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1.1
Introduction

Expression of eukaryotic protein coding genes starts with transcription by RNA
polymerase II in the nucleus (Figure 1.1). Transcription can be mechanistically
divided into different phases, namely, transcriptional initiation, elongation and
termination, and produces messenger RNAs (mRNAs). Following transcriptional
initiation, nascent mRNA of about 20–24 nucleotides long associates with the
cap-binding complex (CBC) at its 5´-end via the formation of the cap structure
by capping enzymes. As mRNA synthesis progresses during transcriptional elon-
gation, RNA polymerase II mediates the addition of many mRNA binding
proteins that aid in preventing DNA:RNA hybrid formation and facilitating the
3´-end processing, splicing, surveillance, and export of mRNA to the cytoplasm
for translation into proteins (Figure 1.1). All these steps are highly coordinated
and precisely regulated. In this chapter, we provide broad overviews of the differ-
ent steps of eukaryotic gene expression by RNA polymerase II.

1.2
Transcriptional Initiation of RNA Polymerase II Genes

Transcriptional initiation of RNA polymerase II genes typically involves an acti-
vator that binds to a specific sequence (known as upstream activating sequence
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or UAS) in the gene promoter via its DNA binding domain. Subsequently, the
activation domain (AD) of the activator interacts with one or more transcription
factors to facilitate the assembly of general transcription factors (GTFs) such as
TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II, resulting in
the formation of preinitiation complex (PIC) for transcriptional initiation [1,2].

Figure 1.1 Schematic diagrams of different steps of eukaryotic gene expression by RNA poly-
merase II. PIC, preinitiation complex; and RNA pol II, RNA polymerase II.
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The ADs are generally acidic in nature (e.g., Gal4, Gcn4, VP16, and p53). How-
ever, other ADs such as glutamine-rich and proline-rich also exist in stimulation
of transcriptional initiation.
A wealth of research in yeast has delineated two broad mechanisms of tran-

scriptional initiation, namely, SAGA (Spt-Ada-Gnc5-Acetyltransferase)-depen-
dent and TFIID (transcription factor IID)-dependent transcriptional initiation.
SAGA is a large multisubunit protein complex, and is highly conserved among
eukaryotes [2]. In yeast, SAGA comprises of 14 nonessential (Ada1, Ada2, Ada3,
Gcn5, Spt3, Spt7, Spt8, Spt20, Sgf11, Sgf29, Sgf73, Ubp8, Sus1, and Chd1) and 6
essential (ATM/PI-3-kinase-related protein Tra1 and a subset of TBP-associated
factors or TAFs such as TAF5, TAF6, TAF9, TAF10, and TAF12) subunits [2–4].
The Gcn5 subunit of SAGA has the histone acetyltransferase (HAT) activity,
while the Ubp8 subunit possesses histone deubiquitylation or ubiquitin protease
activity [2–4]. The Ada1, Spt7, and Spt20 subunits maintain overall structural
integrity of SAGA [2,5,6]. The Tra1 subunit of SAGA interacts with activator,
and subsequently, facilitates the formation of PIC for transcriptional initia-
tion [2,7]. Biochemical and genetic experiments indicate that the Spt3 and Spt8
subunits of SAGA interact with TBP, and stimulate the PIC formation [2,6,8,9].
In addition to recruiting the PIC components, SAGA modulates chromatin
structure through its HAT activity to regulate transcriptional initiation. SAGA
acetylates nucleosomal histone H3 (K9, K14, K18, and K23 (K, lysine)) resi-
dues [10,11], promotes the formation of TFIIA–TBP–DNA complex, and hence
transcriptional initiation. However, SAGA-mediated acetylation may also reduce
TBP recruitment at certain genes (e.g., ARG1), thus adding to the complexity of
gene regulation [12]. Further, SAGA regulates transcription through the histone
H2B deubiquitylation activity of its Ubp8 subunit [13–15]. Ubp8 modulates the
level of ubiquitylated-histone H2BK123 that is correlated with histone H3K4
methylation, and hence transcription activity of the SAGA-dependent genes [16].
SAGA plays similar functions in Drosophila and humans [2–4].
SAGA regulates transcription of about 10% genes in yeast [2]. However, tran-

scription of ∼90% genes in yeast is regulated by TFIID, but not SAGA [2]. TFIID
is a large multisubunit protein complex that is composed of TBP and a set of
TAFs. TAFs are evolutionarily conserved and ubiquitously expressed proteins
with the exception of some tissue-specific TAFs in mammals. TAFs have a con-
served structural motif, known as histone-fold that is found in the core histones.
The histone folds of TAFs mediate subunit interactions within TFIID, and thus,
act as building blocks of the TFIID complex [17,18]. Further, TAFs interact
directly with activator, and facilitates the recruitment of TBP to the core pro-
moter to enhance the PIC formation for transcriptional initiation [2,19–23].
Both the UAS and core promoter contribute to the TFIID dependency of a

gene for transcriptional initiation. Sequence swapping experiments have revealed
that the replacement of the UAS of a TFIID-dependent promoter with the UAS
of a SAGA-regulated promoter impairs the recruitment of TFIID to the core
promoter [2,22]. Consistently, fusion of the UAS of the TFIID-dependent pro-
moter with the core promoter of a SAGA-regulated (or TFIID-independent)
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promoter leads to the recruitment of TFIID to the TFIID-independent core pro-
moter [2,22]. These results highlight the importance of UAS in determining the
TFIID dependency of a gene, hence indicating the role of the UAS-bound activa-
tor in targeting TAFs to the core promoter. Consistently, certain TAFs of TFIID
have been shown to interact with activator [19,20]. However, the core promoter
may also contribute to this TFIID dependency [2]. It is proposed that a TATA-
like element in the core promoter may participate in TFIID binding for tran-
scriptional initiation [24]. TAFs have also been shown to interact with the initia-
tor or downstream promoter element (DPE) in Drosophila and humans, thus
supporting the role of the core promoter in TFIID dependency [25]. An addi-
tional layer of regulation by the core promoter is provided by histone H3K4
methylation [26]. TFIID interacts with histone H3K4 methylation at the pro-
moter. Such interaction is mediated via the recognition of trimethylated-K4 of
histone H3 by the plant homeodomain of TAF3 (absent in yeast, but present in
higher eukaryotes) of TFIID [2]. Consistently, the loss of histone H3K4 methyla-
tion leads to decreased level of TFIID binding to the promoter [26]. Further,
there is a cross talk between modifications where histone H3 Arginine 2 methyl-
ation inhibits the interaction of TFIID with histone H3K4 methylation, while
acetylation of histone H3K9/14 promotes it [2,27]. Thus, there is a combination
of interrelated regulatory mechanisms mediated by the initiation proteins, pro-
moter structure, and chromatin structure/covalent modifications that contribute
to the precise control of transcriptional initiation at the TFIID-dependent genes.
Both the TFIID- and SAGA-dependent transcriptional initiations are addition-

