be applied using a PC and the now widely available 
software program CACAO ( c omputer  a ided  c omposition of  a tomic  o rbitals)  [7] . 
Other increasingly sophisticated methods require signifi cant calculation times. 
These methods will not be discussed in this chapter. 

  1.3.1 
 Molecular Orbitals of an Octahedral Complex 

  1.3.1.1    s  Molecular Orbitals 
 The symmetry labels of the s, p, and d orbitals are known (Table  1.2 ), so all that 
is required is to calculate the group orbitals on the basis of the ligand orbitals 
which can be adequately combined. There are several ways of representing the 
ligand orbital that is involved in the  σ  interaction: as an s orbital, as a p orbital, or 
as a hybrid (s – p) orbital directed toward the metallic center (Figure  1.7 ). It should 
be borne in mind that the order of the six orbitals in Figure  1.7  is totally arbitrary, 
as is the choice of the coordinate axes.   

 In the  O  h  point group the six  σ  orbitals of the ligands can be grouped according 
to the symmetry group orbitals a 1g    +   e g    +   t 1u  (readers can easily verify this). By 
applying the projection operators we obtain the group orbitals as combinations of 
these six orbitals, and their adaptation to the symmetry of the central ion orbitals 
can be correlated. This calculation is rarely made in any book on Group Theory. 
Due to the high symmetry of an octahedral complex the group orbitals can be 
derived by simple intuition, and represented as in Figure  1.8 , without needing to 
resort to projection operators. These results are given in Table  1.4  and Figure 
 1.8 .     



    Figure 1.8     Ligand group orbitals and the corresponding metal 
ion orbitals, with their symmetry label ( σ  - bond;  O  h  symmetry).  

    Figure 1.7     Ligand orbitals ( σ  character) in an octahedral complex.  

1
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 Table 1.4     Correlation between ligand group orbitals and those 
of the central ion ( O  h ). 

  Metal orbital    Symmetry    Ligand group orbitals  

  s    a 1g      σ  1    +    σ  2    +    σ  3    +    σ  4    +    σ  5    +    σ  6   
  p  z      t 1u      σ  1     −     σ  6   
  p  x       σ  3     −     σ  5   
  p  y       σ  2     −     σ  4   
  d  z 2     e g     2 σ  1    +   2 σ  6     −     σ  2     −     σ  3     −     σ  4     −     σ  5   
  d  x 2 −  y 2      σ  2     −     σ  3    +    σ  4     −     σ  5   
  d  xy, xz, yz      t 2g      –   

 1.3 Molecular Orbital Theory  13
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     Remark:     for the e g  SALCs we require a combination that matches the  z  2  and 
 x  2     −     y  2  metal orbitals. Remembering that  z  2  is, actually, 2 z  2     −     x  2     −     y  2 , the former 
has positive lobes along the  z  axis that have twice the amplitude of the toroidal 
negative region in the  xy  plane. For this reason  σ  1  and  σ  6  are multiplied by 2. 

 Therefore, six group orbitals have been obtained from six ligand  σ  orbitals. The 
combination with the six central ion orbitals of the same symmetry will give rise 
to 12 MO: six bonding and six antibonding. The t 2g  orbitals of the central ion 
(d  xy  , d  xz  , d  yz  ) do not have adequate symmetry and do not play a role in this type of 
bond. They remain, therefore, as nonbonding orbitals. 

 Given the above premises, the relative energy diagram of the MOs can be drawn 
from the relative energies of the central metal orbitals (s, p, d). Figure  1.9  shows 
this diagram, without taking into account any quantitative scale. The main char-
acteristic of this diagram is that there are  always  twelve electrons in the deep 
bonding orbitals, as they come from the two electrons provided by each of the six 
ligands. Therefore, the  ‘ important ’  orbitals from the point of view of the complex 
are the t 2g  (nonbonding) and   e*g  (anti - bonding) orbitals. The electrons from the 
central ion will be placed one by one in these orbitals. We have thus arrived, albeit 
from a completely different angle, at the same splitting achieved with crystal fi eld 
theory. The energy separation between the t 2g  and e g  orbitals will thus be termed 
 Δ  o . The placement of the electrons for confi gurations d 4 − 7  will depend on the value 
of  Δ  o . In crystal fi eld theory this separation was a measure of the fi eld strength; in 
MO theory the separation will depend upon the degree of overlap between the 
metal ’ s orbitals and those of the ligand.      

