
A
� Axi eigenvalue indices ! spectral indices
� Abraham–Klamt descriptors ! Linear Solvation Energy Relationships
� Abraham�s general equation ! Linear Solvation Energy Relationships
� absolute hardness ! quantum-chemical descriptors (� hardness indices)
� absorption parameter ! property filters (� drug-like indices)
� Acceptable Daily Intake ! biological activity indices (� toxicological indices)
� acceptor superdelocalizability � electrophilic superdelocalizability ! quantum-chemical

descriptors
� ACCS � Activity Class Characteristic Substructures ! substructure descriptors

(� structural keys)
� ACC transforms � Auto-Cross-Covariance transforms ! autocorrelation descriptors
� ACD/logP ! lipophilicity descriptors
� ACGD index ! charged partial surface area descriptors
� acid dissociation constant ! physico-chemical properties (� equilibrium constants)
� activation energy index ! quantum-chemical descriptors (� highest occupied molecular

orbital energy)
� activation hardness ! quantum-chemical descriptors (� hardness indices)
� Activity Class Characteristic Substructures ! substructure descriptors (� structural keys)
� acyclic graph � tree ! graph
� acyclic polynomial � matching polynomial ! Hosoya Z-index

& ADAPT descriptors
ADAPT descriptors [Jurs, Chou et al., 1979; Jurs, Hasan et al., 1988], implemented in the
homonymous software ADAPT (AutomatedDataAnalysis and PatternRecognition Toolkit), fall
into three general categories: ! topological indices, ! geometrical descriptors (including !
principal moments of inertia, ! volume descriptors, and ! shadow indices), and ! electronic
descriptors (including partial atomic charges and the ! dipole moment); moreover, ! molecular
weight, ! count descriptors, and a large number of ! substructure descriptors are also generated.
In addition, the ! charged partial surface area descriptors constitute a fourth class of descriptors
derived by combining electronic and geometrical information.
ADAPTsoftware allows (a) molecular descriptor generation; (b) objective feature selection to

discard descriptors that contain redundant orminimal information; and (c)multiple regression
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analysis by genetic algorithm or simulated annealing variable selection, or computational !
artificial neural networks.
Several molecular properties have been modeled by ADAPT descriptors, such as biological

activities [Henry, Jurs et al., 1982; Jurs, Hasan et al., 1983; Jurs, Stouch et al., 1985; Walsh and
Claxton, 1987; Wessel, Jurs et al., 1998; Eldred, Weikel et al., 1999; Eldred and Jurs, 1999;
Patankar and Jurs, 2000, 2002; He, Jurs et al., 2003, He et al.,2005; Benigni, 2005]; boiling point
[Smeeks and Jurs, 1990;Stanton, Jurs et al., 1991; Stanton, Egolf et al., 1992; Egolf and Jurs,
1993a; Egolf, Wessel et al., 1994; Wessel and Jurs, 1995a, 1995b; Goll and Jurs, 1999a; Stanton,
2000]; chromatographic indices [Anker, Jurs et al., 1990; Sutter, Peterson et al., 1997]; aqueous
solubilities [Dunnivant, Elzerman et al., 1992; Nelson and Jurs, 1994; Sutter and Jurs, 1996;
Mitchell and Jurs, 1998a], critical temperature and pressure [Turner, Costello et al., 1998]; ion
mobility constants [Wessel and Jurs, 1994;Wessel, Sutter et al., 1996]; reaction rate constants
[Bakken and Jurs,1999a, 1999b]; and other various properties [Egolf and Jurs, 1992;Russell,
Dixon et al., 1992; Stanton and Jurs, 1992; Egolf and Jurs, 1993b; Engelhardt and Jurs, 1997;
Mitchell and Jurs, 1997;Goll and Jurs, 1999b; Johnson and Jurs, 1999; Kauffman and Jurs, 2000,
2001a; Mattioni and Jurs, 2003].

� additivity model � Free–Wilson model ! Free–Wilson analysis
� additive adjacency matrix ! adjacency matrix
� additive chemical adjacencymatrix ! weightedmatrices (�weighted adjacencymatrices)
� additive–constitutive models ! group contribution methods
� additive model of inductive effect ! electronic substituent constants (� inductive

electronic constants)
� ADI � Acceptable Daily Intake ! biological activity indices (� toxicological indices)
� adjacencies ! graph

& adjacency matrix (A) (� vertex adjacency matrix)
The adjacencymatrixA is one of the fundamental ! graph theoretical matrices; it represents the
whole set of connections between adjacent pairs of atoms [Trinajsti�c, 1992]. The entries aij of the
matrix equal 1 if vertices vi and vj are adjacent (i.e., the atoms i and j are bonded) and zero
otherwise:

½A�ij ¼
1
0

if ði; jÞ 2 E ðGÞ
otherwise

�

where E ðGÞ is the set of the graph edges.
This is the classical definition of the adjacency matrix, which refers to a ! simple graph,

wheremultiple bonds are not accounted for. The adjacencymatrix is symmetric with dimension
A�A, where A is the number of atoms and it is usually derived from a ! H-depleted molecular
graph.
The ith row sumof the adjacencymatrix is called ! vertex degree, denoted by di and defined as

di � VSiðAÞ ¼
XA
j¼1

aij

where VS is the ! vertex sum operator. The vertex degree represents the number of s bonds of
the ith atom.
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Example A1

Adjacency matrix A and vertex degrees di of 2-methylpentane.

1

2

3

4

5

6

A ¼

Atom 1 2 3 4 5 6 di
1 0 1 0 0 0 0 1

2 1 0 1 0 0 1 3

3 0 1 0 1 0 0 2

4 0 0 1 0 1 0 2

5 0 0 0 1 0 0 1

6 0 1 0 0 0 0 1

������������������

������������������

The total adjacency index AV is a measure of the graph connectedness and is calculated as
the sum of all the entries of the adjacency matrix of a molecular graph, which is twice the
number B of graph edges [Harary, 1969a; Rouvray, 1983]:

AV ¼
XA
i¼1

XA
j¼1

aij ¼
XA
i¼1

di ¼ 2 �B

For example, the total adjacency index of 2-methylpentane is AV ¼ 1 þ 3 þ 2 þ 2 þ 1 þ 1
¼ 10, which is twice the number of edges equal to five in theH-depletedmolecular graph of this
molecule. Therefore, the number of entries equal to 1 in the adjacency matrix is 2B, while the
number of entries equal to zero is A2� 2B; in particular, for acyclic graphs the total number of
entries equal to 1 is 2(A� 1) and the number of entries equal to zero is A2� 2(A� 1); for
monocyclic graphs, the values are 2A and A2� 2A, respectively. The total adjacency index is
sometimes calculated as the half sum of the adjacency matrix elements.
The global connectivity of a graph can also be characterized by the average of the total

adjacency index as [Bonchev and Buck, 2007]

�d ¼ AV

A
¼ 2B

A

where A is the number of graph vertices. If calculated from the ! H-filled molecular graph, this
average index is one of the two ! Sch€afli indices, called connectivity.
The doubly normalized total adjacency index is called density index and is defined as

��d ¼ AV

A � ðA�1Þ ¼
2B

A � ðA�1Þ or ��d ¼ AV

A2
¼ 2B

A2

The adjacencymatrix is one important source ofmolecular descriptors. Simple ! topological
information indices can be calculated on both the equality and themagnitude of adjacencymatrix
elements. ! Walk counts and ! self-returning walk counts that coincide with the spectral
moments of the adjacency matrix are calculated by the increasing powers of the adjacency
matrix [McKay, 1977; Jiang, Tang et al., 1984; Hall, 1986; Kiang and Tang, 1986; Jiang and
Zhang, 1989, 1990; Markovi�c and Gutman, 1991; Jiang, Qian et al., 1995; Markovi�c and
Stajkovic, 1997; Markovi�c, 1999].

! Spectral indices, ! determinant-based descriptors, and ! characteristic polynomial-based
descriptors of the adjacency matrix are largely used in QSAR modeling.
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The clustering coefficient of a vertex, denoted asCi, is a local vertex invariant derived from the
adjacencymatrix by considering thefirst-neighbor interconnectivity [Bonchev andBuck, 2007]. It
was proposed as ameasure of the clustered structure of a graph around a vertex and is defined as

Ci ¼ 2 � bi
di � ðdi�1Þ 0 � Ci � 1

where bi is number of edges between the first neighbors of the ith vertex, measuring to what
extent the first neighbors of the ith vertex are linked between themselves:

bi ¼ 1
2
�
XA
j¼1

aij �
XA
m¼1

ajm � ami m 6¼ i

where A is the number of vertices, and aij, ajm, and ami are the elements of the adjacency matrix.
Then, the terms aij of the first summation are equal to 1 only for the vertices vj, which
are connected to the ith vertex, while terms ajm�ami in the second summation are equal to 1
for those pairs of vertices vj and vm, which are contemporarily neighbors of the ith vertex and are
bonded to each other, and are zero otherwise.
The overall degree of clustering of a graph is given by [Bonchev and Buck, 2007]

�C ¼ 1
A
�
XA
i¼1

Ci

It should be noted that clustering around a vertex is possible only in trimembered cycles; in all
other structures, there are no edges between the first-neighbor vertices, for example, bi¼ 0.

Example A2

Calculation of the density index ��d and overall degree of clustering �C for graphs A, B, and C.
Each vertex is labeled with its clustering coefficient.

00

0

0

0

0

0

1/3

1

1/3

0

1/2

1

1

1

A B C

A ¼ 5 B ¼ 4
��d ¼ 0:4
�C ¼ 0

A ¼ 5 B ¼ 6
��d ¼ 0:6
�C ¼ 0:333

A ¼ 5 B ¼ 7
��d ¼ 0:7
�C ¼ 0:7

To account for multiple bonds, ! atom connectivity matrix, ! adjacency matrix of a
multigraph, and ! adjacency matrix of a general graph can be used instead of the adjacency
matrix of a simple graph. To account for heteroatoms, different ! weighted adjacency matrices
were proposed, such as the ! augmented adjacency matrix and ! chemical adjacency matrix.
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The additive adjacencymatrix is derived from the adjacencymatrix substituting row elements
equal to 1, corresponding to pairs of adjacent vertices, with the vertex degrees of the connected
vertices as

½dA�ij ¼
dj
0

if ði; jÞ 2 E ðGÞ
otherwise

�

where dj is the vertex degree of the jth vertex connected to the ith vertex.
This matrix is a special case of ! distance degree matrices obtained by the parameter

combination a¼ 0, b¼ 0, g ¼ 1. The row sum of the additive adjacency matrix is the !
extended connectivity of first-order EC1 defined by Morgan. This local invariant was used to
calculate the ! eccentric adjacency index. A modification of this matrix, which accounts for
heteroatoms, is the ! additive chemical adjacency matrix.

Example A3

Additive adjacency matrix dA and extended connectivities EC1 of 2-methylpentane.

