Contents

Preface to the First Edition XI Preface to the Second Edition XIII

Part One Fundamentals of Chemistry in Nonaqueous Solutions: Electrochemical Aspects 1 ۷

- **1** Properties of Solvents and Solvent Classification 3
- 1.1 Properties of Solvents 8
- 1.1.1 Physical Properties of Solvents 8
- 1.1.2 Chemical Properties of Solvents 13
- 1.1.3 Structural Aspects of Solvents 17
- 1.1.4 Toxicity and Hazardous Properties of Solvents 19
- 1.2 Classification of Solvents 20
- 1.3 Effects of Solvent Properties on Chemical Reactions: An Outline 22 References 24
- 2 Solvation and Complex Formation of Ions and Behavior of Electrolytes 27
- 2.1 Influence of Ion Solvation on Electrolyte Dissolution 27
- 2.2 Some Fundamental Aspects of Ion Solvation 29
- 2.2.1 Ion–Solvent Interactions Affecting Ion Solvation 29
- 2.2.2 Structure of Solvated Ions 36
- 2.2.3 Ultrafast Ion Solvation Dynamics 39
- 2.3 Comparison of Ionic Solvation Energies in Different Solvents and Solvent Effects on Ionic Reactions and Equilibria 40
- 2.3.1 Gibbs Energies of Transfer and Transfer Activity Coefficients of Ions 40
- 2.3.2 Prediction of Solvent Effects by the Use of Transfer Activity Coefficients 44
- 2.4 Solvent Effects on the Complexation of Metal Ions 46

VI Contents

2.5 2.6	Selective Solvation of Ions in Mixed Solvents 49 Ion Association and Solvent Permittivities 53 References 59					
3	Acid–Base Reactions in Nonaqueous Solvents 63					
3.1	Solvent Effects on Acid–base Reactions 63					
3.1.1	Acid–Base Reactions in Amphiprotic Solvents of High Permittivity 64					
3.1.2	Acid–Base Reactions in Aprotic Solvents of High Permittivity 69					
3.1.3	Acid–Base Reactions in Amphiprotic Solvents of Low Permittivity 79					
3.1.4	Acid–Base Reactions in Aprotic Solvents of Low Permittivity 79					
3.2	pH Scales in Nonaqueous Solutions 80					
3.2.1	Definition of pH in Nonaqueous Solutions 80					
3.2.2	pH Windows in Nonaqueous Solvents and pH Scales Common					
	to Multisolvents 82					
	References 86					
4	Redox Reactions in Nonaqueous Solvents 89					
4.1	Solvent Effects on Various Types of Redox Reactions 89					
4.1.1	Fundamentals of Redox Reactions 89					
4.1.2	Solvent Effects on Redox Potentials and Redox Reaction					
	Mechanisms 93					
4.1.3	Dynamical Solvent Effects on the Kinetics of Redox Reactions 100					
4.2	Redox Properties of Solvents and Potential Windows 103					
4.3	Redox Titrations in Nonaqueous Solutions 106					
4.3.1	Titrations with Oxidizing Agents 106					
4.3.2	Titrations with Reducing Agents 109					
	References 110					
Part Two	Electrochemical Techniques and Their Applications in Nonaqueous Solutions 111					
5	Overview of Electrochemical Techniques 113					
5.1	Classification of Electrochemical Techniques 113					
5.2	Fundamentals of Electrode Reactions and Current–Potential					
	Relations 114					
5.2.1	Current–Potential Relation for Electron Transfer at the Electrode 115					
5.2.2	Current–Potential Relations and Mass Transport 118					
5.3	DC Polarography – Methods that Electrolyze Electroactive Species Only Partially (1) 121					
5.4	New Types of Polarography – Methods that Electrolyze					
	Electroactive Species Only Partially (2) 129					
5.4.1	AC Polarography 130					
5.4.2	SW Polarography 131					
5.4.3	Pulse Polarography 131					

- 5.5 Voltammetry and Related New Techniques Methods that Electrolyze Electroactive Species Only Partially (3) 133
- 5.5.1 Linear Sweep Voltammetry 134
- 5.5.2 Cyclic Voltammetry 136
- 5.5.3 Voltammetry at Rotating Disk and Rotating Ring-Disk Electrodes 138
- 5.5.4 Ultramicroelectrodes 140
- 5.5.5 Modified Electrodes 141
- 5.5.6 Other Items Related to Voltammetry 142
- 5.5.7 Combination of Voltammetry and Nonelectrochemical Methods 144
- 5.6 Electrogravimetry and Coulometry Methods that Completely Electrolyze Electroactive Species 147
- 5.6.1 Controlled-Potential Electrolysis and Controlled-Current Electrolysis 147
- 5.6.2 Electrogravimetry 149
- 5.6.3 Coulometry and Coulometric Titrations 150
- 5.7 Potentiometry A Method that Does Not Electrolyze Electroactive Species 152
- 5.7.1 Potentiometric Indicator Electrodes and Reference Electrodes 153
- 5.7.2 Potentiometric Titrations 157
- 5.8 Conductimetry A Method that Is Not Based on Electrode Reactions 158
- 5.9 Electrochemical Instrumentation Roles of Operational Amplifiers and Microcomputers 161
- 5.9.1 Application of Operational Amplifiers in Electrochemical Instrumentation *161*
- 5.9.2 Application of Personal Computers in Electrochemical Instrumentation 167 References 167