  1.3.1.2    p  Molecular Orbitals 
 Figure  1.10  shows schematically the ligand orbitals capable of forming  π  bonds. 
They must be perpendicular to the  σ  bonds. There is no unique specifi cation of 

    Figure 1.9     MO diagram (only  σ  orbitals) for an  O  h  complex.  



    Figure 1.10     A representation of the  π  - ligand group orbitals ( O  h  symmetry).  

 Table 1.5      π  group orbitals with their symmetry labels ( O  h ). 

  Symmetry    Group orbitals    Symmetry    Group orbitals  

  t 1u     p 2 z     +   p 3 z     +   p 4 z     +   p 5 z      t 2g     p 2 x     +   p 3 y      −    p 4 x      −    p 5 y    
  p 1 x     +   p 2 x     +   p 6 x     +   p 4 x      p 1 y     +   p 3 z      −    p 6 x      −    p 5 x    
  p 1 y     +   p 3 y     +   p 6 y     +   p 5 y      p 1 x     +   p 2 z      −    p 6 y      −    p 4 z    

  t 1g     p 2 x      −    p 3 y      −    p 4 x     +   p 5 y      t 2u     p 2 z      −    p 3 z     +   p 4 z      −    p 5 z    
  p 1 x      −    p 2 z      −    p 6 y     +   p 4 z      p 1 x      −    p 2 x     +   p 6 x      −    p 4 x    
  p 1 y      −    p 3 z      −    p 6 x     +   p 5 z      p 1 y      −    p 3 y     +   p 6 y      −    p 5 y    

the direction of the local  x  and  y  axes, but the choice and notation in Figure  1.10  
prove to be convenient in practice. It has internal consistency in that all p  x   are 
oriented in the same  x  direction, all p  y   in the same  y  direction and all p  z   in the 
same  z  direction  [8] . The reducible representation of these twelve ligands is t 2g    +  
 t 1u    +   t 2u    +   t 1g . By applying the projection operators (or simply by the same matching 
procedure indicated for  σ  orbitals) we obtain the ligand group orbitals that are 
able to form  π  bonds. The group orbitals with their symmetry labels are shown in 
Table  1.5 .     

 As there are no central ion orbitals with adequate symmetry for the t 1g  and t 2u  
group orbitals, we are left with the t 2g  and t 1u  group orbitals. The t 1u  orbitals of the 
central ion have interacted with the other  σ  group orbitals of the ligands, those of 
the same symmetry, and thus they are not considered in this section. We are left, 
therefore, with the t 2g  group orbitals, which can interact with the t 2g  (nonbonding) 
orbitals of the metal ion. This  π  interaction is shown schematically in Figure 
 1.11 .   

 The infl uence of these  π  interactions will vary according to the energy of the 
group orbitals (t 2g ); these may be full p orbitals (for example, a Cl  −   ion) (Figure 
 1.11 A). As these orbitals are highly stable they will be situated further down the 
MO energy scale shown in Figure  1.9 . In contrast, they may be high - energy empty 
orbitals, such as the d orbitals of a PR 3 , or a  π  anti - bonding molecular orbital of a 
carbonyl group (Figure  1.11 B). In this case they will be situated at the upper end 
of the energy scale (Figure  1.9 ). Figure  1.12  illustrates the energy diagram for the 
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    Figure 1.11     Ligand group orbitals and the corresponding 
metal ion orbitals, with their symmetry label ( π  - bond;  O  h  
symmetry).  

    Figure 1.12     MO diagram for  π  - acid and  π  - basic ligands, in  O  h  geometry.  

two cases. The stable ligands which are full of electrons are referred to as  π  - basic 
because, in addition to the  σ (L  →  M) bond, they generate a  π  bond with the same 
direction:  π (L  →  M). In contrast, the high - energy, empty ligands are known as  π  -
 acidic, as they receive electron density from the metal  π (L  ←  M), rather than vice 
versa. This phenomenon is called  back donation . It is logical to assume that for a 
 π  - basic bond to occur the metal must be highly positive, that is, have a high formal 
oxidation state. In contrast,  π  - acidic ligands serve to stabilize metal ions with high 
electron density, that is, with a low  –  or even negative  –  oxidation state. This is 
what occurs with PR 3 , CO, CN  −  , etc. Many organic ligands with double, triple, or 
delocalized bonds also fall into this category.   