1

2

3

4

5

6

dA ¼

Atom 1 2 3 4 5 6 EC1
i

1 0 3 0 0 0 0 3

2 1 0 2 0 0 1 4

3 0 3 0 2 0 0 5

4 0 0 2 0 1 0 3

5 0 0 0 2 0 0 2

6 0 3 0 0 0 0 3

�������������������

�������������������

Other topological matrices are derived from the adjacency matrix, such as ! Laplacian
matrix and the powers of the adjacencymatrix used to obtainwalk counts and the corresponding
molecular descriptors.
The fragmental adjacencymatrixmAFofmth order is a generalizationof the adjacencymatrixA,

which encodes information about adjacencies of the K fragments of the samemth order (i.e., the
samenumbermofedges)containedinthemoleculargraphinsteadofadjacenciesbetweenvertices
[Guevara, 1999]. This matrix is a square symmetric (K�K) matrix whose elements are different
fromzero only if two fragments i and j are adjacent, that is, theyhavem� 1 edges in common.The
fragmental degree is defined in the same way as the vertex degree, that is, the row sum of
the fragmental adjacencymatrix, and, therefore, represents the number of fragments adjacent to
the fragment considered. Then, by using the fragmental degree in place of the vertex degree, the
fragmentalconnectivity indexcanbecalculatedinthesamewayasthe ! Randi�c connectivity index.
Moreover, the adjacency matrix can be transformed into a decimal adjacency vector, denoted

by a10, of A elements each being a local vertex invariant obtained by the following expression
[Schultz and Schultz, 1991]:

a10i ¼ ð2 � ai1ÞA�1 þ ð2 � ai2ÞA�2 þ � � � þ ð2 � aiAÞ0

where aij is the jth column element of the ith row of the adjacency matrix A. In this way, the
information contained in the adjacencymatrix is compressed into anA-dimensional vector. For
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example, a row of the adjacency matrix equal to [0 1 1 1 0] gives a value of 14, obtained as

a10i ¼ ð2 � 0Þ5�1 þð2 � 1Þ5�2 þð2 � 1Þ5�3 þð2 � 1Þ5�4 þ ð2 � 0Þ0 ¼ 14

The elements of the decimal adjacency vector are integers that were used for ! canonical
numbering of molecular graphs [Randi�c, 1974].
From the decimal adjacency vector, three different indices were proposed as molecular

descriptors:

(a) the sum of the elements of the vector a10, that is,

A1 ¼
XA
i¼1

a10i

(b) the sum of the linear combination of vertex degrees di, each weighted by the corresponding
decimal adjacency vector element ai

10, that is,

A2 ¼
XA
i¼1

di � a10i

(c) the sum of the elements of the A-dimensional vector d obtained by multiplying the
topological ! distance matrix D by the decimal adjacency vector, that is,

A3 ¼
XA
i¼1

d½ �i

where the vector d is calculated as

d ¼ D � a10

Example A4

Decimal adjacency vector of 2-methylpentane and related molecular descriptors.

1

2

3

4

5

6

Atom 1 2 3 4 5 6

1 0 1 2 3 4 2

2 1 0 1 2 3 1

3 2 1 0 1 2 2

4 3 2 1 0 1 3

5 4 3 2 1 0 4

6 2 1 2 3 4 0

�������������������

�������������������

�

a10i

16

41

20

10

4

16

�������������������

�������������������

¼

di

159

84

123

202

301

159

������������������

������������������
a101 ¼ð2�1Þ6�2 ¼ 16
a102 ¼ð2�1Þ6�1þð2�1Þ6�3þð2�1Þ6�6 ¼ 41
a103 ¼ð2�1Þ6�2þð2�1Þ6�4 ¼ 20
a104 ¼ð2�1Þ6�3þð2�1Þ6�5 ¼ 10
a105 ¼ð2�1Þ6�4 ¼ 4
a106 ¼ð2�1Þ6�2 ¼ 16

A1¼16þ411þ20þ10þ4þ16¼107

A2¼1�16þ3�41þ2�20þ2�10þ1
�4þ1�16¼219

A3¼159þ84þ123þ202þ301þ159¼1028

& [Lukovits, 2000; Schultz, 2000]
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� adjacencymatrix of a general graph ! weightedmatrices (�weighted adjacencymatrices)
� adjacency matrix of a multigraph ! weighted matrices (� weighted adjacency matrices)
� adjacency plus distance matrix ! Schultz molecular topological index
� adjacent eccentric distance sum index ! eccentricity-based Madan indices (� Table E1)
� adjusted R2 ! regression parameters
� adjusted retention time ! chromatographic descriptors (� retention time)
� admittance matrix � Laplacian matrix
� ADME properties ! drug design

& adsorbability index (AI)
An empirical molecular descriptor derived from a ! group contribution method based on
molecular refractivity to predict activated carbon adsorption of 157 compounds [Abe, Tatsumoto
et al., 1986]. This index was also applied to predict the ! soil sorption partition coefficient of the
same 157 compounds [Okouchi and Saegusa, 1989; Okouchi, Saegusa et al., 1992].
The adsorbability index is calculated by the expression

AI ¼
X

i
fi �Ni þ

X
j
cj

where the summations run over atomic and functional groups; fi indicates the contribution to
activated carbon adsorption of the ith atom- or group type andN i the number of atoms or groups
of type i; cj represents a special correction factor accounting for functional group effects.
Atomic and group contributions and correction factors are reported in Table A1.

For example, for benzene
AI ¼ 6� fC þ 6� fH þ 3� fC¼C ¼ 6� 0:26þ 6� 0:12þ 3� 0:19 ¼ 2:85;
for 1,1,2-tricholoroethane AI ¼ 2� fCþ3� fH þ 3� fCl¼2�0:26þ 3�0:12þ 3�0:59 ¼ 2:65

� AEI indices ! spectral indices (� Axi eigenvalue indices)
� AFC method � KOWWIN ! lipophilicity descriptors

Table A1 Values of f and c factors proposed by Abe, et al. [Abe, Tatsumoto et al., 1986].

Atom/group f Group c

C 0.26 Aliphatic:
H 0.12 �OH (alcohols) �0.53
N 0.26 �O� (esters) �0.36
O 0.17 �CHO (aldehydes) �0.25
S 0.54 N (amines) �0.58
Cl 0.59 �COOR (esters) �0.28
Br 0.86 >C¼O (ketones) �0.30
NO2 0.21 �COOH (fatty acids) �0.03
�C¼C� 0.19
Iso �0.12 a-Amino acids �1.55
Tert �0.32
Cyclo �0.28 All groups in aromatics 0
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& affinity fingerprints
Affinity fingerprints are ! vectorial descriptors of molecules either comprising their binding
affinities and docking scores or superpositioning pseudoenergies against a reference panel of
uncorrelated proteins or small drug molecules [Briem and Lessel, 2000]. These molecular
descriptors can be used both for high-throughput compound screening and the ! similarity/
diversity analysis and for the prediction of biological activities of compounds.
In contrast to most other molecular descriptors, affinity fingerprints are not directly derived

from molecular structures.
In vitro affinity fingerprints are based on binding affinities, experimentally determined, and

can be used to estimate general cross-reactivity and, then, possible toxicity in the drug design
process [Weinstein, Kohn et al., 1992; Kauvar, Higgins et al., 1995;Weinstein, Myers et al., 1997;
Dixon and Villar, 1998]. The underlying assumption is that compounds binding similarly to
all the proteins in the referencepanel are likely also to have similar affinity to their target receptor.
Virtual affinity fingerprints (or in silico affinity fingerprints) are derived by computational

methods and, thus, are vectorial descriptors where experimentally determined binding affi-
nities of molecules are replaced by some calculated scores with respect to the reference panel
[Briem and Lessel, 2000].
Some virtual affinity fingerprints are explained below.
DOCKSIM fingerprints are derived by computational docking of the molecules into binding

pockets of protein structures solved by X-ray crystallography [Briem and Kuntz, 1996]. There-
fore, they are 3D vectorial descriptors collecting the docking scores (DOCK scores) with respect
to the protein-binding site of the reference panel; the scores are obtained by rigid docking of the
molecules, and the reference panel contains eight uncorrelated and arbitrarily selected protein
structures.
Flexsim-X fingerprints are vectors of docking scores as the DOCKSIM fingerprints, but the

scores are obtained by flexible docking of molecules, and the reference panel contains around
40 protein structures, optimized by systematic and genetic algorithm (GA)-based procedures
[Lessel and Briem, 2000].
Flexsim-S fingerprints are virtual affinity fingerprints where the docking scores are replaced

by the superpositioning pseudoenergies, which measure the alignment quality of ligands
onto a set of small reference molecules [Lemmen, Lengauer et al., 1998]. Also for Flexsim-S
fingerprints, size and composition of the reference panel should be properly optimized.
Flexsim-R fingerprints are virtual affinity fingerprints specifically designed for similarity

assessments of small fragments, such as R-groups of combinatorial libraries [Weber, Teckentrup
et al., 2002].
Molecular hashkeys are another kind of virtual affinity fingerprints derived from surface-

based comparisons of ligands with a reference panel comprising small, drug-like molecules
instead of proteins [Ghuloum, Sage et al., 1999]. Amolecular hashkey is a vectorial descriptor of
fixed dimension that captures information about the surface properties of a molecule. The
elements of the hashkey of a molecule are values of its molecular surface similarity to a set of
basis molecules in low-energy-fixed conformations. The molecule is flexibly aligned to each of
the set of basis molecules to maximize molecular surface similarity.

� AH weighting scheme ! weighting schemes
� Aihara resonance energy ! delocalization degree indices
� AI indices ! atom-type-based topological indices
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& AIM theory (� Atoms-in-Molecules theory)
Bader�s Atoms-in-Molecules (AIM) quantum theory [Bader, 1990] provides a bridge between
quantum chemistry and chemical concepts and the framework for reconstructing
large molecules from a number of small electron density fragments. In the AIM theory, the
electron density of amolecule is partitioned into distinct electron density basins, that is, regions
occupied by the corresponding atoms, each containing an atomic nucleus. These electron
density atomic fragments are essentially bounded by surfaces of zero net flux in the electron
density.
An atomic property P can be then expressed as the integral of the corresponding property

density r over an atomic region W as

PðWÞ ¼
ð
W
rPdt

These atomic properties possess a high degree of transferability from the electronic
environment in one molecule to another molecule with similar environments. Consequently,
the properties of a whole molecule or a functional group can be obtained by adding the atomic
properties as

PðmoleculeÞ ¼
X
W

PðWÞ:

Based on the AIM theory are ! TAE descriptors and the ! delocalization index DI.

& [Song, Breneman et al., 2002; Lamarche and Platts, 2003; Chaudry and Popelier, 2004;
Krygowski, Ejsmont et al., 2004]

� Akaike Information Criterion ! regression parameters
� alert indices ! property filters

& algebraic operators
Algebraic operators play a meaningful role in the framework of ! molecular descriptors, since
they represent the fundamental mathematical tool used to transform into single numerical
quantities the information encoded in ! matrices of molecules.
Let M be a generic matrix with n rows and p columns, denoted as

M � ½mij� ¼
m11 m12 . . . . . . m1p

..

. ..
.

mn1 mn2 . . . . . . mnp

�������
�������

The matrix elements mij are commonly denoted as

mij � ½M�ij � ði; jÞ

A column vector v is a special case of matrix having n rows and one column; the row vector vT

is a special case of matrix having one row and p columns.
Some definitions of matrix algebra [Ledermann and Vajda, 1980; Golub and van Loan, 1983;

Mardia, Kent et al., 1988], algebraic operators and set theory are given below.
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. characteristic polynomial
Let M be a square matrix (n� n) and x a scalar variable, the characteristic polynomial Ch is
defined as

ChðM; xÞ ¼ detðM�xIÞ ¼
Xn
i¼0

ai � xn�i

where I is the identitymatrix, that is, amatrix having the diagonal elements equal to 1 and all the
off-diagonal elements equal to zero, and ai the polynomial coefficients. The characteristic
polynomial is obtained by expanding the determinant and, then, collecting terms with equal
powers of x.
The eigenvaluesl of thematrixMare then roots of its characteristic polynomial, and the set of

the eigenvalues is called spectrum of a matrix, denoted as L(M).
Determinant and trace of M are given by the following expressions:

detðMÞ ¼ an ¼
Yn
i¼1

li trðMÞ ¼ a1 ¼
Xn
i¼1

li

respectively, where an and a1 are the characteristic polynomial coefficients corresponding to i
equal to n and 1, respectively.
For each eigenvalue li, there exists a nonzero vector vi satisfying the following relationship:

M � vi ¼ li � vi:
The n-dimensional vectors vi are called eigenvectors of M.
A large number of ! characteristic polynomial-based descriptors and ! spectral indices are

defined in literature, to study both molecular graphs andmodel physico-chemical properties of
molecules.

. cardinality of a set
The cardinality of a set S is the number of elements in S and is indicated as |S|.

. column sum operator
This operator, denoted as CSj, performs the sum of the elements of the jth matrix column:

CSjðMÞ �
Xn
i¼1

mij

The column sum vector, denoted by cs, is a p-dimensional vector collecting the results
obtained by applying the column sum operator to all the p columns of the matrix.

