Contents

Preface XI

List of Contributors XIII

1 Asymmetric Transformations by Coupled Enzyme and Metal Catalysis: Dynamic Kinetic Resolution 1

۷

Mahn-Joo Kim, Jaiwook Park, and Yoon Kyung Choi

- 1.1 Introduction 1
- 1.2 Some Fundamentals for DKR 2
- 1.2.1 Enzymes for Kinetic Resolution 2
- 1.2.2 Metal Catalysts for Racemization 3
- 1.2.3 Enzyme-Metal Combination for DKR 5
- 1.2.4 (R)- and (S)-Selective DKR 5
- 1.3 Examples of DKR 6
- 1.3.1 First DKR of Secondary Alcohols 6
- 1.3.2 DKR of Secondary Alcohols with Racemization Catalyst 1 6
- 1.3.3 DKR of Secondary Alcohols with Racemization Catalyst 2 8
- 1.3.4 DKR of Secondary Alcohols with Racemization Catalyst 3 9
- 1.3.5 DKR of Secondary Alcohols with Racemization Catalyst 4 10
- 1.3.6 DKR of Secondary Alcohols with Racemization Catalyst 5 10
- 1.3.7 DKR of Secondary Alcohols with Racemization Catalyst 6 11
- 1.3.8 DKR of Secondary Alcohols with Racemization Catalyst 7 12
- 1.3.9 DKR of Secondary Alcohols with Air-Stable Racemization Catalysts 13
- 1.3.10 DKR of Secondary Alcohols with Racemization Catalyst 10 14
- 1.3.11 DKR of Secondary Alcohols with Aluminum Catalysts 14
- 1.3.12 DKR of Secondary Alcohols with Vanadium Catalysts 15
- 1.4 Conclusions 16 References 17

VI Contents

2	Chemoenzymatic Routes to Enantiomerically Pure Amino Acids and Amines 21 Nicholas J. Turner					
2.1	Introduction 21					
2.2	Amino Acids 23					
2.3	Amines 33					
	References 38					
3	Oxidizing Enzymes in Multi-Step Biotransformation Processes 41					
2.1	Stephanie G. Burton and Marilize le Roes-Hill					
3.1	Oxidizing Enzymes in Biocatalysis 41					
3.2	Classes of Oxidizing Enzymes 41					
3.3	Mechanisms of Biological Oxidation and Implications for Multi-Enzyme					
2 4	Biocatalysis 44 Multi Stop Biotropoformation Processor Involving Ovidation 45					
3.4 3.5	Multi-Step Biotransformation Processes Involving Oxidation 45 Design and Development of New Multi-Enzyme Oxidizing Processes 48					
3.5.1	Design and Development of New Multi-Enzyme Oxidizing Processes 48 Coupling Redox Enzymes 48					
3.5.2	Cofactor Recycle in Multi-Step Oxidizing Biocatalytic Systems 51					
3.6	Examples of Multi-Enzyme Biotransformation Processes Involving					
5.0	Oxidizing Enzymes 52					
3.6.1	Coupling of Oxidases with Non-Redox Enzymes 53					
3.6.2	Biocatalytic Systems Involving Coupled Oxidizing Enzymes 53					
3.7	Multi-Enzyme Systems in Whole-Cell Biotransformations and Expression					
	of Redox Systems in Recombinant Hosts 55					
3.8	Other Applications of Multi-Enzyme Oxidizing Systems 56					
3.9	Conclusions 58					
	References 58					
4	Dihydroxyacetone Phosphate-Dependent Aldolases in the Core					
	of Multi-Step Processes 61					
4.1	Laura Iturrate and Eduardo García-Junceda					
4.1 4.2	Introduction 61					
4.2 4.2.1	DHAP-Dependent Aldolases 63					
4.2.1	Problem of DHAP Dependence 63 DHAP-Dependent Aldolases in the Core of Aza Sugar Synthesis 68					
4.2.2	· · · · ·					
	Combined Use of Aldolases and Isomerases for the Synthesis of Natural and Unnatural Sugars 71					
4.2.4	DHAP-Dependent Aldolases in the Synthesis of Natural Products 73					
4.3	Fructose-6-Phosphate Aldolase: An Alternative to DHAP-Dependent Aldolases? 76					
4.4	Conclusions 78					
	References 79					