 One of the important effects arising from the contribution of the two types of 
 π  bond is the variation produced in the  Δ  o  value (Figure  1.12 ). The  π  - basic ligands 



reduce the value of this parameter. Therefore, the fi rst ligands of the spectrochemi-
cal series are those which produce this type of interaction: the halides. In contrast, 
PR 3 , CO, CN  −  , etc. come at the end of the spectrochemical series as they yield a 
very high value of  Δ  o , due to their being  π  - acidic ligands.   

  1.3.2 
 Molecular Orbitals of a Tetrahedral Complex 

 The steps to be followed here are the same as in the case of octahedral complexes. 
They must fi rst be carried out for  σ  interactions and then for  π  interactions. In 
the  T  d  point group the four  σ  orbitals of the ligands can be grouped according to 
the group orbitals a 1    +   t 2  (Figure  1.13 ). This can be verifi ed by means of group 
theory. By applying the corresponding projection operators we obtain the group 
orbitals as linear combinations of these four orbitals, and their adaptation to the 
symmetry of the central ion orbitals can be correlated. This result is shown in 
Table  1.6  (the numbering refers to that used in Figure  1.13 ).     

 In Figure  1.13  only the s and p orbitals of the central ion are taken into account, 
but it should be remembered that the d  xy  , d  xz   and d  yz   orbitals have the same sym-
metry (t 2 ) as the three p orbitals. Thus, there will always be a mixture of both types 
of orbital. Bearing this important point in mind, the corresponding energy diagram 
for the molecular orbitals obtained is shown schematically in Figure  1.14 .   

 For  π  - group orbitals, although this is not immediately obvious due to their ori-
entation, these orbitals belong to the symmetry species t 1    +   t 2    +   e. The t 1  group 
orbitals do not correspond to any central ion orbital and the t 2  group form  σ  bonds. 
The orientation and the MOs with e symmetry, as well the energy diagram includ-
ing the  σ  and  π  bonds, are diffi cult to visualize due to the presence of mixed 
orbitals. For a complete study see Ref.  [2] .  

    Figure 1.13     Ligand group orbitals and the corresponding 
metal ion orbitals, with their symmetry label ( σ  - bond;  T  d  
symmetry).  
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    Figure 1.14     MO diagram (only  σ  orbitals) for a  T  d  complex.  

 Table 1.6      σ  group orbitals for  T  d  symmetry. 

  Symmetry    Metal orbitals    Group orbitals  

  a 1     s     σ  1    +    σ  2    +    σ  3    +    σ  4   
  t 2     (p  x  , p  y  , p  z  )     σ  1    +    σ  2     −     σ  3     −     σ  4   

  (d  xy  , d  xz  , d  yz  )     σ  1     −     σ  2     −     σ  3    +    σ  4   
       σ  1     −     σ  2    +    σ  3     −     σ  4   

  1.3.3 
 Molecular Orbitals of a Square - planar Complex 

 In the  D  4h  point group the four  σ  orbitals of the ligands can be grouped according 
to the group orbitals a 1g    +   e u    +   b 1g . This can be verifi ed by means of group theory. 
By applying the corresponding projection operators we obtain the group orbitals 
as linear combinations of these four orbitals, and their adaptation to the symmetry 
of the central ion orbitals can be correlated. This result is shown in Table  1.7  and 
Figure  1.15 .     

 There are two kinds of  π  group orbitals: those in the molecular plane and those 
which are perpendicular to it (Figure  1.16 ). The fi rst four belong to the symmetry 
species a 2g    +   e u    +   b 2g , while the four perpendicular ones belong to the species a 2u   
 +   e g    +   b 2u . By applying the corresponding projection operators we obtain the group 
orbitals as linear combinations of these eight orbitals, and their adaptation to the 
symmetry of the central ion orbitals can be correlated. This result is shown in 
Table  1.8  and Figure  1.16 A for b 2g  and e u   π  orbitals. The corresponding  π   z   MO 
orbitals can be easily deduced by the reader following an analogous procedure.     



    Figure 1.15     Ligand group orbitals and the corresponding 
metal ion orbitals, with their symmetry label ( σ  - bond; square 
planar geometry).  

 Table 1.7      σ  group orbitals for  D  4h  orbitals. 