. determinant
The determinant of a n� n square matrix M, denoted by det(M), is a scalar quantity and is
defined as

detðMÞ ¼
X

p
sðpÞ �m1; i1 �m2; i2 � . . . �mn; in

where the summation ranges over all n! permutations p of the symbols 1, 2, . . ., n. Each
permutation p of degree n is given by
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p ¼ 1 2 . . . n
i1 i2 . . . in

� �

where i1, i2, . . ., in are the symbols 1, 2, . . ., n in some order. The sign function s(p) is defined as

sðpÞ ¼ þ1 if p is even
�1 if p is odd

�

Related to the definition of determinant are permanent, pfaffian, and hafnian.
The permanent, denoted by per(M), also referred to as the positive determinant, is defined by

omitting the sign function s(p) [Kasum, Trinajsti�c et al., 1981; Schultz, Schultz et al., 1992, 1995;
Cash, 1995a, 1998; Jiang, Liang et al., 2006] as

perðMÞ ¼
X

p
m1; i1 �m2; i2 � . . . �mn; in

where p runs over the n! permutations.
From the permanent, the corresponding permanent polynomial was also defined [Kasum,

Trinajsti�c et al., 1981; Cash, 2000b].
The immanant, denoted by dl(M), is defined as

dlðMÞ ¼
X

p
clðpÞm1; i1 �m2; i2 � . . . �mn; in

where p runs over the n! permutations. cl(p) is an irreducible character of the symmetric group
indexed by a partition l of n.
The pfaffian, denoted by pfa(M), and the hafnian, denoted by haf(M), are analogous to the

determinant except for the summation that goes over all the permutations p (i1, i2, . . ., in) and
must also satisfy the limitations

i1 < i2; i3 < i4; . . . ; in�1 < in; i1 < i3 < i5 < . . . < in�1

The entries of themain diagonal are excluded from the calculation of the pfaffian and hafnian
[Caianiello, 1953, 1956].Hafnians andpfaffians differ in the sign function s(p) that is included in
the definition of pfaffian only.
The hafnian calculated considering only the entries above the main diagonal is called short

hafnian, shaf(M), whereas the hafnian calculated considering both entries above and below the
main diagonal can also be referred to as long hafnian, lhaf(M) [Schultz and Schultz, 1992;
Schultz, Schultz et al., 1995].
For example, for a matrix M of order 4, pfaffian, long hafnian, and short hafnian are the

following:

pfa ¼ m12 �m34�m13 �m24 þm14 �m23

shaf ¼ m12 �m34 þm13 �m24 þm14 �m23

lhaf ¼ m12 �m21 �m34 �m43 þm13 �m31 �m24 �m24 þm14 �m41 �m23 �m32

Some molecular descriptors, called ! determinant-based descriptors, are calculated as the
determinant of ! matrices of molecules. Moreover, permanents, short and long hafnians,
calculated on the topological ! distance matrix D, were used as graph invariants by Schultz
and called per(D) index, shaf(D) index, and lhaf(D) index [Schultz and Schultz, 1992;
Schultz, Schultz et al., 1992].
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& [Schultz and Schultz, 1993; Schultz, Schultz et al., 1993, 1994, 1995, 1996; Chan, Lam et al.,
1997; Gutman, 1998; Cash, 2000a, 2002a, 2003]

. diagonal matrix
A diagonal matrix is a square matrix whose diagonal terms mii are the only nonzero elements.
The diagonal operator D(M) is an operator that transforms a generic square matrix M into a
diagonal matrix:

DðMÞ ¼
m11 . . . 0 . . . 0
0 . . . mii . . . 0
0 . . . 0 . . . mnn

������
������

. Hadamard matrix product
The Hadamard product of two matrices A and B of the same dimension is denoted as 	 and
defined as

½A	 B�ij ¼ ½A�ij � ½B�ij

that is, the elements of the resulting matrix are obtained by the scalar product of the
corresponding elements of A and B matrices.

. identity matrix (I)
The identity matrix is a square diagonal matrix defined as

I ¼
1 . . . 0 . . . 0
0 . . . 1 . . . 0
0 . . . 0 . . . 1

������
������

. polynomial
A polynomial P(x) of the x variable is a linear combination of its powers, usually written as

PðxÞ ¼ a0x
n þ a1x

n�1 þ � � � þ an�1xþ an

where n is the order of the polynomial. The values of x, for whichP(x) is zero, are the roots of the
polynomial.
Several polynomials associated with graphs were defined, such as the ! characteristic

polynomials, ! counting polynomials, ! matching polynomial, chromatic polynomial, and Tutte
polynomial [Noy, 2003].

. product of matrices
Let A (n, m) and B (m, p) be two matrices. The product of the two matrices is defined as

A �B ¼ C

where the resulting product matrixC has n rows and p columns. Each scalar element cij of theC
matrix is obtained by the scalar product between the ith rowof theAmatrix and the jth columnof
the B matrix. The row vector is represented as aTi and the column vector as bj; the resulting
element cij is then calculated as
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aTi � bj � cij ¼
Xm
k¼1

aik � bkj

A basic condition for the product of two matrices is that the number of columns of the left
matrix and the number of rows of the right matrix are equal (m).
The kth power matrix Ak is a special case of the matrix product:

Ak ¼ A �Ak�1

The main properties of the product of two matrices are

ðaÞA �B 6¼ B �A; ðbÞ ðA �BÞ �C ¼ A � ðB �CÞ; ðcÞ ðA �BÞT ¼ BT �AT

. row sum operator (� vertex sum operator)
This operator, denoted as VSi, performs the sum of the elements of the ith matrix row:

VSi Mð Þ ¼
Xp
j¼1

mij

where p is the number of columns of the M matrix.
The row sum vector, rs, is an n-dimensional vector collecting the results obtained by applying

the row sum operator to all the n rows of the matrix.
This operator is used to derive ! Local Vertex Invariants from ! graph theoretical matrices.

For symmetric matrices, the local vertex invariants obtained by applying this operator on the
transposed matrix coincide with those obtained by applying the operator on the original
matrix.

. scalar product of vectors
Let a and b be two column vectors with the same dimension n. The scalar product between the
two vectors is defined as the sumof the products of the corresponding elements of the rowvector
aT and the column vector b or, vice versa, of the row vector bT and the column vector a:

aT � b ¼ bT � a ¼
Xn
k¼1

ak � bk

. sparse matrices
These are matrices with relatively few nonzero elements. A binary sparse matrix B is a sparse
matrix comprised of elements equal to zero or 1. The geodesic matrix is a binary sparse matrix
mB defined as [Harary, 1969a]

½mB�ij ¼
1 if dij ¼ m
0 otherwise

�

wherem defines the order of the matrix and dij is the ! topological distance between vertices vi
and vj. The geodesic matrix is largely applied to calculate ! autocorrelation descriptors, !
Estrada generalized topological indices, ! higher order Wiener numbers, ! interaction geodesic
matrices.
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Let M be a matrix A�A representing a ! molecular graph G, where A is the number
of vertices. To obtain a mth order sparse matrix mM from any matrix M, the ! Hadamard
matrix product is performed as the following:

mM ¼ M	 mB

where the superscript �m� of the sparse matrix mMmeans that all of theMmatrix elements are
taken as zero but those corresponding to pairs of vertices vi and vj at topological distancem and
mB constitute the geodesic matrix defined above.
The ! adjacency matrixA of amolecular graphG is an example of binary sparsematrix, only

the off-diagonal entries i–j corresponding to pairs of adjacent vertices vi and vj, that is, vertices
connected by a bond, being equal to one. Using the adjacency matrix as the multiplier in the
Hadamard product, it follows

1M � Me ¼ M	 A

where 1M is a first-order sparse matrix, also called edge-matrix, denoted as Me.
Opposite to sparsematrices are densematrices, that is, matrices with several nonzero entries

[Randi�c and DeAlba, 1997].

. stochastic matrices (� probability matrices, transition matrices)
These are square matricesM for which each row sum, right stochastic matrices, or each column
sum, left stochastic matrices, is equal to 1, that is, the row elements or the column elements
consist of nonnegative real numbers that can be interpreted as probabilities:

VSiðMÞ ¼ 1 or CSjðMÞ ¼ 1

where VS is the ! row sum operator and CS the ! column sum operator.
Stochastic matrices for which both row and column sums are equal to 1 are called double

stochasticmatrices. Stochasticmatrices are defined in the framework of the ! MARCH-INSIDE
descriptors, ! TOMOCOMD descriptors, and ! walk counts.

. sum of matrices
Let A (n, p) and B (n, p) be two equal-sized matrices. The sum of the two matrices is defined as

AþB ¼ C

Each scalar element cij of the matrix C is obtained by summing up the corresponding
elements of the two matrices, that is,

cij ¼ aij þ bij

A basic condition for the sum of two matrices is that the two matrices have the same
dimension.
The main properties of the sum of two matrices are

ðaÞAþB ¼ BþA ðbÞ ðAþBÞþC ¼ AþðBþCÞ ðcÞ aðAþBÞ ¼ a Aþa B

where a is a scalar value.
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. total sum operator
This operator S performs the sum of all of the elements of a matrix M of size n� p:

SðMÞ �
Xn
i¼1

Xp
j¼1

mij ¼
Xn
i¼1

VSiðMÞ ¼
Xp
j¼1

CSjðMÞ

where VSi and CSj are the row sum operator and the column sum operator, respectively.

. trace
The trace of a squarematrixM (i.e.,n¼ p), denoted by tr(M), is the sumof the diagonal elements:

trðMÞ �
Xn
i¼1

mii

. transposition of a matrix
The matrix MT is the transposed matrix of M if its elements are

½MT�ij ¼ ½M�ji
If the dimension of M is n� p, the transposed matrix MT has dimension p� n.

. unit matrix (U)
The unit matrix is a square matrix defined as

U ¼
1 . . . 1 . . . 1
1 . . . 1 . . . 1
1 . . . 1 . . . 1

������
������

� algebraic semisum charge transfer index ! topological charge indices
� algebraic structure count ! Kekul�e number

& alignment rules
Inmost ! grid-based QSAR techniques, which use as themolecular descriptors energy values of
! molecular interaction fields (steric, hydrophobic, coulombic, etc.), rules for alignment of all
themolecules in the data set are required for comparability purposes. In effect, the energy value
at each grid point p depends on the relative orientation of the compoundwith respect to the grid.
As a consequence, the use of the grid points as molecular descriptors requires the mandatory
step of aligning the molecules of the considered ! data set in such a way that each of the
thousands of grid points represents, for all themolecules, the same kind of information, andnot
spurious information due to lack of invariance in the rotation of the molecules in the grid.
Therefore, in applying grid-based QSAR techniques there are, in most cases, two closely

related problems: the selection of a suitablemolecular conformation for each compound and the
relative alignment of the compounds, either among themselves or with respect to any !
receptor, if its structure is known.
The ideal choice of conformers for QSARwould be the bioactive one.Wherever experimental

structural data (e.g., X-ray data) on ligands bound to targets exist, the bioactive ligand
conformation is available and should be used to derive an alignment rule.
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When no structural data are available for the receptor, methods that explore conformational
space may find the best relative match among the different ligands. During this process, low-
energy conformations are selected to obtain the bestmatch fromall the different conformations.
The solution is usually not unique because other conformations may bind to the unknown
receptor, and multiple alignment rules, based on different starting hypotheses, should be
considered when no structural information and no rigid compounds are available.
The success or failure of the grid-based methods to find acceptable ! quantitative

structure–activity relationships strongly depends on how the molecules are aligned in the grid
onwhich themolecular interactionfields are sampled. In effect, problemsmay bemainly due to
(a) an alignment that leads to a resulting common structure, that is, the pharmacophore, not
reliable, and (b) the same grid points in differentmolecules represent chance variation inmodel
geometry.
To avoid the drawbacks of the molecule alignment, several approaches based on different

criteria were proposed; two basic alignment techniques are explained below.