- 5 Multi-Enzyme Systems for the Synthesis of Glycoconjugates 83 Birgit Sauerzapfe and Lothar Elling
- 5.1 Introduction 83
- 5.2 In Vitro and In Vivo Multi-Enzyme Systems 85
- 5.3 Combinatorial Biocatalysis 86
- 5.3.1 Synthesis and In Situ Regeneration of Nucleotide Sugars 88
- 5.3.2 Synthesis of Oligosaccharides, Glycopeptides and Glycolipids Oligosaccharides 94
- 5.4 Combinatorial Biosynthesis 97
- 5.4.1 Synthesis of Oligosaccharides with Metabolically Engineered Cells 98
- 5.5 Conclusions 102 References 102
- 6 Enzyme-Catalyzed Cascade Reactions 109
 - Roger A. Sheldon
- 6.1 Introduction 109
- 6.2 Enzyme Immobilization 110
- 6.3 Reaction Types: General Considerations 111
- 6.4 Chiral Alcohols 112
- 6.5 Chiral Amines 114
- 6.6 Chiral Carboxylic Acid Derivatives 121
- 6.7 C–C Bond Formation: Aldolases 127
- 6.8 Oxidations with O_2 and H_2O_2 130
- 6.9 Conclusions and Prospects 131 References 132

7 Multi-modular Synthases as Tools of the Synthetic Chemist 137

Michael D. Burkart and Junhua Tao

- 7.1 Introduction 137
- 7.2 Excised Domains for Chemical Transformations 139
- 7.2.1 Function of Individual Domains and Domain Autonomy 139
- 7.2.2 Heterocyclization and Aromatization 139
- 7.2.3 Macrocyclization 144
- 7.2.4 Halogenation 147
- 7.2.5 Glycosylation 150
- 7.2.6 Methyltransferases 151
- 7.2.7 Oxidation 153
- 7.3 Conclusions 155 References 156

VIII Contents

8	Modifying the Glycosylation	Pattern	in	Actinomycetes I	by
	Combinatorial Biosynthesis	159			
	José A. Salas and Carmen Me	éndez			

- 8.1 Bioactive Natural Products in Actinomycetes 159
- 8.2 Deoxy Sugar Biosynthesis and Gene Clusters 161
- 8.3 Characterization of Sugar Biosynthesis Enzymes 161
- 8.4 Strategies for the Generation of Novel Glycosylated Derivatives 165
- 8.4.1 Gene Inactivation 165
- 8.4.2 Gene Expression 166
- 8.4.3 Combining Gene Inactivation and Gene Expression 166
- 8.4.4 Endowing a Host with the Capability of Synthesizing Different Sugars 166
- 8.5 Generation of Glycosylated Derivatives of Bioactive Compounds 166
- 8.5.1 Macrolides 167
- 8.5.2 Aureolic Acid Group 175
- 8.5.3 Angucyclines 181
- 8.5.4 Anthracyclines 186
- 8.5.5 Indolocarbazoles 191
- 8.5.6 Aminocoumarins 193 References 194

9 Microbial Production of DNA Building Blocks 199

Jun Ogawa, Nobuyuki Horinouchi, and Sakayu Shimizu

- 9.1 Introduction 199
- 9.2 Screening of Acetaldehyde-Tolerant Deoxyriboaldolase and Its Application for DR5P Synthesis 200
- 9.3 Construction of Deoxyriboaldolase-Overexpressing *E. coli* and Metabolic Analysis of the *E. coli* Transformants for DR5P Production from Glucose and Acetaldehyde 201
- 9.4 Efficient Production of DR5P from Glucose and Acetaldehyde by Coupling of the Alcoholic Fermentation System of Baker's Yeast and Deoxyriboaldolase-Expressing *E. coli* 203
- 9.5 Biochemical Retrosynthesis of 2'-Deoxyribonucleosides from Glucose Acetaldehyde and a Nucleobase: Three-Step Multi-Enzyme-Catalyzed Synthesis 204
- 9.6 One-Pot Multi-Step Enzymatic Synthesis of 2'-Deoxyribonucleoside from Glucose, Acetaldehyde and a Nucleobase 206
- 9.7 Improvement of the One-Pot Multi-Step Enzymatic Process for Practical Production of 2'-Deoxyribonucleoside from Glucose, Acetaldehyde and a Nucleobase 207
- 9.8 Conclusions 208 References 210

- 10 Combination of Biocatalysis and Chemical Catalysis for the Preparation of Pharmaceuticals Through Multi-Step Syntheses 213 Vicente Gotor-Fernández, Rosario Brieva, and Vicente Gotor
- 10.1 Introduction: Biocatalysis and Chemical Catalysis 213
- 10.2 Pharmaceuticals with Hydrolases 214
- 10.2.1 Enzymatic Hydrolysis 214
- 10.2.2 Enzymatic Transesterification 219
- 10.2.3 Enzymatic Aminolysis 222
- 10.3 Pharmaceuticals with Oxidoreductases 226
- 10.4 Pharmaceuticals with Lyases 227
- 10.5 Conclusions 230 References 231

Index 235