ally modulated by the 26 S proteasome complex that is involved in targeted pro-
tein degradation via ubiquitylation [1,2,28–30]. The 26 S proteasome complex
consists of the 19 S RP (regulatory particle) and 20 S CP (core particle). The 20 S
CP is involved in proteolytic degradation, while the 19 S RP provides the speci-
ficity for ubiquitylated-proteins and ATP-dependence [1]. The 20 S CP is com-
posed of two α-rings and two β-rings that are stacked in the order of α β β α
forming the cylinder-like structure. The 19 S RP has at least 17 different proteins
including six ATPases (Rpt1–Rpt6). Six AAA-ATPases (Rpt1–Rpt6) and three
non-ATPase proteins (Rpn1, Rpn2 and Rpn10) form the base of the 19 S RP,
while the lid of the 19 S RP consists of eight non-ATPase proteins (Rpn3, Rpn5–
Rpn9, Rpn11, and Rpn12) [1]. Intriguingly, the 19 S subcomplex of the 26 S pro-
teasome has been shown to promote the PIC formation at both the TFIID- and
SAGA-dependent promoters independently of the 20 S CP [28–30]. At the
TFIID-dependent ribosomal protein genes, the 19 S proteasome subcomplex
enhances the targeting of NuA4-HAT (that acetylates histone H4) coactivator that
facilitates TFIID recruitment to the promoter for transcriptional initiation [29]. At
the SAGA-dependent GAL genes, the 19S proteasome subcomplex promotes the
targeting of SAGA to the activator [28,30]. SAGA, in turn, facilitates the PIC for-
mation at the core promoter for transcriptional initiation [2,31]. Thus, the 19 S
proteasome subcomplex positively regulates transcriptional initiation of both
SAGA- and TFIID-dependent genes, independently of the proteolytic function of
the proteasome. Such function of the 19S proteasome subcomplex in stimulation
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of transcriptional initiation is mediated via its ATPase activity [2,28–30]. In addi-
tion, the proteolytic function of the proteasome has also been shown to regulate
transcriptional initiation of certain genes by controlling activator/coactivator/
corepressor abundance, localization, or destruction [1,2].
Overall, we have described above two distinct mechanisms of eukaryotic tran-

scriptional initiation by SAGA and TFIID that are dictated by the target specific-
ity of the activator. These two distinct mechanisms are further differentially
regulated by the mediator complex [2,21]. Mediator is a large multiprotein com-
plex, and is composed of three modules [32,33]. These modules are known as
Srb4 (Srb2, Srb4, Srb5, Srb6, Rox3, Med8, Med11, and Med6), Gal11/Sin4
(Gal11, Rgr1, Sin4, Pgd1, and Med2), and Med9/Med10 modules (Med1, Med4,
Med7, Srb7, Med9, and Med10). The Srb4 module interacts with RNA polymer-
ase II. In case of SAGA-dependent transcriptional initiation, mediator is required
for TBP recruitment at the core promoter, while it is dispensable for TBP
recruitment at the TFIID-dependent promoter [2,7,21]. Likewise, another GTF,
namely TFIIB, is differentially required for TBP recruitment to the core promot-
ers of SAGA- and TFIID-dependent genes [2,7,21]. TFIIB facilitates TBP recruit-
ment to the SAGA-dependent promoter, while it is dispensable for recruitment
of TBP to the TFIID-dependent promoter. Even though mediator and TFIIB are
dispensable for TBP recruitment at the TFIID-dependent promoter, they are
required for transcriptional initiation of the TFIID-dependent genes, subsequent
to TBP recruitment [2,21]. These results imply the complex regulatory mecha-
nisms of transcriptional initiation by SAGA, TFIID, and other GTFs. In addition,
transcriptional initiation is further influenced by chromatin remodeling factors
and environmental and intracellular signaling events [1,2,34–39].

1.3
Transcriptional Elongation of RNA Polymerase II Genes

Following transcriptional initiation, RNA polymerase II transitions to elongation.
This transition consists of a series of steps, and is referred to as promoter clear-
ance, where RNA polymerase II establishes stable contact with nascent RNA and
weakens its interaction with GTFs. The first step in promoter clearance is the
formation of an open complex structure where TFIIH unwinds the double-
stranded DNA upstream of the TSS (transcription start site) via its DNA helicase
activity [40,41]. This is followed by the synthesis of the first RNA bond, utilizing
ribonucleotide triphosphate. There are a few cycles of abortive initiation, where
the length of nascent RNA transcript varies from two to four nucleo-
tides [40,42,43]. Studies on TATA-box-containing promoters have shown that
the upstream edge of the open bubble complex remain fixed with respect to the
TATA box and extends downstream of the TSS as the nascent transcript prog-
resses till the bubble collapses and TFIIH is no longer required for keeping the
strands of the bubble unannealed [40,42,44]. The nascent transcript becomes
about 9–10 nucleotides long when the bubble collapses [40]. After the addition
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of few more nucleotides, TFIIB loses contacts with RNA polymerase II [40,45].
There may be some backtracking of RNA polymerase II to an upstream location
till the position +23 (relative to TSS) where the mRNA transcript becomes sta-
ble enough and the process of promoter clearance gets completed [40,46–48].
A key event in the promoter clearance is the phosphorylation of RNA poly-