. point-by-point alignment
For a set of congeneric compounds, the atoms of each compound are superimposed on their
common backbone, aligning as much of each structure as possible.
For structurally diverse compounds, hypotheses on the ! pharmacophore can provide an

approach to overcome ambiguities in atom superimposition and identify a suitable alignment.

. field-fitting alignment
In this approach, the molecules are aligned by maximizing the degree of similarity between
their molecular interaction fields. Different types of probes result in different fields as well as
different molecular alignments. Therefore, the selection of suitable fields (and how to weight
them) depends on external considerations.
Moreover, a difficulty in field-based alignment is that molecular regions not relevant, that is,

parts of the molecule not involved in ligand–receptor interactions, may distort the alignment.

& [Kato, Itai et al., 1987; Mayer, Naylor et al., 1987; Kearsley and Smith, 1990; Manaut, Sanz
et al., 1991; Cramer III, DePriest et al., 1993; Dean, 1993; Klebe, 1993, 1998; Waller and
Marshall, 1993; Waller, Oprea et al., 1993; Klebe, Mietzner et al., 1994; Cramer III, Clark
et al., 1996; Petitjean, 1996; Greco, Novellino et al., 1997; Handschuh, Wagener et al., 1998;
Langer andHoffmann, 1998b; Norinder, 1998; Bernard, Kireev et al., 1999; Robinson, Lyne
et al., 1999; Lemmen and Lengauer, 2000; Vedani, McMasters et al., 2000; Jewell, Turner
et al., 2001;Makhija andKulkarni, 2001b;Nissink, Verdonk et al., 2001; Pitman,Huber et al.,
2001; Wildman and Crippen, 2001; Zhu, Hou et al., 2001; Bringmann and Rummey, 2003;
Bultinck, Kuppens et al., 2003; Bultinck, Carbó-Dorca et al., 2003; Hasegawa, Arakawa et al.,
2003; Marialke, K€orner et al., 2007]

� Alikhanidi vertex degree ! vertex degree
� all-path matrix ! path counts
� all-path Wiener index ! path counts
� all possible models ! variable selection
� ALOGP ! lipophilicity descriptors (� Ghose–Crippen hydrophobic atomic constants)
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& ALPHA descriptor
This is a vectorial molecular descriptor derived from the trajectories obtained by molecular
dynamic simulation applying a technique of Gaussian smoothing [Tuppurainen, Viisas et al.,
2004]. For each trajectory coordinate x, the ALPHA descriptor is defined as

ALPHAðxÞ ¼
XN
i¼1

1

s � ffiffiffiffiffiffi
2p

p � e� ðx�aiÞ2=2 �s2½ �

where a and s are the mean and standard deviation of the Gaussian function and the
summation denotes over N-overlaid Gaussian functions; a values are first transformed to a
bounded range (e.g., 0.5–3). Then, a Gaussian kernel of fixed standard deviation s (a parameter
to be optimized) is placed over each a value. Finally, the quantity ALPHA(x) is calculated at
intervals of L (usually L is set at s/2) resulting into a (pseudo) spectrum, which can be used as a
molecular descriptor for QSAR modeling.
The dimensionality of the ALPHA descriptor is high (depending strongly on the value of s)

and, thus, the PLS method is suggested to compress the data.

� Altenburg polynomial ! counting polynomials
� altered Wiener indices ! Wiener index
� amino acid descriptors ! biodescriptors
� amino acid sequences � peptide sequences
� Amoore shape indices ! shape descriptors

& amphiphilic moments
The amphiphilicity of a compound is defined as the difference between the free energy of
transfer of a compound from the aqueous phase to the air–water interface and the free energy of
micelle formation and is quantified by means of surface tension measurements.
Amphiphilic moments are defined as vectors pointing from the center of the hydrophobic

domain to the center of the hydrophilic domain of a molecule. It is defined as [Fischer,
Gottschlich et al., 1998; Fischer, Kansy et al., 2001]:

�A ¼
XA
i¼1

di �ai

where d is the distance of an identified charged residue from the farthest hydrophobic/
hydrophilic residues. Each atom is weighted by its hydrophobic/hydrophilic property a on
the basis of an atom contribution method [Meylan and Howard, 1995].
The vector length is proportional to the strength of the amphiphilic moment and it may

determine the ability of a compound to permeate a membrane [Cruciani, Crivori et al., 2000].

� AMSP � Autocorrelation of Molecular Surface Properties ! autocorrelation descriptors
� Andrews� curves ! molecular descriptors (� transformations of molecular descriptors)
� Andrews descriptors ! count descriptors
� angular distance ! similarity/diversity
� angular separation ! similarity/diversity (� Table S7)
� aN-index ! determinant-based descriptors (� general aN-index)
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� anisometry ! shape descriptors
� anisotropy of the polarizability ! electric polarization descriptors
� Ant Colony fitness function ! regression parameters
� antibonding orbital information index ! information theoretic topological index
� anticonnectivity indices ! variable descriptors

& applicability domain
The concept of the applicability domain concerns the predictive use of QSAR/QSPR models
and, then, is closely related to the concept ofmodel validation (! validation techniques). In other
words, the applicability domain is a concept related to the quality of the QSAR/QSPR model
predictions and prevention of the potential misuse of model�s results. A key component of the
prediction quality is indeed to define when a QSAR/QSPR model is suitable to predict a
property/activity of a new compound [Tropsha, Gramatica et al., 2003; Jaworska, Nikolova-
Jeliazkova et al., 2004; Dimitrov, Dimitrova et al., 2005; Jaworska, Nikolova-Jeliazkova et al.,
2005; Netzeva, Worth et al., 2005; Nikolova-Jeliazkova and Jaworska, 2005].
A model will yield reliable predictions when model assumptions are fulfilled and unreliable

predictions when they are violated. In particular, for QSAR/QSPR models, based on statistical
mining techniques, the ! training set and the model prediction space are the basis for the
estimation of space where predictions are reliable.
Two basic approaches were proposed for evaluating the applicability domain.
The first approach to applicability domain evaluation is the statistical analysis of the training

set, trying to define the best conditions for interpolated prediction that is usually more reliable
than extrapolation. Extrapolation is not a problem in principle, because extrapolated results
from theoretically well-founded models can often be reliable. However, QSAR/QSPR models
are usually based on empirical, and limited experimental evidence and/or are only locally valid;
therefore, extrapolation usually results in high uncertainty and not reliable predictions.
Different approaches to estimate interpolation regions in a multivariate space were evaluated

by Jaworska [Jaworska, Nikolova-Jeliazkova et al., 2005], based on (a) ranges of the descriptor
space; (b) distance-based methods, using Euclidean, Manhattan, and Mahalanobis distances,
Hotelling T2method and leverage values; and (c) probability density distributionmethods based
on parametric and nonparametric approaches. Both ranges and distance-based methods were
also evaluated in the principal component space by ! Principal Component Analysis.
Another approach to applicability domain evaluation is based on the ! similarity/diversity of

the compound considered with respect to those belonging to the training set; a QSAR/QSPR
prediction should be reliable if the compound is, in some way, similar to one or more
compounds present in the training set [Nikolova and Jaworska, 2003]. High similarity is simply
another way to use the interpolation ability of the model in place of the extrapolation.
A stepwise procedure was also proposed [Dimitrov, Dimitrova et al., 2005] based on a four-

stage procedure: (1) a study of the variations ofmolecular parameters thatmay affect the quality
of the measured endpoint significantly (e.g., molecular weight, absorption, water solubility
volatility, etc.); (2) an analysis of the structural domain based on a set of ! atom-centered
fragment descriptors that could be used to characterize the structural domain of the atoms present
in the training set; (3) an analysis of the mechanistic domain focused on functional groups
whose reactivity modulates the endpoint studied or structural fragments used in group
contribution models; and (4) an analysis of the metabolic domain by simulators, although the
metabolic aspects are usually not included in QSAR models.
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& [Martin, Kofron et al., 2002; Eriksson, Jaworska et al., 2003; Papa, Villa et al., 2005; Tetko,
Bruneau et al., 2006; Zhang, Golbraikh et al., 2006; Stanforth, Kolossov et al., 2007]

� arcs ! graph
� arithmetic mean ! statistical indices (� indices of central tendency)
� arithmetic topological index ! vertex degree
� aromatic bond count ! multiple bond descriptors
� aromaticity ! delocalization degree indices
� aromaticity indices ! delocalization degree indices
� artificial neural networks ! chemometrics
� aryl electronic constants ! electronic substituent constants
� ASIIg index ! charge descriptors (� charge-related indices)
� asphericity ! shape descriptors
� association coefficients ! similarity/diversity
� asymptotic Q2 rule ! regression parameters
� ATAC � Atom-Type AutoCorrelation ! autocorrelation descriptors
� atom–atom polarizability ! electric polarization descriptors
� atom-centered fragment descriptors � Augmented Atoms ! substructure descriptors
� atom connectivity matrices ! weighted matrices (� weighted adjacency matrices)
� atom count � atom number
� atom detour eccentricity ! detour matrix
� atom eccentricity ! distance matrix
� atom electronegativity ! atomic properties
� Atom Environment descriptors ! substructure descriptors (� fingerprints)
� atomic charges ! quantum-chemical descriptors
� atomic charge-weighted negative surface area ! charged partial surface area descriptors
� atomic charge-weighted positive surface area ! charged partial surface area descriptors

& atomic composition indices (� composition indices)
Molecular ! 0D descriptors with high degeneracy, derived from the chemical formula of
compounds and defined as ! information indices of the elemental composition of themolecule.
They can be considered ! molecular complexity indices that take into account the molecular
diversity in terms of different atom types.

! Average molecular weight and ! relative atom-type count are simple molecular descriptors
that encode information on atomic composition. Other important descriptors of the atomic
composition are based on the ! total information content and the ! mean information content,
defined as

. total information index on atomic composition (IAC)
The total information content on atomic composition of the molecule is calculated from the
complete molecular formula, hydrogen included, as

IAC ¼ Ah � log2Ah�
X

g
Ag � log2Ag

where Ah is the total number of atoms (hydrogen included) and Ag is the number of atoms of
chemical element of type g [Dancoff and Quastler, 1953].
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For example, benzene has 6 carbon and 6 hydrogen atoms; then, as Ah¼ 12 and Ag¼ 6 for
both equivalence classes, IAC¼ 12.

. mean information index on atomic composition (�IAC)
Themean information content on atomic composition is themean value of the total information
content and is calculated as

�IAC ¼ �
X

g

Ag

Ah
� log2

Ag

Ah
¼ �

X
g
pg � log2pg

where Ah is the total number of atoms (hydrogen included), Ag is the number of atoms of type g
and pg is the probability to randomly select a gth atom type [Dancoff and Quastler, 1953]. For
example, for benzene �IAC ¼ 1.

� atomic connectivity indices � local connectivity indices ! connectivity indices
� atomic dispersion coefficient ! hydration free energy density
� Atomic Environment Autocorrelations ! autocorrelation descriptors
� atomic ID numbers ! ID numbers
� atomic information content ! atomic information indices

& atomic information indices
Atomic descriptors related to the internal composition of atoms [Bonchev, 1983].
The atomic information content Iat is the ! total information content of an atom viewed

as a system whose structural elements, that is, protons p, neutrons n, and electrons el, are
partitioned into nucleons, p þ n, and electrons el:

Iat ¼ ðNn þ Np þ NelÞ � log2ðNn þ Np þ NelÞ�Nel � log2Nel�ðNn þ NpÞ � log2ðNn þ NpÞ

where Nn, Np, and Nel are the numbers of neutrons, protons, and electrons, respectively
[Bonchev and Peev, 1973].
To account for the different isotopes of a given chemical element, the information index on

isotopic composition was defined as

IIC ¼
X

k
ðIatÞk � fk

where the sum runs over all isotopes of the considered chemical element, (Iat)k is the atomic
information content of the kth isotope and fk is its relative amount [Bonchev and Peev, 1973].
The information index on proton–neutron composition is an atomic descriptor defined as

total information content of the atomic nucleus:

In;p ¼ ðNn þ NpÞ � log2ðNn þ NpÞ�Nn � log2Nn�Np � log2Np

where Nn and Np are the numbers of neutrons and protons, respectively [Bonchev, Peev et al.,
1976].
The nuclear information content INUCL is a molecular descriptor calculated as the sum of

information indices on the proton–neutron composition of all the nuclei of a molecule:

INUCL ¼
XA
i¼1

In;pi
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where A is the number of atoms and In;pi is the information index on proton–neutron
composition of the nucleus of the ith atom. This index also accounts for molecular size by
means of the number of atomic nuclei.