  Symmetry    Metal orbitals    Group orbitals  

  a 1g     s, d  z 2      σ  1    +    σ  2    +    σ  3    +    σ  4   
  e u     (p  x  , p  y  )     σ  1    +    σ  2     −     σ  3     −     σ  4   

   −  σ  1    +    σ  2    +    σ  3     −     σ  4   
  b 1g     d  x 2 −  y 2      σ  1     −     σ  2    +    σ  3     −     σ  4   

    Figure 1.16     Ligand group orbitals and the corresponding 
metal ion orbitals, with their symmetry label ( π  - bond; square 
planar geometry).  
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 Table 1.8      π  group orbitals for  D  4h  geometry (the numbering is 
that used in Figure  1.16 ). 

  Symmetry    Metal orbitals    Group orbitals  

  a 2u     p  z      p 1 z     +   p 2 z     +   p 3 z     +   p 4 z    
  e g     (d  xy  , d  xz  )    p 1 z      −    p 3 z  ; p 2 z      −    p 4 z    
  b 2u      –     p 1 z      −    p 2 z     +   p 3 z      −    p 4 z    
  a 2g      –     p 1 y      −    p 2 x      −    p 3 y     +   p 4 x    
  e u     (p  x  , p  y  )    p 2 x     +   p 4 x  ; p 1 y     +   p 3 y    
  b 2g     d  xy      p 1 y     +   p 2 x      −    p 3 y      −    p 4 y    

    Figure 1.17     Schematic MO diagram for a complex with square - planar geometry.  

 The corresponding  –  and simplifi ed  –  energy diagram for the MO obtained is 
shown schematically in Figure  1.17 . The ordering of energies will be discussed in 
Section  1.4.4 .    

  1.3.4 
 Mixed Ligands and Other Geometries 

 The reader interested in octahedral complexes with one carbonyl ( π  - acidic) ligand 
and one  π  - basic ligand as well as in more complicated complexes, such as [MCl 2 L 4 ], 
[MCl 3 L 3 ], [M(CO) 2 L 4 ], [M(CO) 3 L 3 ] may consult the excellent treatment given by Y. 
Jean in his book  [6] . 

 For other geometries, such as square - pyramidal, trigonal bipyramidal (ML 5 ), 
trigonal - planar (ML 3 ),  “ butterfl y ”  (ML 4 ), linear or angular ML 2  complexes, and their 
relationships, the reader may also consult the same book  [6] .  



  1.3.5 
 Nobel Prizewinning Discoveries of Complexes 

  1.3.5.1   Metallocenes 
 The discovery of the remarkably stable organometallic compound ferrocene 
[Fe( η  5  − C 5 H 5 ) 2 ] occurred in 1951. Two research workers, Ernst - Otto Fisher in 
Munich and Geoffrey Wilkinson in London, were awarded the Nobel Prize in 1973 
for their contributions. 

 The discussion of the bonding does not depend critically on whether the pre-
ferred rotational orientation of the two rings is staggered ( D  5d ) or eclipsed ( D  5h ); 
in any event, the barriers to ring rotation in all types of arene - metal complexes are 
very low, ca. 10 – 20   kJ   mol  − 1 . Applying group theory and looking at the number of 
nodal planes, it is easy to demonstrate that the shapes and relative energies of 
the fi ve  π  - orbitals in an isolated   C H5 5

−  are as shown in Figure  1.18  (  C H5 5
− has 6 

electrons). Considering, now, the two rings together and assuming  D  5d  symmetry, 
the representation of the 10  π  - orbitals is given in Table  1.9 . The reduction for the 
representation   Γ   π    gives: a 1g    +   a 2u    +   e 1g    +   e 1u    +   e 2g    +   e 2u .     

 Considering the symmetry labels (and energies) of the iron(II) orbitals, and 
combining them with the group orbitals of the two Cp ligands, an approximate 
MO diagram for ferrocene is shown in Figure  1.19 . The principal bonding interac-

    Figure 1.18     MOs for a   C H5 5
−  ring.  

 Table 1.9     Reducible representation of the 10  π  - orbitals. 