merase II. RNA polymerase II is composed of 12 subunits, namely Rpb1-12.
Rpb1 is the largest subunit of RNA polymerase II, and has a characteristic
C-terminal domain (CTD). The CTD consists of multiple repeats of a conserved
heptamer sequence, YSPTSPS, and is essential for cellular viability [49–51]. The
serine (S) residues at positions 2, 5, and 7 are particularly important. These resi-
dues are phosphorylated and associated with different transcriptional states.
Transcriptional initiating form of RNA polymerase II is not phosphorylated.
During transition to elongation, RNA polymerase II is phosphorylated by the
Kin28/Cdk7 subunit of TFIIH at S-5 [52,53]. Such phosphorylation does not
only promote promoter clearance, but also acts as the recruitment platform for
mRNA processing and histone modification factors. The level of S-5 phosphoryl-
ation is high close to the 5´-end of the coding region of active gene, and starts
to drop as RNA polymerase II progresses more into elongation or toward the
3´-end of the coding sequence [52,53]. There is a concomitant increase in the
S-2 phosphorylation as RNA polymerase II progresses through the coding
region, which, in turn, modulates transcriptional elongation [52,53].
RNA polymerase II pauses at the promoter proximal regions in Drosophila

and mammals [54,55]. Negative elongation factor (NELF) and DRB (5,6-
dichloro-1-β-D ribofuranosylbenzimidazole) sensitivity-inducing factor (DSIF)
play important roles in the pausing of RNA polymerase II [54,55]. DSIF alone
does not pause RNA polymerase II [54,55]. DSIF targets NELF to associate with
RNA polymerase II for pausing [54,55]. DSIF is present in all eukaryotes and
archaea, and shares homology with a bacterial transcription factor,
NusG [54,56]. However, NELF is conserved only in higher eukaryotes to cause
promoter proximal pausing of RNA polymerase II [54,55]. The pausing of RNA
polymerase II has emerged as an important step of transcriptional regula-
tion [54,55]. The dissociation of NELF releases the paused-RNA polymerase II
for productive transcriptional elongation. One of the important factors promot-
ing the release of promoter proximal paused-RNA polymerase II to its produc-
tive elongating form is the positive transcription elongation factor b (P-TEFb).
P-TEFb is a cyclin-dependent kinase consisting of a regulatory subunit, cyclin T,
and the kinase subunit, Cdk9 (Ctk1 in yeast). P-TEFb phosphorylates NELF, and
thereby triggers NELF’s dissociation to release paused-RNA polymerase II into
productive elongating form [54,55]. P-TEFb also phosphorylates DSIF and S-2 at
the CTD of the Rpb1p subunit of RNA polymerase II [54,55]. The phosphoryl-
ations of DSIF and RNA polymerase II have stimulatory effects on transcrip-
tional elongation [53,54]. Thus, P-TEFb plays an important role to release the
paused-RNA polymerase II, and enhances transcriptional elongation. The
recruitment of P-TEFb to the gene may occur through several ways, including
association with DNA binding proteins such as c-Myc and NF-kB, mediator, or
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Brd4 (that associates with acetylated tail of histone H4) [54,55,57–60]. Addition-
ally, the amount and availability of active P-TEFb is regulated via sequestering
of P-TEFb into an inactive complex with 7SK RNA and HEXIM pro-
tein [54,55,61,62]. Therefore, various factors, including signaling molecules and
chromatin structure/modification, play crucial roles to control the function of
P-TEFb, and hence the release of paused-RNA polymerase II to productive
transcriptional elongation.
As mentioned above, P-TEFb phosphorylates the CTD of RNA polymerase II

on S-2 as it progresses toward the 3´-end of active gene to ensure productive
transcriptional elongation [53,54,62]. In addition, such phosphorylation of RNA
polymerase II regulates mRNA processing and export. Consistently, the inhibi-
tion of P-TEFb reduces gene expression. Likewise, S-5 phosphorylation of the
CTD of RNA polymerase II regulates 5´-end processing (or capping) of mRNA
and recruitment of chromatin modification factors. Thus, phosphorylation status
of the CTD of RNA polymerase II plays important roles in regulation of mRNA
synthesis, processing, and export [53,54,62]. Ssu72 and Fcp1 dephosphorylate S-
5 and S-2 residues, respectively, of the CTD as RNA polymerase II elongates the
transcript [53,63]. Rtr1 (regulator of transcription) is another RNA polymerase
II-associated phosphatase that regulates the transition from phospho-S5 to phos-
pho-S2 of the CTD during transcription elongation [64]. Hence, phosphatases
participate in regulation of the phosphorylation states of the CTD of RNA poly-
merase II, and hence transcriptional elongation and mRNA processing and
export.
Productive transcriptional elongation is also ensured by the processivity fac-