� atomic molecular connectivity index ! connectivity indices
� atomic moments of energy ! self-returning walk counts
� atomic multigraph factor ! bond order indices (� conventional bond order)
� atomic path count ! path counts
� atomic path count sum ! path counts
� atomic path number � atomic path count ! path counts
� atomic path/walk indices ! shape descriptors (� path/walk shape indices)
� atomic polarization ! electric polarization descriptors

& atomic properties
�Most atomic properties are a consequence of atomic structure, which in turn must be related
to the inherent nature of the component electrons and nuclei. Therefore it is almost inevitable
that such properties be related to one another, if only because of their common origin. It should
not be surprising that a particular property, here the electronegativity, can be derived from
or correlated with a wide variety of other properties, with reasonable agreement among the
several results� [Sanderson, 1988].
Atomic properties P are physics and chemical observables characterizing each chemical

element. They play a fundamental role in the definition of most of the molecular descriptors,
being physico-chemical properties, as well as biological, toxicological, and environmental
properties, deeply determined by the chemical elements constituting the molecule itself.
In Table A2, some important atomic properties are listed for the most common chemical

elements.

Table A2 Atomic properties for some chemical elements.

Atom Z L Zv Rvdw Rcov m Vvdw xSA a IP EA

H 1 1 1 1.17 0.37 1.01 6.71 2.59 0.67 13.598 0.754
Li 3 2 1 1.82 1.34 6.94 25.25 0.89 24.3 5.392 0.618
Be 4 2 2 – 0.90 9.01 – 1.81 5.60 9.323 –

B 5 2 3 1.62 0.82 10.81 17.88 2.28 3.03 8.298 0.277
C 6 2 4 1.75 0.77 12.01 22.45 2.75 1.76 11.260 1.263
N 7 2 5 1.55 0.75 14.01 15.60 3.19 1.10 14.534 –

O 8 2 6 1.40 0.73 16.00 11.49 3.65 0.80 13.618 1.461
F 9 2 7 1.30 0.71 19.00 9.20 4.00 0.56 17.423 3.401
Na 11 3 1 2.27 1.54 22.99 49.00 0.56 23.6 5.139 0.548
Mg 12 3 2 1.73 1.30 24.31 21.69 1.32 10.6 7.646 –

Al 13 3 3 2.06 1.18 26.98 36.51 1.71 6.80 5.986 0.441
Si 14 3 4 1.97 1.11 28.09 31.98 2.14 5.38 8.152 1.385
P 15 3 5 1.85 1.06 30.97 26.52 2.52 3.63 10.487 0.747
S 16 3 6 1.80 1.02 32.07 24.43 2.96 2.90 10.360 2.077
Cl 17 3 7 1.75 0.99 35.45 22.45 3.48 2.18 12.968 3.613

(Continued)
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For atomicmass, van derWaals volume, Sanderson electronegativity, and atompolarizability,
the scaled values with respect to the carbon atom are listed in Table A3.

Table A2 (Continued)

Atom Z L Zv Rvdw Rcov m Vvdw xSA a IP EA

K 19 4 1 2.75 1.96 39.10 87.11 0.45 43.4 4.341 0.501
Ca 20 4 2 – 1.74 40.08 – 0.95 22.8 6.113 0.018
Cr 24 4 6 2.20 1.27 52.00 44.60 1.66 11.60 6.767 0.666
Mn 25 4 7 2.18 1.39 54.94 43.40 2.20 9.40 7.434 –

Fe 26 4 8 2.14 1.25 55.85 41.05 2.20 8.40 7.902 0.151
Co 27 4 9 2.03 1.26 58.93 35.04 2.56 7.50 7.881 0.662
Ni 28 4 10 1.60 1.21 58.69 17.16 1.94 6.80 7.640 1.156
Cu 29 4 11 1.40 1.38 63.55 11.49 1.98 6.10 7.723 1.235
Zn 30 4 12 1.39 1.31 65.39 11.25 2.23 7.10 9.394 –

Ga 31 4 3 1.87 1.26 69.72 27.39 2.42 8.12 5.999 0.300
Ge 32 4 4 1.90 1.22 72.61 28.73 2.62 6.07 7.900 1.233
As 33 4 5 1.85 1.19 74.92 26.52 2.82 4.31 9.815 0.810
Se 34 4 6 1.90 1.16 78.96 28.73 3.01 3.77 9.752 2.021
Br 35 4 7 1.95 1.14 79.90 31.06 3.22 3.05 11.814 3.364
Rb 37 5 1 – 2.11 85.47 – 0.31 47.3 4.177 0.486
Sr 38 5 2 – 1.92 87.62 – 0.72 27.6 5.695 0.110
Mo 42 5 6 2.00 1.45 95.94 33.51 1.15 12.80 7.092 0.746
Ag 47 5 11 1.72 1.53 107.87 21.31 1.83 7.20 7.576 1.302
Cd 48 5 12 1.58 1.48 112.41 16.52 1.98 7.20 8.994 –

In 49 5 3 1.93 1.44 114.82 30.11 2.14 10.20 5.786 0.300
Sn 50 5 4 2.22 1.41 118.71 45.83 2.30 7.70 7.344 1.112
Sb 51 5 5 2.10 1.38 121.76 38.79 2.46 6.60 8.640 1.070
Te 52 5 6 2.06 1.35 127.60 36.62 2.62 5.50 9.010 1.971
I 53 5 7 2.10 1.33 126.90 38.79 2.78 5.35 10.451 3.059
Gd 64 6 10 2.59 1.79 157.25 72.78 2.00 23.50 6.150 0.500
Pt 78 6 10 1.75 1.28 195.08 22.45 2.28 6.50 9.000 2.128
Au 79 6 11 1.66 1.44 196.97 19.16 2.54 5.80 9.226 2.309
Hg 80 6 12 1.55 1.49 200.59 15.60 2.20 5.70 10.438 –

Tl 81 6 3 1.96 1.48 204.38 31.54 2.25 7.60 6.108 0.200
Pb 82 6 4 2.02 1.47 207.20 34.53 2.29 6.80 7.417 0.364
Bi 83 6 5 2.10 1.46 208.98 38.79 2.34 7.40 7.289 0.946

Z, atomic number; L, principal quantum number; Zv, number of valence electrons; Rvdw, van der Waals atomic
radius; Rcov, covalent radius; m, atomic mass; Vvdw, van der Waals volume; cSA, Sanderson electronegativity; a,
atomic polarizability (10�24 cm3); IP, ionization potential (eV); EA, electron affinity (eV).

Table A3 Atomic mass (m), van der Waals volume (Vvdw), Sanderson electronegativity (cSA), and polarizability
(a): original values and scaled values with respect to the carbon atom value.

Atomic mass Volume Electronegativity Polarizability

ID m m/mC Vvdw Vvdw/VC
vdw xSA xSA/xC

SA a a=aC

H 1.01 0.084 6.709 0.299 2.592 0.944 0.667 0.379
B 10.81 0.900 17.875 0.796 2.275 0.828 3.030 1.722

(Continued)
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Other atomic electronegativity scales are reported elsewhere (! electronegativity, Table E7).

� atomic refractivity ! physico-chemical properties (� molar refractivity)
� atomic self-returning walk count ! self-returning walk counts
� atomic sequence count ! sequence matrices

& atomic solvation parameter (Ds)
An empirical atomic descriptor Ds proposed to calculate solvation free energy of a group X in
terms of atomic contributions by the following equation:

DGX ¼
X

i
Dsi � SAi

where the sum runs over all the nonhydrogen atoms of the X group, SA is the ! solvent
accessible surface area of the ith atom, and Ds denotes the corresponding atomic contribution to
solvation energy [Eisenberg and McLachlan, 1986]. The atomic contributions Dsi�SAi are
the free energy of transfer of each atom to the solution; note that the areas SA depend on
molecule conformation. Proposed to study protein folding and binding, the estimated values for
the atomic solvation parameters Ds (in cal A


 �2 mol�1) are DsC¼ 16, DsN¼�6, DsO¼�6,
DsNþ ¼ �50, DsO� ¼ 24, and DsS¼ 21 for carbon, nitrogen, oxygen, nitrogen cation, oxygen
anion, and sulfur, respectively.

� atomic valency index ! quantum-chemical descriptors
� atomic walk count ! walk counts
� atomic walk count sum ! walk counts

Table A3 (Continued)

Atomic mass Volume Electronegativity Polarizability

ID m m/mC Vvdw Vvdw/VC
vdw xSA xSA/xC

SA a a=aC

C 12.01 1.000 22.449 1.000 2.746 1.000 1.760 1.000
N 14.01 1.166 15.599 0.695 3.194 1.163 1.100 0.625
O 16.00 1.332 11.494 0.512 3.654 1.331 0.802 0.456
F 19.00 1.582 9.203 0.410 4.000 1.457 0.557 0.316
Al 26.98 2.246 36.511 1.626 1.714 0.624 6.800 3.864
Si 28.09 2.339 31.976 1.424 2.138 0.779 5.380 3.057
P 30.97 2.579 26.522 1.181 2.515 0.916 3.630 2.063
S 32.07 2.670 24.429 1.088 2.957 1.077 2.900 1.648
Cl 35.45 2.952 23.228 1.035 3.475 1.265 2.180 1.239
Fe 55.85 4.650 41.052 1.829 2.000 0.728 8.400 4.773
Co 58.93 4.907 35.041 1.561 2.000 0.728 7.500 4.261
Ni 58.69 4.887 17.157 0.764 2.000 0.728 6.800 3.864
Cu 63.55 5.291 11.494 0.512 2.033 0.740 6.100 3.466
Zn 65.39 5.445 38.351 1.708 2.223 0.810 7.100 4.034
Br 79.90 6.653 31.059 1.384 3.219 1.172 3.050 1.733
Sn 118.71 9.884 45.830 2.042 2.298 0.837 7.700 4.375
I 126.90 10.566 38.792 1.728 2.778 1.012 5.350 3.040
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� atomic weight-weighted adjacency matrix ! weighted matrices (� weighted adjacency
matrices)

� atomic weight-weighted distance matrix ! weighted matrices (� weighted distance
matrices)

� Atom-in-Molecules theory � AIM theory
� atom-in-structure invariant index ! charge descriptors (� charge-related indices)
� atomistic topological indices ! count descriptors
� atom-level composite ETA index ! ETA indices
� atom leverage-based center ! center of a molecule

& atom number (A) (� atom count)
This is the simplestmeasurewith regard tomolecular size, defined as the total number of atoms
in a molecule. It is a global, zero dimensional, descriptor with a high degeneracy. In several
applications for the calculation of ! molecular descriptors, the atom number A refers only to
nonhydrogen atoms.
The information index on size is the ! total information content on the atom number,

defined as

ISIZE ¼ Ahlog2A
h

where the atomnumberAh also takes hydrogen atoms into account [Bertz, 1981]. This index can
also be calculated without considering hydrogen atoms.
Other relatedmolecular descriptors are ! atomic composition indices, several ! information

indices and ! graph invariants.