   D  5d      E     2 C  5   
    
2C5

2

    5 C  2      i     2 S  10   
    
2S10

3

    5 s  d   

    Γ    π      10    0    0    0    0    0    0    2  
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    Figure 1.19     Scheme of the MOs in the ferrocene structure.  

tion is that giving rise to the strongly bonding e 1g  and strongly antibonding   e*1g 
orbitals. To give one concrete example of how ring and metal orbitals overlap, the 
nature of this particular important interaction is illustrated in Figure  1.19  (inset). 
The other d orbitals ( z  2 ,  x  2     −     y  2 , and  xy ) make up a block of three nonbonding or 
nearly nonbonding orbitals. In fact,  x  2     −     y  2  and  xy  (e 2g ) are stabilized by bonding 
interactions with the  π  *  orbitals of appropriate symmetry on the Cp rings. The 
order given in this fi gure may be different to that found in other books, mainly 
for the antibonding MOs. The metal orbitals e 2g  and a 1g  can be reversed, depending 
on the metal and the type of calculation.    

  1.3.5.2   Carbenes 
 Three chemists were awarded the Nobel Prize in 2005,  “  for the development of the 
metathesis method in organic synthesis  ” : Y. Chauvin, R. H. Grubbs and R. R. Schrock. 
Two of them (Grubbs and Schrock), have developed catalysts that improve consid-
erably the metathesis effect. These catalysts are metal - carbene derivatives  [9, 10] . 
Carbene complexes, whose general formula is [L  n  M = CR 2 ] formally contain an 
M = C double bond. Two group orbitals can be constructed for the bond with the 
metal center: a hybrid, sp and a pure orbital, p (Figure  1.20 A).   

 There are two limiting cases:  Fisher carbenes  and  Schrock carbenes . If we consider 
the carbene as an L - type ligand (with two electrons in the s type orbital) it therefore 
acts as a  σ  donor, which interacts with an empty orbital of the metal (e.g.  z  2 ). In 
this model the p orbital is empty, so the carbene acquires a  π  - acceptor character 
(Figure  1.20 A). This orbital can be either higher or lower in energy than the d 
orbitals on the metal. 

 When the p orbital is higher in energy than the d orbital, we obtain a typical 
back - donation scheme with the formation of a bonding MO mainly located on the 



    Figure 1.20     HOMO and LUMO in carbene complexes (see text for explanation).  

metal (Figure  1.20 B). However, if the p orbital is lower in energy than the d orbital, 
the occupied bonding MO is mainly concentrated on the carbene so that, in a 
formal sense, two electrons have been transferred from the metal to this ligand 
(Figure  1.20 C), which leads to an  ‘ increase ’  in the metal ’ s oxidation state by two 
units. 

 The fi rst situation (Figure  1.20 B) is found for metals with d orbitals low in 
energy (right - hand side of the periodic table). In addition the presence of  π  - accep-
tor ligands also leads to a lowering of the level of the d orbitals. As far as the 
carbene is concerned, the energy of the p orbital is raised if the substituents are 
 π  - donors, that is, they have lone pairs (halogens, OR, NR 2 , etc.). Carbene 
complexes that possess these characteristics are called  Fischer carbenes . 
[(CO) 5 W = C(Ph)(OMe)] and [Cp(CO)(PPh 3 )Fe = CF 2 ] +  are paradigmatic examples. 
These carbenes are [M( δ  − ) = C( δ +)], with an electrophilic character for the carbon 
center. 

 The second situation (Figure  1.20 C) is found for metals on the left - hand side of 
the periodic table, and must have  π  - donor ligands to destabilize the d orbital. 
Moreover, to ensure that the p orbital on the carbene is as low in energy as possi-
ble, its substituents cannot be  π  donor: CH 2  is itself a good candidate and, more 
generally, alkyl substituents are suitable (the term  ‘ alkylidene ’  is often used for a 
carbene substituted by alkyl groups). Two examples are [Cp 2 (CH 3 )Ta = CH 2 ] and 
[CpCl 2 Ta = C(H)(CMe 3 )]. The metal in this group of complexes is usually consid-
ered to be oxidized by two units by the alkylidene ligand, so the two examples 
mentioned above contain Ta(V). These carbenes are called  Schrock carbenes . Now 
the electron polarization is [M( δ +) = C( δ  − )].    
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  1.4 
 Angular Overlap Model  [11]  

 The angular overlap model is a simple and quantitative method that enables the 
energy of the molecular orbitals to be calculated from certain pre - established 
simplifi cations and tables. It is based on the quantum consideration that 
an orbital, described in polar coordinates, has a radial part and an angular part: 
 Φ    =    R ( r )    ⋅     Y ( θ , φ ) (Figure  1.1 ). The expressions of  Φ  for the d orbitals are shown in 
Table  1.1 . 