tors such as TFIIS that facilitates transcription of stalled-RNA polymerase II and
FACT (facilitates chromatin transcription), which promotes transcription
through chromatin. The histones in the coding region are rapidly evicted during
elongation and deposited back onto DNA in the wake of elongating RNA poly-
merase II [65]. This assembly/disassembly of histones is aided by histone chaper-
ones, FACT and Asf1 (antisilencing function protein 1), histone H2B
ubiquitylation, and ATP-dependent chromatin remodeling factors such as Swi/
Snf and Rad26 [65–71]. Thus, these proteins/factors serve to facilitate transcrip-
tional elongation on chromatin. Further, mutations in FACT and Asf1 lead to
the generation of cryptic transcripts that are initiated from the internal start sites
of the coding sequence [66,72]. Thus, in addition to promoting transcriptional
elongation, FACT and Asf1 also suppress cryptic transcription. Likewise, another
transcriptional elongation factor, Spt6, suppresses transcriptional initiation from
the cryptic sites [72]. Additionally, an epigenetic mark at the coding regions,
namely histone H3K36 methylation, also prevents spurious transcriptional initia-
tion from the intragenic regions. In yeast, the Rpd3 S histone deacetylase com-
plex recognizes the Set2-mediated histone H3K36 methylation at the coding
regions of the active genes, and directs deacetylation of histones to suppress
cryptic intragenic transcription [73,74]. Thus, chromatin structure/modifications
and associated regulatory factors play important roles in controlling transcrip-
tional elongation.
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Overall, transcriptional elongation is a critical step in eukaryotic gene expres-
sion. It is regulated by a large number of proteins/factors for promoter clearance,
releasing paused-RNA polymerase II at the promoter proximal site, backtrack-
ing, and productive elongation. In addition, chromatin structure/modifications
and associated regulatory factors control transcriptional elongation. Further,
transcriptional elongation is coupled to DNA repair, and maintains genome
integrity [75–78]. In turn, DNA repair factors have also been shown to regulate
transcription [79–82]. Thus, transcriptional elongation is a highly coordinated
and precisely regulated process in eukaryotic gene expression. We have broadly
described above this process. However, the detailed regulatory mechanisms of
transcriptional elongation have been reviewed elsewhere [83–88].

1.4
Transcriptional Termination of RNA Polymerase II Gene

Termination is the last step of transcription, and marks the ends of various regu-
lated events of gene expression. Transcriptional termination entails the dissocia-
tion of the elongation complex at the 3´-ends of the active genes, and is the least
understood phase of transcription. Transcriptional termination does not take
place at a specific site, but can occur from a few bases to several kilobases of the
3´-end of mRNA [89,90]. Most of the protein-coding mRNA precursors have a
highly conserved polyadenylation or poly (A) signal, 5´-AAUAAA-3´, followed
by a U/GU-rich sequence. Transcriptional termination closely depends on the
poly (A) signal or site. The mRNA processing factors such as mRNA polyadeny-
lation and cleavage proteins also participate in transcription termination. The
detailed processing events are described later in this chapter.
There are two major models proposed for transcriptional termination of RNA

polymerase II genes. The first model is an antiterminator or allosteric model.
According to this model, transcriptional elongation through the poly (A) site
leads to a conformational change in the elongation complex due to dis-
association of elongation factors and/or association of termination fac-
tors [91,92]. Pcf11, an mRNA-processing protein, has been shown to promote
such dismantling of the elongation complex. Pcf11 associates with the phospho-
rylated-CTD of the Rpb1 subunit of RNA polymerase II and mRNA transcript,
thus coordinating transcriptional termination with mRNA processing [92–94].
Due to the dual association with RNA polymerase II CTD and mRNA transcript,
Pcf11 may serve to relay the force generated by the conformational changes at
the CTD to the nascent transcript disrupting the elongation complex.
The second model of transcriptional termination is the torpedo model. It is

based on the entry of a 5´ → 3´ exonuclease (Rat1 in yeast/Xrn2 in humans) at
the poly (A) site, which degrades nascent mRNA and promotes the release of
RNA polymerase II [95,96]. Like the antiterminator model, S2-phosphorylated-
CTD of RNA polymerase II and mRNA processing proteins are mediators in
this model. The CTD of RNA polymerase II serves as the binding platform for
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cleavage and polyadenylation specificity factor (CPSF) that aids in transcriptional
termination. The CPSF complex also binds to the transcribed poly (A) site in the
pre-mRNA, and contributes to RNA polymerase II pausing downstream of
this site [97]. This eventually stimulates cleavage and release of mRNA from the
3´-ends of the genes. Upon cleavage of the nascent mRNA at the poly (A) site,
the downstream RNA is rapidly degraded by Rat1/Xrn2, leading to transcrip-
tional termination [95–97]. Rat1 is targeted to RNA polymerase II phosphoryl-
ated at S2 by Rtt103, an important accessory protein. In these two models, the
poly (A) site or signal is essential for transcriptional termination, thus supporting
the idea that transcriptional termination is the combination of both models.
Even though considerable progress has been made, much work is needed to fully
understand the complex regulatory mechanisms of transcriptional termination.

1.5
Capping of mRNA at the 5´-End

mRNA-processing proteins use the altering phosphorylation status of CTD of the
Rpb1 subunit of RNA polymerase II to dynamically associate with transcription
machinery, and process mRNA as it is synthesized. The foremost mRNA-process-
ing event that occurs cotranscriptionally is the capping (or cap structure forma-
tion) of the 5´-end of nascent mRNA. Capping protects nascent mRNAs from
degradation by exonucleases and increases their stabilities [98,99]. Further, the
cap structure influences the splicing of the first intron of mRNA. In addition, the
cap structure is crucial for translational initiation, and leads to circularization of
mRNA in the cytoplasm to facilitate multiple rounds of translation. The mRNA
cap structure consists of a guanosine residue harboring a methylation at the N-7
position, and binds to pre-mRNA via 5´–5´ triphosphate bridge. Once the nascent
pre-mRNA is capped, it is bound by CBC that is involved in mediating a variety
of cellular events, such as transcriptional initiation and elongation, mRNA export,
histone H2B ubiquitylation, histone H3K36 methylation, and processing of micro
RNAs, in addition to protecting nascent mRNA from exonuclease [98]. Hence,
mRNA capping has crucial functions in regulation of gene expression.
The cap structure is formed shortly after transcriptional initiation, when nas-