� atom-pair matching function ! molecular shape analysis
� atom pairs ! substructure descriptors
� atom polarizability ! electric polarization descriptors
� Atom-Type AutoCorrelation ! autocorrelation descriptors
� atom-type autocorrelation matrix ! weighted matrices (� weighted distance matrices)

& atom type-based topological indices
Atom-type topological indices are used to describe amolecule by information related to different
atom types in the molecule. An atom-type index is usually derived from some properties of all
the atoms of the same type and their structural environment. ! Atom-type E-state indices of Kier
and Hall, ! perturbation connectivity indices, ! atom-type path counts, and ! atom-type
autocorrelation descriptors are examples of these molecular descriptors.
AI indices are atom-type topological indices derived from the ! Xu index, whose formula is

applied to single atom types [Ren, 2002a, 2002b, 2002c, 2003a, 2003c, 2003d]. For any ith atom in
the molecular graph, first a local vertex invariant, denoted as AIi, is calculated as

AIi ¼ 1þ fi ¼ 1þ dmi �s2
iPA

i¼1
dmi �si

where f is a perturbation term reflecting the effects of the structural environment of the ith atom
on the topological index ands the ! vertex distance sum. The expression defined above is based
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on the ! Ren vertex degree dm derived from the Kier–Hall valence vertex degree and defined as

dmi ¼ di þ 2
Li

� �2

� dvi þ 1

" #�1

¼ di þ ðIi � diÞ�1

where di is the ! vertex degree of the ith atom, Li its principal quantumnumber, dvi its ! valence
vertex degree, and Ii denotes the ! intrinsic state. This formula is applied only to heteroatoms or
carbon atoms with multiple bonds and/or bonded to heteroatoms; otherwise, the Ren vertex
degree coincides with the simple vertex degree di.
According to this definition of local vertex invariants, the AI index for the kth atom type is

derived by adding the values of the local AI indices for all the atoms of type k.

AIðkÞ ¼
Xnk
i¼1

AIi ¼ nk þ
Xnk
i¼1

fi ¼ nk þ
Pnk
i¼1

dmi �s2
i

PA
i¼1

dmi �si

where nk is the number of atoms of type k.

Example A5

Calculation of AI indices for 4-methyl-3-pentanol. s is the vertex distance sum and dm the
Ren vertex degree; D is the distance matrix.

O

1

2
3

4
5

6

7

D ¼

Atom 1 2 3 4 5 6 7 si

1 0 1 2 3 4 3 4 17

2 1 0 1 2 3 2 3 12

3 2 1 0 1 2 1 2 9

4 3 2 1 0 1 2 1 10

5 4 3 2 1 0 3 2 15

6 3 2 1 2 3 0 3 14

7 4 3 2 1 2 3 0 15

����������������������

dmi

1:000

2:000

3:250

3:000

1:000

1:167

1:000

AIð�CH3Þ ¼ AI1 þAI5 þAI7 ¼ 1þ 1� 172

146:588

� �
þ 2 1þ 1� 152

146:588

� �
¼ 8:041

AIð�CH2�Þ ¼ AI2 ¼ 1þ 2� 122

146:588
¼ 2:965

AIð�CH < Þ ¼ AI3 þAI4 ¼ 1þ 3� 92

146:588

� �
þ 1þ 3� 102

146:588

� �
¼ 5:704

AIð�OHÞ ¼ AI6 ¼ 1þ 1:167� 142

146:588
¼ 2:560

Based on the same approach as the AI indices but derived from the formula of the ! Lu
index, the DAI indices are atom-type topological indices that exploit bond length-weighted
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interatomic distances calculated by adding the relative bond lengths of the edges along the
shortest path [Lu, Guo et al., 2006b, 2006c, 2006d; Lu,Wang et al., 2006]. For any ith atom in the
molecular graph, the local vertex invariant DAIi is calculated as

DAIi ¼ 1þ fi ¼ 1þA

PA
j¼1

Dðr�Þ½ �ij
PA
i¼1

PA
j¼1

Dðr�Þ½ �ij

where f is the perturbation term relative to the atom environment, A is the number of atoms,
and Dðr�Þ½ �ij are the elements of the ! bond length-weighted distance matrix.
The DAI index for the kth atom type is calculated by adding contributions of all atoms of the

considered type:

DAIðkÞ ¼
Xnk
i¼1

DAIi ¼ nk þ
Xnk
i¼1

fi

where nk is the number of atoms of type k.

Example A6

Calculation ofDAI indices for 4-methyl-3-pentanol. VSi indicates thematrix row sums;D(r�) is
the bond length-weighted distance matrix.

O

1

2
3

4
5

6

7

D r�ð Þ¼

Atom 1 2 3 4 5 6 7 VSi

1 0 1 2 3 4 2:928 4 16:928

2 1 0 1 2 3 1:928 3 11:928

3 2 1 0 1 2 0:928 2 8:928

4 3 2 1 0 1 1:928 1 9:928

5 4 3 3 1 0 2:928 2 14:928

6 2:928 1:928 0:928 1:928 2:928 0 2:928 13:571

7 4 3 2 1 2 2:928 0 14:928

���������������������

���������������������
DAIð�CH3Þ ¼ DAI1 þDAI5 þDAI7 ¼ 1þ 7� 16:928

91:143

� �
þ 2 1þ 7� 14:928

91:143

� �
¼ 6:593

DAIð�CH2�Þ ¼ DAI2 ¼ 1þ 7� 11:928
91:143

¼ 1:916

DAIð�CH < Þ ¼ DAI3 þDAI4 ¼ 1þ 7� 8:928
91:143

� �
þ 1þ 7� 9:928

91:143

� �
¼ 3:448

DAIð�OHÞ ¼ DAI6 ¼ 1þ 7� 13:571
91:143

¼ 2:042

� atom-type count ! count descriptors
� atom-type E-state counts ! electrotopological state indices
� atom-type E-state indices ! electrotopological state indices
� atom-type HE-state indices ! electrotopological state indices
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� atom-type interaction matrices ! weighted matrices (� weighted distance matrices)
� ATS descriptor ! autocorrelation descriptors (� Moreau–Broto autocorrelation)
� attractive steric effects ! minimal topological difference
� augmented adjacency matrix ! weighted matrices (� weighted adjacency matrices)
� Augmented Atom keys ! substructure descriptors
� Augmented Atoms ! substructure descriptors
� augmented connectivity ! eccentricity-based Madan indices
� augmented distance matrix ! weighted matrices (� weighted distance matrices)
� augmented eccentric connectivity index ! eccentricity-based Madan indices (� Table E1)
� augmented edge adjacency matrix ! edge adjacency matrix
� augmented matrices ! matrices of molecules
� augmented pair descriptors ! substructure descriptors
� augmented valence ! vertex degree
� augmented vertex degree ! weighted matrices (� weighted adjacency matrices)
� augmented vertex degree matrix ! weighted matrices (� weighted distance matrices)
� Austel branching index ! steric descriptors

& autocorrelation descriptors
! Molecular descriptors based on the autocorrelation function ACk, defined as

ACk ¼
ðb
a

f ðxÞ � f ðxþ kÞ � dx

where f (x) is any function of the variable x and k is the lag representing an interval of x, and a
and b define the total studied interval of the function. The function f(x) is usually a time-
dependent function such as a time-dependent electrical signal or a spatial-dependent function
such as the population density in space. Then, autocorrelation measures the strength of a
relationship between observations as a function of the time or space separation between them
[Moreau and Turpin, 1996].
The autocorrelation function ACk is the integration of the products of the function values

calculated at x and x þ k. This function expresses how numerical values of the function at
intervals equal to the lag are correlated.
Autocorrelation functions ACk can also be calculated for any ordered discrete sequence of n

values f (xi) by summing the products of the ith value and the (i þ k)th value as

ACk ¼ 1
ðn�kÞ �s2

�
Xn�k

i¼1

ð f ðxiÞ�mÞ � ð f ðxiþ kÞ�mÞ½ �

where k is the lag,s2 is the variance of the function values, and m is theirmean. The lag assumes
values between 1 and K, where the maximum value K can be n� 1; however, in several
applications, K is chosen equal to a small number (K < 8). A lag value of zero corresponds to the
sum of the square-centered values of the function.
Note that it is common practice inmany disciplines to use the term autocorrelation even if the

standardization by s2 is not applied; in this case, the correct term should be autocovariance.
Autocorrelation descriptors of chemical compounds are calculated by using various mole-

cular properties that can be represented at the atomic level or molecular surface level or else.
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A property of the autocorrelation function is that it does not change when the origin of the x
variable is shifted. In effect, autocorrelation descriptors are considered ! TRI descriptors,
meaning that they have translational and rotational invariance.
Based on the same principles as the autocorrelation descriptors, but calculated contempora-

rily on two different properties f(x) and g(x), cross-correlation descriptors are calculated to
measure the strength of relationships between the two considered properties. For any two
ordered sequences comprised of a number of discrete values, the cross-correlation is calculated
by summing the products of the ith value of the first sequence and the (i þ k)th value of the
second sequence as

CCk ¼ 1
ðn�kÞ �sf ðxÞ �sgðxÞ

�
Xn�k

i¼1

ð f ðxiÞ�mf xð ÞÞ � ðgðxiþ kÞ�mg xð ÞÞ
h i

where n is the lowest cardinality of the two sets. For the autocorrelation, cross-correlation is
usually calculated without the standardization by the two standard deviations sf(x) and sg(x); in
this case, the correct term should be cross-covariance.
The most common spatial autocorrelation molecular descriptors are obtained by taking the

molecule atoms as the set of discrete points in space and an atomic property as the function
evaluated at those points.
Commonweighting schemeswused todescribe atoms in themolecule are ! physico-chemical

properties such as atomic masses, ! van der Waals volumes, ! atomic electronegativities, !
atomic polarizabilities, covalent radius, and so on. Alternatively, the weighting scheme for atoms
can be based on ! local vertex invariants such as the topological ! vertex degrees, Kier–Hall !
intrinsic states or ! E-state indices, ! normalized distance complexity index, and related indices.
Most of these ! weighting schemes are implemented inDRAGONsoftware [DRAGON –Talete s.
r.l., 2007; Mauri, Consonni et al., 2006] allowing calculation of different types of autocorrelation
descriptors. A comparison ofQSARs based on autocorrelation descriptors derived fromdifferent
weighting schemes is reported in [Kabankin and Gabrielyan, 2005].
For spatial autocorrelation molecular descriptors calculated on a molecular graph, the lag k

coincides with the ! topological distance between any pair of vertices.
Autocorrelation descriptors can also be calculated from 3D spatial molecular geometry. In this

case, thedistributionofamolecularpropertycanbeevaluatedbyamathematical function f (x, y,z),
x, y, and z being the spatial coordinates, defined either for each point of molecular space or
molecular surface (i.e., a continuous property such as electronic density ormolecular interaction
energy) or only for points occupied by atoms (i.e., atomic properties) [Wagener, Sadowski et al.,
1995].
The plot of an ordered sequence of autocorrelation descriptors from lag 0 to lag K is called

autocorrelogram and is usually used to describe a chemical compound in ! similarity/diversity
analysis.
Maximum Auto-Cross-Correlation descriptors (or MACC descriptors) are autocorrelation

and cross-correlation descriptors calculated by taking into account only the maximum product
of molecular properties for each lag k:

MACCk ¼ maxiðf ðxiÞ � gðxiþ kÞÞ
This function was applied to derive ! maximal R indices and, with the name of MACC-2

transform, to calculate the ! GRIND descriptors.
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Moreover, a special case of autocorrelation descriptors is the Atom-Type AutoCorrelation
(ATAC), which is calculated by summing property values only of atoms of given types. The
simplest atom-type autocorrelation is given by

ATACkðu; vÞ ¼ 1
2
�
XA
i¼1

XA
j¼1

dijðu; vÞ � dðdij; kÞ

where u and v denote two atom types. dij(u,v) is a Kronecker delta function assuming a value
equal to 1 if the atoms i and j form a pair of types u and v or, equivalently, of types v and u; d(dij; k)
is a Kronecker delta function equal to 1 if the interatomic distance dij is equal to the lag k, and
zero otherwise.
This descriptor is defined for each pair of atom types and simply encodes the occurrence

numbers of the given atom type pair at different distance values. It can be normalized by using
two different procedures: thefirst one consists in dividing eachATACk value by the total number
of atompairs at distance k independently of their types; the second one consists in dividing each
ATACk value by a constant, which can be equal to the total number of atoms in the molecule or,
alternatively, to the total number of (u,v) atom type pairs in the molecule.
Atom types can be defined in different ways; they can be defined in terms of the simple

chemical elements or may account also for atom connectivity, hybridization states, and
pharmacophoric features. Atom-type autocorrelations can be viewed as a special case of the
! atom-type interaction matrices, from which other kinds of descriptors can also be derived.
Atom-type autocorrelations have been used to derive some ! substructure descriptors such as

! atom pairs, ! CATS descriptors, and related descriptors.
Examples of autocorrelation descriptors, which are derived from the molecular graph but

exploit 3D spatial information, are ! GETAWAY descriptors, ! PEST Autocorrelation
Descriptors and ! SWM signals. Other autocorrelation descriptors were derived from !
molecular shape field.
A collection of other auto- and cross-correlation descriptors is discussed in the following

sections.