  1.4.1 
 Overlap Integral 

 From the two orbitals  μ  and  ν  we can derive what is known as the overlap integral, 
given by:   S S r Sμν μ ν μν μνφ φ λ λ θ φ= < > = ′ ⋅ ′′( , ) ( , , ) .  λ  depends on the type of atomic 
orbital, which may be  σ ,  π  or  δ  molecular orbitals. 

 A simple example to study is the typical case of angular dependence in the 
overlap between two orbitals: an s orbital that rotates around a d  z 2  orbital, modify-
ing the overlap angle (Figure  1.21 ). The overlap will be proportional to 3cos 2  θ     −    1 
(Table  1.1 ), and is shown graphically in Figure  1.21 . It can be seen that for an 
angle  θ  of 54.73    º  the overlap  S  is zero.    

  1.4.2 
 Energy of the Molecular Orbitals 

 The interaction energy associated with two atomic orbitals that overlap to form a 
molecular orbital is:  E   μ  ν     =    <  φ   μ   |  Ĥ  |  φ   ν   > . The energy is negative (stabilization of the 
MO formed) when the overlap is positive, and positive (destabilization of the MO 
formed) when the overlap is negative. The  angular overlap model  is the simplest 
way of calculating the energies of the MO as it only considers the angular part of 
the wavefunction. The value of the stabilization (or destabilization) energy is   
E S≈ ij

2 . The model is only useful for comparisons and relative calculations, and 
not for absolute calculations.  

    Figure 1.21     Variation of the relative overlap ( S / S  max ) varying the  θ  angle (see text).  



  1.4.3 
 The Additive Character Rule 

 When an atomic orbital of a metal overlaps with several atomic orbitals of ligands, 
the relative calculation of the stabilization (or destabilization) energy is given by 
what is termed the  additivity rule:    E Sn≈ Σ λ

2  ( n    =   ligand;  λ    =    σ ,  π ,  δ ). 
 As we are interested in coordination complexes the sign given to the energy 

value must be taken into account. In general, the sign of the angular overlap 
parameter is given by the donor or acceptor nature of the ligands with respect to 
the central atom (transition ion). Although the  σ  bonds are always donors, this is 
not the case for the  π  bonds. For donor ligands the sign will be positive (destabili-
zation of the MO, as we are considering anti - bonding orbitals). When the ligands 
are acceptors ( π  - acids) the sign is negative (stabilization of the anti - bonding 
molecular orbital), but  always  after considering the  σ  contribution, which is 
anti - bonding.  

  1.4.4 
 Tables for Calculating the Angular Overlap Parameters 

 Table  1.10  gives the general expressions for the relative values of  S , with respect 
to  θ  and  φ , for various types of overlap involving a central transition ion and the 
s and p orbitals of the ligands.   

 This general table can be used to construct other simplifi ed tables which give 
the values of  E   σ   and  E   π   for the complexes with the commonest geometry directly. 
For example, Figure  1.22  shows the positions of various ligands, which readily 
enables the parameters  E   σ   and  E   π   to be calculated for the most usual geometries. 
These parameters are given directly in Table  1.11 , as energy values proportional 
to  S  2 .     

 Table 1.10     Angular dependence of overlap integrals (for the s 
and p orbitals of the ligands with regard to the d orbital of the 
central ion). 