cent mRNA chains are about 20–23 nucleotides long. Capping is carried out by
three enzymatic reactions. In the first step, RNA triphosphatase removes the
γ-phosphate from the first nucleotide at the 5´-end of mRNA (pppRNA), thereby
producing a diphosphate terminus (ppRNA). This is followed by the transfer of
guanine monophosphate (GMP) to the diphosphate-end by RNA guanyltransfer-
ase to generate the cap (GpppRNA). Finally, the cap is methylated at the N-7
position of guanine by the action of guanine N7-methyltransferase, resulting in
the formation of cap structure (m7GpppRNA). Functions of mRNA capping
enzymes and their associated mechanisms are conserved across eukaryotes.
However, the enzymes that mediate mRNA capping are differentially organized
in lower eukaryotes as compared to higher eukaryotes. For instance, RNA
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triphosphatase and RNA guanyltransferase in budding yeast (Saccharomyces cer-
evisiae) are encoded by two different proteins (Cet1 and Ceg1), while mammals
carry a bifunctional capping enzyme with both activities. Similar to budding
yeast, fission yeast (Schizosaccharomyces pombe) encodes separate triphospha-
tase (Pct1) and guanylyltransferase (Pce1). However, unlike budding yeast, where
Cet1 forms a functional heterodimer with Ceg1, Pct1 and Pce1 in fission yeast
do not interact with each other (Ref. herein [100]). Phosphorylated CTD partici-
pates in the recruitment of the capping machinery, and hence capping of
mRNA [101,102].
The mRNA cap structure at the 5´-end is recognized by CBC that is composed

of two subunits, namely Cbp20 and Cbp80. Both Cbp20 and Cbp80 are evolutio-
narily conserved among eukaryotes. Neither Cbp20 nor Cbp80 binds to mRNA
cap structure alone, suggesting that a complex of both Cbp20 and Cbp80 is
required for recognition of mRNA cap structure to protect mRNA from exonu-
clease [98]. In addition to protecting mRNA, CBC also influences the splicing of
mRNA by facilitating the recruitment of spliceosomal complex to the intron-
containing genes. Further, CBC is involved in mediating the export of
mRNA [103]. Moreover, CBC has been recently shown to regulate transcrip-
tional initiation and elongation, histone H2B ubiquitylation, histone H3K36
methylation, and processing of microRNAs (Ref. herein [98]). Thus, CBC does
not only maintain the stability of mRNA, but also regulates various transcrip-
tional and posttranscriptional events. Following mRNA export to the cytoplasm,
CBC participates in translational initiation for protein synthesis. In addition,
CBC is also involved in nonsense-mediated mRNA decay. Collectively, mRNA
capping at the 5´-end and CBC play important functions in the regulation of
crucial steps of eukaryotic gene expression.

1.6
Processing of mRNA at the 3´-End

Another essential mRNA processing event that occurs after capping and subse-
quent CBC binding is the polyadenylation at the 3´-end. Eukaryotic mRNAs pos-
sess a poly (A) tail at their 3´-ends. Presence of poly (A) tail increases the
stability and translational efficiency of mRNA. Only mRNAs that are properly
polyadenylated are exported out of the nucleus. Indeed, the ratio of cytoplasmic
to nuclear mRNAs is shown to go down in the absence of proper polyadenyla-
tion of mRNA [104]. Addition of poly (A) to the 3´-end of mRNA occurs in two
steps. In the first step, pre-mRNA is cleaved at a specific site, and subsequently
polyadenylated [105]. The efficiency of this process is dependent on the actions
of multiprotein complexes that bind to specific sites at the 3´-end of pre-mRNA.
Most cellular mRNAs possess some signature sites onto which the cleavage and
polyadenylation machinery binds [106]. The most conserved one of these sites is
the poly (A) signal, AAUAAAA, located 20–30 nucleotides upstream of cleavage
site (CA) where the poly (A) tail is added. The other less-conserved U/GU-rich
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sequence is located downstream of CA [105,106]. In higher eukaryotes, these
sites are bound by CPSF and cleavage stimulation factor (Cstf) [105,106]. CPSF
is composed of five subunits: CPSF-160, CPSF-100, CPSF-73, CPSF-30, and Fip1,
and associates with the poly (A) site (or AAUAAAA), while Cstf (that consists of
CstF-50, CstF-77, and CstF-64) binds to U/GU-rich region. Binding of Cstf
increases the stability of CPSF–RNA complex. Apart from these sequences, there
are some accessory elements in pre-mRNA (e.g., upstream sequence elements or
USE) that provide additional stability for anchoring the 3´-end formation
machinery [107]. Once these cleavage elements are bound, the CPSF-73 subunit
of CPSF catalyses an endonucleolytic cleavage at the cleavage site, and the poly
(A) tail is immediately added at the formed 3´-end by poly (A) polymerase. In
yeast, this sequential processing of mRNA is brought about by the actions of
cleavage and polyadenylation factor (CPF) and cleavage factor 1 (CF1) [106].
CF1 consists of two factors, namely CF1A and CF1B. CF1A is composed of
Rna14, Rna15, Clp1, and Pcf11, while CF1B is composed of Hrp1. While the
subunits of CPF are homologous to the CPSF subunits in higher eukaryotes, sub-
units of yeast CF1A are homologous to the Cstf subunits [105,107,108]. Thus,
mRNA processing at the 3´-end appears to be conserved among eukaryotes.