. Moreau–Broto autocorrelation (� Autocorrelation of a Topological Structure, ATS)
This is the most known spatial autocorrelation defined on amolecular graphG as [Moreau and
Broto, 1980a, 1980b; Broto, Moreau et al., 1984a]

ATSk ¼ 1
2
�
XA
i¼1

XA
j¼1

wi �wj � dðdij; kÞ ¼ 1
2
� ðwT � kB �wÞ

where w is any atomic property, A is the number of atoms in a molecule, k is the lag, and dij is
the topological distance between ith and jth atoms; d(dij; k) is a Kronecker delta function equal
to 1 if dij¼ k, zero otherwise. kB is the kth order ! geodesic matrix, whose elements are equal to
1 only for vertices vi and vj at topological distance k, and zero otherwise;w is the A-dimensional
vector of atomic properties. The autocorrelation ATS0 defined for the path of length zero is
calculated as

ATS0 ¼
XA
i¼1

w2
i
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that is, the sum of the squares of the atomic properties. Typical atomic properties are atomic
masses, polarizabilities, charges, and electronegativities.
Moreau–Broto autocorrelations can be viewed as a special case of the ! interaction geodesic

matrices, from which other kinds of descriptors can also be derived.
It has to be noted that atomic properties w should be centered by subtracting the average

property value in the molecule to obtain proper autocorrelation values. Hollas demonstrated
that only if properties are centered, all autocorrelation descriptors are uncorrelated thus
becoming more suitable for subsequent statistical analysis [Hollas, 2002].
For each atomic property w, the set of the autocorrelation terms defined for all existing

topological distances in the graph is the ATS descriptor defined as

ATS0;ATS1;ATS2; . . . ;ATSDf gw
where D is the ! topological diameter, that is, the maximum distance in the graph. The plot of
the ATS descriptor is the corresponding autocorrelogram.
Average spatial autocorrelation descriptors are obtained by dividing each term by the

corresponding number of contributions, thus avoiding any dependence on molecular size:

ATSk ¼ 1
2Dk

�
XA
i¼1

XA
j¼1

wi �wj � dðdij; kÞ

where Dk is the sum of the Kronecker delta, that is, the total number of vertex pairs at distance
equal to k [Wagener, Sadowski et al., 1995].

Example A7

Moreau–Broto autocorrelation descriptors calculated from theH-depletedmolecular graph of
4-hydroxy-2-butanone.

O

O

1

2

3

4 5

6
ATS0 ¼ w2

1 þw2
2 þw2

3 þw2
4 þw2

5 þw2
6

ATS1 ¼ w1 �w2 þw2 �w3 þw3 �w4 þw4 �w5 þw2 �w6

ATS2 ¼ w1 �w3 þw1 �w6 þw2 �w4 þw3 �w5 þw3 �w6

ATS3 ¼ w1 �w4 þw2 �w5 þw4 �w6

wi¼mi atomic masses

ATS0 ¼ 122 þ 122 þ 122 þ 122 þ 162 þ 162 ¼ 1088 ATS0 ¼ 1088=6 ¼ 181:3
ATS1 ¼ 12 � 12þ 12 � 12þ 12 � 12þ 12 � 16þ 12 � 16 ¼ 816 ATS1 ¼ 816=5 ¼ 163:2
ATS2 ¼ 12 � 12þ 12 � 16þ 12 � 12þ 12 � 16þ 12 � 16 ¼ 864 ATS2 ¼ 864=5 ¼ 172:8
ATS3 ¼ 12 � 12þ 12 � 16þ 12 � 16 ¼ 528 ATS3 ¼ 528=3 ¼ 176:0:

TheATS descriptor is a graph invariant describing how the property considered is distributed
along the topological structure. Assuming an additive scheme, the ATS descriptor corresponds
to a decomposition of the square molecular property F in different atomic contributions:

F2 ¼
XA
i¼1

wi

 !2
¼
XA
i¼1

w2
i þ
X

i 6¼j
2 �wi �wj ¼ ATS0 þ 2 �

XD
k¼1

ATSk
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where ATS0 contains all atomic contributions to the square molecular property and ATSk the
interactions between each pair of atoms.

. 3D molecular autocorrelation
Autocorrelation descriptors calculated for 3D spatial molecular geometry are based on intera-
tomic distances collected in the ! geometry matrix G instead of topological distances and the
property function is still defined by the set of atomic properties.
The interatomic distance r is divided into elementary distance intervals of equal width (e.g.,

0.5 A


). Each distance interval is defined by a lower and upper value of interatomic distance rij. All

interatomic distances falling in the same interval are considered identical. For each distance
interval, the autocorrelation function ACk is obtained by summing all the products of the
property values of atoms i and jwhose interatomic distance rij fallswithin the considered interval
[ru, rv]k:

ACkðru; rvÞ ¼
X
i;j

wi �wj ðru � rij � rvÞ

& [Broto, Moreau et al., 1984c; Broto and Devillers, 1990; Zakarya, Belkhadir et al., 1993]

. Moran coefficient (Ik)
This is a general index of spatial autocorrelation that, if applied to a molecular graph, can be
defined as

Ik ¼

1
Dk

� PA
i¼1

PA
j¼1

ðwi��wÞ � ðwj��wÞ � dðdij; kÞ

1
A
� PA
i¼1

ðwi��wÞ2

where wi is any atomic property, �w is its average value on the molecule, A is the number of
atoms, k is the considered lag, dij is the topological distance between ith and jth atoms, and
d(dij; k) is the Kronecker delta equal to 1 if dij¼ k, zero otherwise.Dk is the number of vertex pairs
at distance equal to k [Moran, 1950].
Moran coefficient usually takes value in the interval [�1,þ 1]. Positive autocorrelation

corresponds to positive values of the coefficient whereas negative autocorrelation produces
negative values.

. Geary coefficient (ck)
This is a general index of spatial autocorrelation that, if applied to a molecular graph, can be
defined as

ck ¼

1
2Dk

� PA
i¼1

PA
j¼1

ðwi�wjÞ2 � dðdij; kÞ

1
ðA�1Þ �

PA
i¼1

ðwi��wÞ2

wherewi is any atomic property, �w is its average value on themolecule,A is the number of atoms,
k is the lag considered, dij is the topological distance between ith and jth atoms, and d(dij; k) is the
Kronecker delta equal to 1 if dij¼ k, zero otherwise. Dk is the number of vertex pairs at distance
equal to k [Geary, 1954].
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Geary coefficient is a distance-type function varying from zero to infinite. Strong autocorrela-
tion produces low values of this index; moreover, positive autocorrelation translates in values
between 0 and 1 whereas negative autocorrelation produces values larger than 1; therefore, the
reference �no correlation� is ck¼ 1.

. Auto-Cross-Covariance transforms (� ACC transforms)
These are autocovariances and cross-covariances calculated fromsequential datawith the aimof
transforming them into ! uniform-length descriptors suitable for QSAR modeling. ACC
transforms were originally proposed to describe peptide sequences [Wold, Jonsson et al.,
1993; Sj€ostr€om,R€annar et al., 1995; Andersson, Sj€ostr€om et al., 1998;Nystr€om,Andersson et al.,
2000]. To calculate ACC transforms, each amino acid position in the peptide sequence is defined
in terms of three orthogonal ! z-scores, derived from a ! Principal Component Analysis (PCA)
of 29 physico-chemical properties of the 20 coded amino acids.
Then, for each peptide sequence, auto- and cross-covariances with lags k¼ 1, 2, . . ., K, are

calculated as

ACCkð j; jÞ ¼
Xn�k

i¼1

zið jÞ � ziþ kð jÞ
n�k

ACCkð j;mÞ ¼
Xn�k

i¼1

zið jÞ � ziþ kðmÞ
n�k

Table A4 Some autocorrelation descriptors for the data set of phenethylamines (Appendix C – Set 2).

Mol. X Y ATS1 ATS2 ATS3 ATS4 I1 I2 I3 I4 c1 c2 c3 c4

1 H H 2.952 3.313 3.473 3.554 �0.006 �0.056 �0.139 �0.319 0.504 0.804 1.364 2.193
2 H F 3.032 3.422 3.567 3.598 �0.006 �0.055 �0.134 �0.322 0.512 0.782 1.299 2.198
3 H Cl 3.096 3.508 3.641 3.635 �0.006 �0.077 �0.177 �0.368 0.531 0.811 1.306 2.114
4 H Br 3.251 3.708 3.819 3.728 �0.005 �0.098 �0.203 �0.320 0.549 0.838 1.174 1.485
5 H I 3.392 3.884 3.977 3.818 �0.004 �0.090 �0.174 �0.223 0.542 0.828 1.053 1.042
6 H Me 3.003 3.383 3.533 3.582 �0.005 �0.045 �0.112 �0.290 0.503 0.768 1.280 2.176
7 F H 3.032 3.422 3.567 3.640 �0.006 �0.055 �0.134 �0.299 0.512 0.782 1.299 2.034
8 Cl H 3.096 3.508 3.641 3.710 �0.006 �0.077 �0.177 �0.366 0.531 0.811 1.306 2.008
9 Br H 3.251 3.708 3.819 3.876 �0.005 �0.098 �0.203 �0.374 0.549 0.838 1.174 1.645
10 I H 3.392 3.884 3.977 4.027 �0.004 �0.090 �0.174 �0.300 0.542 0.828 1.053 1.363
11 Me H 3.003 3.383 3.533 3.609 �0.005 �0.045 �0.112 �0.261 0.503 0.768 1.280 2.009
12 Cl F 3.165 3.598 3.828 3.748 �0.006 �0.073 �0.159 �0.365 0.539 0.793 1.208 2.025
13 Br F 3.310 3.783 4.081 3.909 �0.005 �0.089 �0.194 �0.364 0.554 0.816 1.235 1.655
14 Me F 3.079 3.485 3.663 3.651 �0.005 �0.045 �0.106 �0.266 0.511 0.752 1.168 2.025
15 Cl Cl 3.221 3.671 3.966 3.780 �0.007 �0.095 �0.159 �0.403 0.561 0.825 1.201 1.969
16 Br Cl 3.359 3.843 4.264 3.936 �0.006 �0.109 �0.141 �0.398 0.574 0.845 1.180 1.655
17 Me Cl 3.140 3.566 3.763 3.686 �0.006 �0.063 �0.157 �0.302 0.529 0.778 1.210 1.942
18 Cl Br 3.359 3.843 4.264 3.861 �0.006 �0.109 �0.141 �0.333 0.574 0.845 1.180 1.417
19 Br Br 3.480 3.991 4.636 4.006 �0.005 �0.130 �0.029 �0.372 0.594 0.875 1.069 1.386
20 Me Br 3.289 3.756 3.993 3.775 �0.005 �0.080 �0.214 �0.257 0.545 0.802 1.257 1.361
21 Me Me 3.052 3.449 3.617 3.636 �0.005 �0.037 �0.083 �0.241 0.503 0.740 1.149 2.008
22 Br Me 3.289 3.756 3.993 3.897 �0.005 �0.080 �0.214 �0.342 0.545 0.802 1.257 1.633

ATS, Moreau–Broto autocorrelations; I, Moran coefficient; c, Geary coefficient. Calculations are based on the
carbon-scaled atomic mass as the weighting scheme for atoms (see Table A3).
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where j andm indicate two different z-scores, n is the number of amino acids in the sequence,
and index i refers to amino acid position in the sequence. z-score values, being derived from
PCA, are used directly because they are already mean centered.
ACC transformswere also used to encode information contained into ! CoMFA fields (steric

and electrostatic fields) using as the lag the distance between grid points along each coordinate
axis, along the diagonal, or along any intermediate direction. The cross-correlation terms were
calculated by the products of the ! interaction energy values for steric and electrostatic fields in
grid points at distances equal to the lag. Different kinds of interactions, namely, positive–
positive, negative–negative, and positive–negative, were kept separated, thus resulting in 10
ACC terms for each lag. The major drawback of these ACC transforms is that their values
depend on molecule orientation along the axes [Clementi, Cruciani et al., 1993b; van de
Waterbeemd, Clementi et al., 1993].