   S     Expression     S     Expression  

  s,  z  2     (3 H  2     −    1) S   σ  /2     x, z  2      √ 3 FH  2  S   π     +    F (3 H  2     −    1) S   σ  /2  
  s,  xz      √ 3  FHS   σ       x, xz      −  H (1    −    2 F  2 ) S   π     +    √ 3 F  2 HS  σ    
  s,  yz      √ 3  GHS   σ       x, yz      FGH ( √ 3 S   σ     +   2 S   π  )  
  s,  xy      √ 3  FGS   σ       x, xy      −  G (1    −    2 F  2 ) S   π     +    √ 3 F  2  GS   σ    
  s,  x  2     −     y  2      √ 3 ( F  2     −     G  2 ) S   σ  /2     x, x  2     −     y  2      −  F (1    −     F  2    +    G  2 ) S   π     +    √ 3 F ( F  2     −     G  2 ) S   σ  /2  
   z, z  2      −  √ 3 H (1    −     H  2 ) S   π     +    H (3 H  2     −    1) S   σ  /2     y, z  2      √ 3  GH  2  S   π     +    G (3 H  2     −    1) S   σ  /2  
   z, xz      −  F (1    −    2 H  2 ) S   π     +    √ 3  FH  2  S   σ       y, xz      FGH ( √ 3 S   σ     +   2 S   π  )  
   z, yz      −  G (1    −    2 H  2 ) S   π     +    √ 3  GH  2  S   σ       y, yz      −  H (1    −    2 G  2 ) S   π     +    √ 3 G  2  HS   σ    
   z, xy      FGH ( √ 3 S   σ     +   2 S   π  )     y, xy      −  F (1    −    2 G  2 ) S   π     +    √ 3  FG  2  S   σ    
   z, x  2     −     y  2      −  H ( G  2     −     F  2 ) S   π     +    √ 3 H  ( F  2     −     G  2 ) S   σ  /2     y, x  2     −     y  2      −  G ( G  2     −     F  2     −    1) S   π     +    √ 3 G ( F  2     −     G  2 ) S   σ  /2  

     F    =   sin θ  cos φ ;  G    =   sin θ  sin φ ;  H    =   cos θ .   
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    Figure 1.22     Fixed position for ligands in several common geometries.  

 Another way of presenting these tables is to consider the various geometries 
with the sum of the contribution of each ligand, calculated previously. This offers 
a much quicker way of comparing the stability of the molecular orbitals formed 
for each geometry. The most noteworthy cases are shown in Table  1.12 .    

 Table 1.11     Angular proportionality factors for  E   σ   and  E   π  . The 
numbering (1 – 12) corresponds to that used in Figure  1.22 . 

  Position of the ligand     z  2      x  2     -     y  2      xz      yz      xy   

  1  σ     1    0    0    0    0  
   π     0    0    1    1    0  
  2  σ     1/4    3/4    0    0    0  
   π     0    0    1    0    1  
  3  σ     1/4    3/4    0    0    0  
   π     0    0    0    1    1  
  4  σ     1/4    3/4    0    0    0  
   π     0    0    1    0    1  
  5  σ     1/4    3/4    0    0    0  
   π     0    0    0    1    1  
  6  σ     1    0    0    0    0  
   π     0    0    1    1    0  
  7  σ     1/4    3/16    0    0    9/16  
   π     0    3/4    1/4    3/4    1/4  
  8  σ     1/4    3/16    0    0    9/16  
   π     0    3/4    1/4    3/4    1/4  
  9  σ     0    0    1/3    1/3    1/3  
   π     2/3    2/3    2/9    2/9    2/9  
  10  σ     0    0    1/3    1/3    1/3  
   π     2/3    2/3    2/9    2/9    2/9  
  11  σ     0    0    1/3    1/3    1/3  
   π     2/3    2/3    2/9    2/9    2/9  
  12  σ     0    0    1/3    1/3    1/3  
   π     2/3    2/3    2/9    2/9    2/9  



 Table 1.12      σ  and  π  interaction energy for various geometries. 

  Geometry     z  2      x  2     -     y  2      xy      xz      yz   

   s      p      s      p      s      p      s      p      s      p   

  MY linear,  C   ∞ v     1    0    0    0    0    0    0    1    0    1  
  MY 2  linear,  D   ∞ h     2    0    0    0    0    0    0    2    0    2  
  angular,  C  2v     1/2    0    3/2    0    0    2    0    1    0    1  
  MY 3  facial trivacant,  C  3v     3/2    0    3/2    0    0    2    0    2    0    2  
  triangular,  D  3h     3/4    0    9/8    3/2    9/8    3/2    0    3/2    0    3/2  
  T form,  C  2v     3/2    0    3/2    0    0    2    0    1    0    3  
  MY 4  tetrahedron,  T  d     0    8/3    0    8/3    4/3    8/9    4/3    8/9    4/3    8/9  
  square - planar,  D  4h     1    0    3    0    0    4    0    2    0    2  
  trigonal pyramid,  C  3v     7/4    0    9/8    3/2    9/8    3/2    0    5/2    0    5/2  
  cis - divacant,  C  2v     5/2    0    3/2    0    0    2    0    3    0    3  
  MY 5  trigonal 