1.7
Splicing of mRNA

Greater complexity in the gene structures of higher eukaryotes necessitates the
involvement of additional mechanisms in processing of mRNA before it is
exported out of the nucleus. While most of the lower eukaryotic genes lack
introns, higher eukaryotic pre-mRNAs contain introns, and hence, are subject to
splicing prior to be exported to the cytoplasm for translation. In the process of
splicing, introns are removed from pre-mRNAs to form an export-competent
mature mRNA. Pre-mRNA splicing is carried out by a large RNA–protein com-
plex (60 S), known as spliceosome [109]. Spliceosome is composed of snRNAs
(U1, U2, U4, U5, and U6) and their associated proteins. In yeast, apart from
snRNAs and associated proteins, ∼100 additional components make up the spli-
ceosome. In humans, this complex has more than 300 components owing to the
complexity of the genome. In fact, human genome contains more than 200 000
introns of varying lengths, and demands a complex spliceosomal apparatus [109].
Interestingly, evidence also suggests the existence of another splicing complex in
humans, known as minor spliceosome that is involved in the splicing of a minor
class introns with noncanonical consensus sequences [110,111]. Minor spliceo-
some contains U11, U12, U4atac, U6atac, and U5 snRNP (small nuclear ribonu-
cleoprotein). U5 snRNP is shared with major spliceosome, while other
components of minor spliceosome are functionally analogous to U1, U2, U4,
and U6 snRNPs [112].
Pre-mRNA sequences define the boundaries of introns. Most introns have the

GU sequence at the 5´ splice site and AG sequence at the 3´ splice site. Further, a
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variable length of polypyrimidines (known as polypyrimidine tract) is present
upstream of the 3´ splice site. Apart from these sequences, there is a branch
point that includes adenosine and is located 18–40 bp upstream of the 3´ splice
site. These sequences serve as the recognition sites of the spliceosomal compo-
nents. Spliceosome carries out two transesterification reactions to excise introns.
In the first step, phosphodiester bond at the 5´ splice site is attacked by
2´-hydroxyl of adenosine of the branch point, thereby generating a free 5´-exon
and lariat-3´-exon intermediates. Following this, 3´-hydroxyl of the 5´ splice site
attacks the phosphodiester bond at the 3´ splice site, leading to the excision of
lariat and ligation of exons. These steps are mediated by the stepwise assembly
of spliceosomal components as described below.
Splicing is initiated by the binding of U1 snRNP to the 5´ splice site of an

intron. Simultaneously, the 3´ splice site is bound by an U2 auxiliary factor
(U2AF). These factors along with some additional factors form the first complex
known as commitment or E (early) complex. In the E complex, both exons are
brought in close proximity. The E complex is followed by the recruitment of U2
snRNP by U2AF. U2 snRNP binds to the branch point adenosine to form pre-
spliceosomal A complex. These steps are then followed by the recruitment of
U4, U5, and U6 snRNPs, thereby forming the B complex. Subsequently, catalyti-
cally active spliceosomal C complex is formed by structural rearrangements of
the B complex [113,114], and leads to the formation of lariat, excision of intron,
and ligation of the exons. Intron-free mRNA thus generated becomes ready to
be exported out of the nucleus [114]. While the sequential assembly of the spli-
ceosomal components on the splice sites is well recognized, an alternative view
of spliceosomal assembly has also been proposed by Stevens et al. [115]. Accord-
ing to their study, spliceosomal components are preassembled prior to the bind-
ing to pre-mRNA, thereby raising a possibility of exclusion of multistep assembly
of spliceosomal components.
Pre-mRNA splicing requires ATP hydrolysis and RNA unwinding that is

brought about by the action of eight splicing factors that belong to the family of
DExH/D-box helicases (Prp5/DDX23, Sub2/UAP56, Prp28/DDX46, Brr2/
U5200KD, Prp2/DHX16, Prp16/DHX38, Prp22/DHX8, and Prp43/
DHX15) [113,114,116–118]. Once spliceosome brings about the removal of
introns from pre-mRNA, a complex of proteins gets recruited to a position of
20–24 nucleotides upstream of the exon–exon junction [119,120]. This complex
is termed as the exon junction complex (EJC), and travels with mRNA to the
cytoplasm. EJC serves as the binding platform for many proteins, some of which
are involved in mRNA export [120]. Thus, splicing of intron-containing genes is
linked to nuclear mRNA export. Further, EJC is involved in nonsense-mediated
mRNA decay that detects and degrades mRNAs containing premature stop
codons [120]. EJC can also enhanced translation efficiency. Thus, splicing of
intron-containing genes is coupled to the quality control and translation effi-
ciency of mRNA via EJC.
While it is easy to envision the synthesis of single mRNA from a single gene,

the complexity of higher eukaryotes requires the production of numerous
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proteins (or functional mRNAs) involved in regulation of many processes as
opposed to fewer proteins in lower eukaryotes. Hence, to accommodate such
diversity of proteins, cells have come up with alternative splicing where a single
gene encodes multiple functional mRNAs, and hence proteins. In fact, alterna-
tive splicing has been observed in ∼25% of Caenorhabditis elegans, ∼60% of Dro-
sophila melanogaster, and ∼95% of human genes [121]. While normal splicing of
pre-mRNA involves four splicing signals, alternative splicing requires additional
trans-acting factors that bind to cis-acting sequences in pre-mRNA to promote
the synthesis of splice variants [121,122]. Alternative splicing can be classified
into four main categories: (i) exon skipping, where an exon can be spliced out
together with an intron; (ii) alternative 5´ and (iii) 3´ selections, where these
splice sites may be recognized just at one end of an intron; and (iv) intron reten-
tion, where an intron can be retained along with exons. Such a mechanism is a
smart move by the cell to promote proteomic diversity in higher eukaryotes.
Overall, splicing of pre-mRNA is regulated by a large number of factors in a
highly coordinated manner to precisely regulate eukaryotic gene expression.