. TMACC descriptors (� Topological MAximum Cross-Correlation descriptors)
These are cross-correlation descriptors [Melville and Hirts, 2007] calculated by taking into
account the topological distance dij between atoms i and j and four basic atomic properties:
(1) Gasteiger–Marsili partial charges, accounting for electrostatic properties [Gasteiger and
Marsili, 1980]; (2) Wildman–Crippen molar refractivity parameters, accounting for steric
properties and polarizabilities [Wildman and Crippen, 1999]; (3) Wildman–Crippen logP
parameters, accounting for hydrophobicity [Wildman and Crippen, 1999]; and (4) log S
parameters, accounting for solubility and solvation phenomena [Hou, Xia et al., 2004].
The general formula for the calculation of TMACC descriptors is

TMACC P;P0; kð Þ ¼ 1
Dk

�
XA
i¼1

XA
j¼1

Pi �Pj
0 � dðdij; kÞ

where P and P0 are two atomic properties, A is the number of atoms in the molecule, k is the
lag, dij is the topological distance between ith and jth atoms, Dk is the number of atom pairs
located at topological distance k, and d(dij; k) is the Kronecker delta equal to 1 if dij¼ k, zero
otherwise. If only one property is considered, that is, P¼P0, autocorrelations are obtained.
Moreover, because all the selected properties, except for molar refractivity, contain both

positive andnegative values, these are treated as different properties and cross-correlation terms
are also calculated between positive and negative values of each property. Therefore, 7
autocorrelation terms and 12 cross-correlation terms constitute the final TMACC descriptor
vector.

. DZK descriptors
These are a modification of the Moreau–Broto autocorrelation descriptors defined by using the
topological distance in conjunction with the properties of the atoms [Zakarya, Nohair et al.,
2000]:

DZK
w ¼

XK
k¼1

k �
XA�1

i¼1

XA
j¼iþ 1

ðwi �wjÞa � dðdij; kÞ
2
4

3
5
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wherew is the selected atomic property,K themaximumconsidered topological distance, anda
an exponent taking values 1 or 0.5. In particular, for a¼ 1, the following expression holds:

DZK
w ¼

XK
k¼1

k �ATSkðwÞ

where ATSk is the Moreau–Broto autocorrelation relative to lag k.
The use of atomic properties such as atom connectivity, electronegativity, van der Waals

volume, and molar refraction was suggested.
An extended form has been also proposed defined as

eDZK
w ¼

XA
i¼1

wi þ
XK
k¼1

k
XA�1

i¼1

XA
j¼iþ 1

ðwi �wjÞa � dðdij; kÞ
2
4

3
5 ¼

XA
i¼1

wi þDZK
w

where the sum of the atomic properties is added to the autocorrelation term.

Example A8

DZk autocorrelation descriptors from the H-depleted molecular graph of 4-hydroxy-2-
butanone.

O

O

1

2

3

4
5

6

DZ1
m¼1 �ATS1¼816

DZ2
m¼1 �ATS1þ2 �ATS2¼816þ2 �864¼2544

DZ3
m¼1 �ATS1þ2 �ATS2þ3 �ATS3¼816þ2 �864þ3 �528¼4128

wi¼mi atomic masses a¼ 1

. Molecular Electronegativity Edge Vector (VMEE)
This is a modification of the Moreau–Broto autocorrelation defined by using reciprocal
topological distances in conjunction with the Pauling atom electronegativities [Li, Fu et al.,
2001]. The autocorrelation value for each kth lag is calculated as

VMEEk � vk ¼
XA�1

i¼1

XA
j¼iþ 1

cPAi � cPAj
dij

� d dij; k
� �

; k ¼ 1; 2; 3; . . .

where cPA is the atomic electronegativity and dij is the topological distance between ith and jth
atoms. This autocorrelation vector was used in modeling biological activities of dipeptides.

. 3D topological distance-based descriptors (Sk, Xk , Ik)
These are autocorrelation descriptors contemporarily based on topological and geometric
distances, also called 3D TDB descriptors [Klein, Kaiser et al., 2004].
For each kth lag, steric descriptors, namely, TDB-steric descriptors S, are defined as

Sk ¼ 1
Dk

�
XA�1

i¼1

XA
j¼iþ1

ðRcov
i � rij �Rcov

j Þ � dðdij; kÞ
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where Dk is the number of atom pairs located at a topological distance dij equal to k, rij
is the geometric distance between ith and jth atoms, Rcov is the covalent radius of the atoms
and d is the Kronecker delta, which is equal to 1 when dij is equal to k and zero otherwise.
In a similar way, electronic descriptors, namely, TDB-electronic descriptors X, are defined
as

Xk ¼ 1
Dk

�
XA�1

i¼1

XA
j¼iþ 1

ðci � rij � cjÞ � dðdij; kÞ

where c is the sigma orbital electronegativity.
Together with steric and electronic descriptors, atom-type autocorrelation descriptors,

namely, TDB-atom type descriptors I, are defined as

Ikðu; uÞ � ATACkðu; uÞ ¼ 1
2
�
XA
i¼1

XA
j¼1

dijðu; uÞ � dðdij; kÞ

where u denotes an atom type and dij(u, u) is a Kronecker delta equal to 1 if both atoms i and j are
of type u. These atom-type autocorrelations are calculated only for pairs of atoms of the same
type. Moreover, unlike the previous two TDB descriptors (Sk and Xk), this autocorrelation
descriptor does not account for 3D information.

. Atomic Environment Autocorrelations (AEA)
Aimed at characterizing the local environment of atoms, these descriptors are calculated by
applying the autocorrelation function to encode spatial information relative to each single ith
atom in a molecule as [Nohair, Zakarya et al., 2002; Nohair and Zakarya, 2003]

AEAik ¼
XA
j¼1

ðwi �wjÞa � dðdij; kÞ

where w is any atomic property, a an adjustable parameter, and d is the Kronecker d function,
which is equal to 1 when the topological distance dij between focused ith atom and any jth
neighbor atom is equal to k. Atom connectivity, atomic van der Waals volume, and surface are
among the suggested properties.Moreover, to take properties of the atoms along the i–j path of a
topological distance dij equal to k also into account, a modified autocorrelation function was
proposed as

AEA0
ik ¼

XA
j¼1

wi �
X

m
wm

	 

ij
�wj

� �1= kþ 1ð Þ
� dðdij; kÞ

where the exponent is the reciprocal of the number of atoms along the shortest path connecting
vertices i and j;wi andwj are properties of the two terminal vertices of the path, whereaswm is the
property of a vertex along the path.

. Autocorrelation of Molecular Surface Properties (AMSP)
This is a general approach for the description of property measures on themolecular surface by
using uniform-length descriptors that consist of the same number of elements regardless of the
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size of themolecule [Gasteiger, 2003a; Sadowski,Wagener et al., 1995;Wagener, Sadowski et al.,
1995].
First, a number of points are randomly distributed on the molecular surface with a user-

defined density and in an orderly manner to ensure a continuous surface. Then, the Surface
Autocorrelation Vector (SAV) is derived by calculating for each lag k the sum of the products of
the property values at two surface points located at a distance falling into the kth distance
interval. This value is then normalized by the number Dk of the geometrical distances rij in the
interval:

AðkÞ ¼ 1
Dk

�
XN�1

i¼1

XN
j¼iþ1

wi �wj � dðrij; kÞ

where N is the number of surface points and k represents a distance interval defined by a lower
and upper bound.
It was demonstrated that to obtain the best surface autocorrelation vectors for QSAR

modeling, the van der Waals surface is better than other molecular surfaces. Then, surface
should have no fewer than five grid points per A


 2, and a distance interval not more than 1A



should be used in the distance binning scheme (Figure A1).

Figure A1 Surface autocorrelation vector of estradiol calculated by using MEP as the surface property.
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& [Chastrette, Zakarya et al., 1986; Devillers, Chambon et al., 1986; Grassy and Lahana, 1993;
Zakarya, Tiyal et al., 1993; Clementi, Cruciani et al., 1993b; van de Waterbeemd, Clementi
et al., 1993; Blin, Federici et al., 1995; Sadowski, Wagener et al., 1995; Bauknecht, Zell et al.,
1996; Patterson, Cramer III et al., 1996; Huang, Song et al., 1997; Anzali, Gasteiger et al.,
1998a; Legendre and Legendre, 1998; Devillers, 2000; Gancia, Bravi et al., 2000; Gasteiger,
2003a; Moon, Song et al., 2003; Cruciani, Baroni et al., 2004]

� Autocorrelation of a Topological Structure �Moreau–Broto autocorrelation ! autocorrela-
tion descriptors

� Autocorrelation of Molecular Surface Properties ! autocorrelation descriptors
� autocorrelogram ! autocorrelation descriptors
� Auto-Cross-Covariance transforms ! autocorrelation descriptors
� autoignition temperature ! physico-chemical properties (� flash point)
� autometricity class ! topological information indices (� autometricity index)
� autometricity index ! topological information indices
� automorphism group ! graph
� Avalon fingerprints ! substructure descriptors (� fingerprints)
� average atom charge density ! quantum-chemical descriptors
� average atom eccentricity ! distance matrix
� average binding energy ! scoring functions
� average bond charge density ! quantum-chemical descriptors
� average cyclicity index ! detour matrix
� average distance between pairs of bases ! biodescriptors (� DNA sequences)
� average distance/distance degree ! molecular geometry
� average distance sum connectivity � Balaban distance connectivity index
� average electrophilic superdelocalizability ! quantum-chemical descriptors (� electro-

philic superdelocalizability)
� average Fukui function ! quantum-chemical descriptors (� Fukui functions)
� average geometric distance degree ! molecular geometry
� average graph distance degree ! distance matrix
� average information content based on center ! centric indices
� average local ionization energy ! quantum-chemical descriptors (� electron density)
� average molecular weight ! physico-chemical properties (� molecular weight)
� average nucleophilic superdelocalizability ! quantum-chemical descriptors (� nucleo-

philic superdelocalizability)

& average quasivalence number (AQVN)
It is amolecular descriptor calculated as average of the atomic numbers Z of themolecule atoms
as [Veljkovi�c, Mouscadet et al., 2007]

Z
� � AQVN ¼

PA
i¼1 Zi

A

where A is the number of atoms. It is used in the definition of the electron-ion interaction
potential (EIIP), proposed to estimate long-range properties of biological molecules [Veljkovi�c,
1980] and defined as
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EIIP ¼ 0:25 �Z� � sinð1:04 � p �Z�Þ
2p

where Z� is the average quasivalence number. Moreover, the ratio EIIP/AQVNwas proposed as
a ! drug-like index for compounds.

� average radical superdelocalizability ! quantum-chemical descriptors (� radical
superdelocalizability)

� average row sum of the influence/distance matrix ! GETAWAY descriptors
� average span ! size descriptors (� span)
� average vertex distance degree ! Balaban distance connectivity index
� average writhe ! polymer descriptors
� A weighting scheme ! weighting schemes
� AH weighting scheme ! weighted matrices (� weighted distance matrices)
� AZV descriptors ! MPR approach
� azzoo similarity coefficient ! similarity/diversity
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