bipyramid,  D  3h   
  11/4    0    9/8    3/2    9/8    3/2    0    7/2    0    7/2  

  square pyramid,  C  4v     2    0    3    0    0    4    0    3    0    3  
  MY 6  octahedron,  O  h     3    0    3    0    0    4    0    4    0    4  
  trigonal prism,  D  3h     3/8    0    9/16    3/2    9/16    3/2    2.25    1.5    2.25    1.5  
  MY 7  pentagonal 

bipyramid,  D  5h   
  13/4    0    15/8    5/2    15/8    5/2    0    9/2    0    9/2  

  MY 8  cube,  O  h     0    16/3    0    16/3    8/3    16/9    8/3    16/9    8/3    16/9  
  square antiprism,  D  4d     0    2/3    4/3    32/9    4/3    32/9    8/3    37/9    8/3    37/9  
  MY 12  icosahedron,  I  h     12/5    24/5    12/5    24/5    12/5    24/5    12/5    24/5    12/5    24/5  

    Figure 1.23     Energy calculation from the overlap angular model for  O  h  and  T  d  complexes.  

  1.4.5 
 Examples of Use of the Above Tables 

 The relative energies of the MO of octahedral and tetrahedral complexes can be 
easily deduced by using Tables  1.11  and  1.12 , and the results of this are shown 
schematically in Figure  1.23 . The quotient  Δ  S  tet / Δ  S  oct  gives the value 4/9, as pointed 
out above.   
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 28  1 Bonding in Coordination Compounds

    Figure 1.24     Walsh diagram for the pyramidalization of a square - pyramidal geometry.  

 Table 1.13       E Sσ σ( ) = Σ 2  of the four equatorial orbitals in a square - base pyramid complex. 

       S / S   σ    
    
S S2 2/ s       

S S2 2/ s      f   
    
S S2 2/ s   

  s,  x  2     −     y  2      √ 3/( F  2     −     G  2 )/2    3/4( F  2     −     G  2 ) 2     3/4(sin 2  θ  cos 2  φ     −   
 sin 2  θ  sin 2  φ ) 2   

  0    3/4(sin 2  θ ) 2   
  90    id  

  180    id  
  270    id  

  s,  z  2     (3 H  2     −    1)/2    1/4(3 H  2     −    1) 2     1/4(3cos 2  θ     −    1) 2      –     1/4(3cos 2  θ     −    1) 2   
  s,  xz      √ 3 FH     3 F  2  H  2     3sin 2  θ  cos 2  φ  cos 2  θ     0    3sin 2  θ  cos 2  θ   

  90    0  
  180    3sin 2  θ  cos 2  θ   
  270    0  

  s,  yz      √ 3 GH     3 G  2  H  2     3sin 2  θ  sin 2  φ  cos 2  θ     0    0  
  90    3sin 2  θ  cos 2  θ   

  180    0  
  270    3sin 2  θ  cos 2  θ   

  s,  xy      √ 3 FG     3 F  2  G  2     3sin 2  θ  cos 2  φ  sin 2  θ  
sin 2  φ   

  0    0  
  90    0  

  180    0  
  270    0  
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 Starting from Table  1.10  it is easy to construct the Walsh diagram for the pyrami-
dalization of a square - base pyramid complex, which is a common occurrence in 
this type of complex. The phenomenon of pyramidalization is shown schematically 
in Figure  1.24 A. If we restrict our attention to the  σ  bonds of the four equatorial 
orbitals the functions that must be represented are   E S( )σ σ≈ Σ 2  (Table  1.13 ).     

 Therefore, the fi nal values, summing the four values for the four  φ  angles, are: 
 x  2     −     y  2    =   3(sin 2  θ ) 2 ;  xz, yz    =   6sin 2  θ  cos 2  θ ;  xy    =   0;  z  2    =   (3cos 2  θ     −    1) 2 . To these values 
must be added the overlap  σ  with the ligand in the apical position, which is invari-
ant when pyramidalized and has a maximum value of  S / S   σ     =   1 for the  z  2  orbital 
and 0 for the remaining cases. The representation of these trigonometric functions 
for angles from 90    º  (non - pyramidalization) to 120    º  gives the Walsh diagram 
shown in Figure  1.24 B.   
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