1.8
Nuclear Export of mRNA for Translation

After pre-mRNA undergoes multiple processing events inside the nucleus, it
needs to be exported to the cytoplasm for translation into proteins. Nuclear
mRNA export occurs through nuclear pore complex (NPC), a complex of nucle-
oporins that is embedded within the nuclear envelope. NPCs are the only door-
ways for transport of molecules in and out of the nucleus. This evolutionarily
conserved complex consists of a central transporter channel that is surrounded
by a symmetrical spoke complex [123–129]. Spoke complex is flanked by nuclear
and cytoplasmic rings on either sides of the nuclear membrane. Export of
mRNAs through the NPC is mediated via transient interactions between the
receptors that bind to mRNA cargos and the degenerate FG (phenylalanine–gly-
cine) repeats of the nucleoporins [130–138]. Hence, mRNA receptors play cru-
cial roles in transporting mRNAs out of the nucleus.
A vast majority of receptors involved in the transport process belong to a fam-

ily called karyopherins (termed as importins or exportins based on the direction-
ality of transport). The directionality of karyopherin family of receptors depends
on a small GTPase Ran that plays a key role in the association and dissociation
of substrates with transport receptor [133,139]. However, substantial evidence
suggests that the export of mRNA from nucleus to cytoplasm is not mediated by
the karyopherin-β family members, and is much more complicated as compared
to karyopherin-mediated transport [138]. The export of mRNAs is carried out by
the export receptor family of proteins termed as nuclear export factors (NXFs).
While numerous NXFs have been discovered so far across eukaryotes (several
NXFs in humans, NXF1–6; four in Drosophila, DmNXF1–4; two in Caenorhab-
ditis elegans, CeNXF1–2; and one in Saccharomyces cerevisiae, Mex67), Mex67
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and its human homolog, NXF1 (also known as TAP), are well character-
ized [140–147]. Mex67/TAP is an essential protein that forms a functional het-
erodimer with Mtr2/p15 to mediate the export of mRNA [145]. Being a shuttling
protein, Mex67 travels with mRNA to the cytoplasm, and then gets dissociated
from mRNA by the combined actions of Gle1, Dbp5 (a DEAD-box RNA heli-
case) and InsP6 [130,148]. The conditional inactivation of Mex67/TAP leads to
an accumulation of poly (A) RNA in the nucleus, thereby supporting the roles of
these factors in mRNA export.
Despite its function in mRNA export, Mex67/TAP displays a low affinity for

binding to mRNAs, and hence requires adapter proteins to bridge this interac-
tion. Genetic and biochemical studies in yeast have led to the identification of a
Mex67 binding-adaptor protein, namely Yra1 (yeast RNA annealing pro-
tein) [149–152]. Yra1 belongs to the REF (RNA export factor) family of proteins.
Mutation in Yra1 causes nuclear accumulation of poly (A) RNA, implicating its
role in the export of mRNA [149,150]. Further, the association of Mex67 with
newly synthesized mRNAs is also reduced in Yra1 mutant strain, thus indicating
an essential role of Yra1 in enhancing the interaction of mRNA with
Mex67 [149,150,153].
To understand the mechanism of recruitment of Yra1 to the nascent mRNA, a

synthetic lethal screening was performed, which revealed the genetic interaction
of Yra1 with Sub2, a DEAD-box helicase/ATPase that is involved in pre-mRNA
splicing as well as mRNA export [154]. Further, Yra1 has been shown to interact
with Sub2 [154]. Sub2 and Yra1 are also found to be loaded onto the active
genes in a transcription-dependent manner via the THO (Suppressors of tran-
scriptional defects of hpr1Δ by overexpression) complex [155–157]. THO is a
tetrameric complex that consists of Tho2, Hpr1, Mft1, and Thp2. In addition,
Tex1, a nonessential protein of unknown function, has been shown to be associ-
ated with THO [158]. The THO complex is evolutionarily conserved across
eukaryotes. Human THO complex contains homologs of yeast Hpr1 (THOC1)
and Tho2 (THOC2) with additional subunits fSAP79/THOC5, fSAP35/THOC6,
and fSAP24/THOC7 [159–162]. Tex1 homolog, THOC3, is also present in
human THO complex. Human THO complex resembles Drosophila THO com-
plex. However, there is no apparent yeast Mft1 and Thp2 homologs in human
and Drosophilla THO complexes. Moreover, human or Drosophila THOC5,
THOC6, and THOC7 homologs are not apparently found in yeast THO com-
plex [159,160,163]. THO plays an important role in transcriptional elongation.
In yeast, null mutations of any of its four nonessential subunits (Hpr1, Thp2,
Tho2, and Mft1) have been linked to increased hyperrecombination and defects
in transcription elongation. This has been attributed to the formation of DNA:
RNA hybrid (R-loop) between nascent transcript and template DNA, which
impedes transcription and also leads to genomic instability associated with the
accumulation of DNA breaks [155–157,159,164,165]. Recently, the depletion of
human THO subunits has also been shown to generate similar effects on tran-
scriptional elongation and genomic instability, thus indicating the functional
conservations of the THO complex across species [166]. The THO complex has
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been shown to be recruited to the active chromatin during transcriptional elon-
gation in an RNA polymerase II-dependent fashion [159,167,168]. Once THO is
recruited, it facilitates the association of export factor Sub2 that then loads
mRNA export adapter, Yra1. In fact, the THO subunits have been shown to
interact physically and genetically with Sub2 and Yra1. Particularly, Hpr1 inter-
acts directly with Sub2, and helps in the recruitment of Sub2 and Yra1 to the
actively transcribing genes [153,154,167,169,170]. Additionally, THO mutants
are found to be defective in mRNA export. These observations provide evidence
for the coupling of transcription elongation with mRNA export via THO. Once
Yra1 is recruited, Sub2 dissociates from it, thereby allowing the interaction of
Yra1 with the export receptor, Mex67. The interactions of Sub2 and Mex67 with
Yra1 are mutually exclusive as both Sub2 and Mex67 bind competitively with
Yra1 [154]. However, Sub2 and Mex67 can simultaneously bind with Yra1, since
both Sub2 and Mex67 can independently interact with each of the two domains
of Yra1 [154]. Sub2 and Yra1 together with the THO components form the
TREX (transcription–export) complex. TREX is conserved among eukaryotes.
The human homologs of yeast Sub2 and Yra1 are UAP56 and ALY, respectively.
These components are essential for cell survival, and perform similar functions
in yeast and humans [158].
The TREX complex gets recruited cotranscriptionally to the coding regions of

active genes, but shows a bias toward the 3´-end. While the recruitment of yeast
TREX complex to the active gene is coupled to ongoing transcription, the
recruitment of metazoan TREX has been shown to be dependent on splic-
ing [171,172]. Intriguingly, recent studies by Johnson et al. [173,174] showed
that Yra1 can be loaded onto the active genes in a Sub2-independent manner.
Their studies revealed that Yra1 is loaded onto the active gene via its interaction
with the 3´-end processing factor, Pcf11. Pcf11 is recruited cotranscriptionally to
the active genes through its interactions with the CTD of RNA Polymerase II.
Yra1 that is recruited to the active genes in this manner is then transferred to
the export factor, Sub2. Subsequently, Yra1 becomes available for interaction
with the export receptor, Mex67, for nuclear export of mRNA. However,
Hobeika et al [175,176] showed that Mex67 is recruited in an earlier step during
transcription. Such recruitment is dependent on the Hpr1 component of the
THO complex. The UBA (ubiquitin-associated) domain of Mex67 recognizes
the ubiquitylated-form of Hpr1. This interaction contributes to the recruitment
of Mex67 and protects ubiquitylated-Hpr1 from the 26 S proteasome complex.
Consistently, the absence of the ubiquitylated-form of Hpr1 or the UBA domain
of Mex67 is associated with the defects in mRNA export. Thus, cotranscriptional
recruitment of Mex67 to the active genes is indispensable for mRNA export. As
mentioned earlier, Mex67 has less affinity for binding to mRNA and Yra1 has
been well demonstrated to bridge this interaction in yeast. While Yra1 is an
essential protein in yeast, double-stranded RNA interference of REF/Aly in Dro-
sophila and Caenorhabditis elegans concluded that Aly is dispensable for mRNA
export [177,178]. This points out to the existence of additional export adaptors
in bridging the interaction of mRNAs with export receptors in higher
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eukaryotes [177,178]. Indeed, studies have indicated the roles of SR (serine–argi-
nine)-rich proteins, SRp20 and 9G8, in mammals as export adaptors in bridging
the interaction of mRNA with receptor TAP [179–182].
While a number of studies demonstrated the interconnection between tran-

scription elongation and mRNA export, studies over the past several years have
also shed light on tight coupling that exists between transcriptional activation
and export of mRNA [183–185]. Such a link was established with the identifica-
tion of a factor called Sus1 (sl gene upstream of Ysa1) [183–185]. Sus1 was ini-
tially identified by synthetic lethality screening with an Yra1 mutant allele, and
was shown to interact genetically and physically with coactivator SAGA and
mRNA export factors, Thp1 and Sac3 (components of the TREX-2 complex).
Consistently, Sus1 has been found to be a common component of SAGA and
TREX-2 [183]. Thus, Sus1 links SAGA with TREX-2, thereby playing a key role
in coupling transcriptional activation with mRNA export.
The TREX-2 complex is constituted by Thp1, Sac3, Cdc31, and Sus1, and is

located on the inner side of NPC. Sac3 forms the central scaffold of the TREX-2
complex [186,187]. Sus1 associates with the TREX-2 complex via Sac3, and
functions in mRNA export. TREX-2 interacts with NPC via nucleoporins, such
as Nup1 and Nup60, and also associates with Mex67–Mtr2 export recep-
tor [183,184,186]. Recent studies have also identified Sem1 as a new component
of this evolutionarily conserved complex [188–190]. The physical link between
mRNA export complex (TREX-2) and transcriptional coactivator complex
(SAGA) via Sus1 supported the “gene gating” hypothesis as originally proposed
by Blobel [191]. The TREX-2 has been shown to play an important role in repo-
sitioning yeast genes such as GAL1 and INO1 in close proximity to NPC through
its interactions with nucleoporins of NPC and SAGA [185,192–194]. Apart from
yeast, gene-gating hypothesis has also been proved in Drosophila and
humans [192,195–197].
Prior to nuclear export, mRNA undergoes a quality control check with the aid

of nuclear surveillance complex, known as exosome [198]. Exosome complex
contains several 3´ → 5´ exonucleases, and degrades the improperly processed
mRNAs prior to their export to the cytoplasm [199]. Only properly processed
mRNAs or mRNPs are exported out of the nucleus. Once these processed
mRNAs reach cytoplasm, most of them enter the translationally active pool that
encodes proteins. During translation, mRNA is threaded through the space
between the ribosomal subunits to undergo a pioneering round of transla-
tion [200–202]. This process removes any associated hnRNPs (heterogeneous
nuclear ribonucleoproteins) that might hinder the translational activity. At this
stage, nuclear 5´-cap and 3´-poly (A) binding nuclear protein are replaced by
elF4E (cytoplasmic cap binding protein) and poly (A)-binding cytoplasmic pro-
tein, respectively. All these events result in functional circularization of mRNA
due to the cis and trans interactions between its 5´- and 3´-ends, thereby pro-
moting the efficient translation of the message [201,202]. Life of mRNAs ends
after translation in the cytoplasm. The mRNA cap is removed by decapping
enzymes, and mRNA is degraded by exonucleases [203–205]. The degradation
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or at least the final step(s) of degradation of mRNA is believed to occur in cer-
tain cytoplasmic foci, known as P-bodies (processing bodies) [203–205]. P-bod-
ies are the structures that are enriched with numerous proteins involved in
mRNA degradation [203–205].

1.9
Conclusion

Eukaryotic gene expression is a highly coordinated and complex regulatory pro-
cess. It is mechanistically composed of many different steps as described above.
Misregulation of any of these steps leads to an altered pattern of gene expres-
sion, which can change cellular functions and threaten cellular viability. Thus,
the factors involved in different steps of gene expression are correlated with a
variety of diseases. Therefore, a large number of studies are focused on under-
standing the regulation of eukaryotic gene expression in a number of eukaryotic
systems. In this chapter, we have broadly described eukaryotic gene expression
from the birth to the end of mRNA life. Thus, this chapter would provide gen-
eral views of gene expression, function, and regulation. However, the details of
the different steps of eukaryotic gene expression by RNA polymerase II are
described in a number of review articles cited in this chapter.
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