6 Potentiometry in Nonaqueous Solutions 171

- 6.1 Basic Techniques of Potentiometry in Nonaqueous Solutions 171
- 6.1.1 Potentiometric Indicator Electrodes for Nonaqueous Solutions 172
- 6.1.2 Reference Electrodes for Nonaqueous Solutions 172
- 6.1.3 Method of Reporting Electrode Potentials in Nonaqueous Solutions (IUPAC Recommendation) 175
- 6.1.4 Liquid Junction Potential Between Electrolyte Solutions in the Same Solvent 178
- 6.2 pH Measurements in Nonaqueous and Mixed Solvents 180
- 6.2.1 IUPAC Method of pH Measurements in Aqueous Solutions 180
- 6.2.2 Methods of pH Measurements in Nonaqueous and Mixed Solvents 182
- 6.2.3 Determination of Autoprotolysis Constants 186
- 6.3 Applications of Potentiometry in Nonaqueous Solutions 188
- 6.3.1 Acid–Base Reactions in Nonaqueous Solvents 188

6.3.2	Precipitation	Reactions in Nonaqueous Solutions	192
-------	---------------	-----------------------------------	-----

- 6.3.3 Complex Formation Reactions in Nonaqueous Solutions 192
- 6.3.4 Redox Reactions in Nonaqueous Solutions 194
- 6.3.5 Potentiometric Characterization of Solvents 196
- 6.3.6 Potentiometric Study of Ion Solvation – Applications that Compare Electrode Potentials in Different Solvents 196
- Liquid Junction Potentials between Different Solvents 201 6.4 References 206

7 Conductimetry in Nonaqueous Solutions 209

- 71 Dissociation of Electrolytes and Electrolytic Conductivity 209
- 7.1.1 Molar Conductivity of Dilute Solutions of Symmetrical Strong Electrolytes 209
- 7.1.2 Molar Conductivity and Association Constants of Symmetrical Weak Electrolytes 210
- 7.1.3 Molar Conductivity and the Formation of Triple Ions 213
- Conductivity of Solutions of Symmetrical Strong Electrolytes 7.1.4 at Moderate to High Concentrations 214
- 7.1.5 Molar Conductivity and Ion Association of Asymmetric Electrolytes 216
- 7.2 Ionic Conductivities and Solvents 217
- 7.2.1 Stokes' Law and Walden's Rule - Role of Ultrafast Solvent Dynamics 217
- 7.2.2 Method for the Determination of Limiting Molar Conductivities of Ions 221
- 7.3 Applications of Conductimetry in Nonaqueous Solutions 222
- 7.3.1 Study of the Behavior of Electrolytes (Ionophores) 222
- Conductimetric Studies of Acid–Base Equilibria 227 7.3.2 References 230

8 Polarography and Voltammetry in Nonaqueous Solutions 233

- 8.1 Basic Experimental Techniques in Nonaqueous Solutions 233
- Experimental Apparatus for Nonaqueous Systems 8.1.1 233
- Solvents and Supporting Electrolytes 236 8.1.2
- 8.2 Polarography and Voltammetry of Inorganic Species 237
- Polarographic Reductions of Metal Ions 237 8.2.1
- Polarography and Voltammetry of Metal Complexes 247 8.2.2
- 8.2.3 Polarography and Voltammetry of Anions 251
- 8.2.4 Electrode Reactions of Dissolved Oxygen, Dissolved Hydrogen, Carbon Dioxide and Solvated Electrons 253
- 8.3 Polarography and Voltammetry of Organic Compounds 255
- 8.3.1 Reductions of Organic Compounds 255
- Oxidation of Organic Compounds 268 8.3.2
- 8.4 Cyclic Voltammetry for Electrochemical Studies in Nonaqueous Solutions 274

- 8.4.1 Digital Simulation in Cyclic Voltammetry 274
- 8.4.2 Ultramicroelectrodes in Cyclic Voltammetry 275
- 8.4.3 Low-Temperature Electrochemistry and Cyclic Voltammetry 277
- 8.5 Voltammetry of Isolated Nanoparticle Solutions (Nanoelectrochemistry) 278 References 281

9 Other Electrochemical Techniques in Nonaqueous Solutions 287

- 9.1 Use of Electrolytic and Coulometric Techniques in Nonaqueous Solutions 287
- 9.2 Combination of Electrochemical and Nonelectrochemical Techniques 289
- 9.2.1 Spectroelectrochemistry 289
- 9.2.2 Electrochemical-ESR Method 296
- 9.2.3 Electrochemical Mass Spectroscopy 299
- 9.2.4 Use of Electrochemical Quartz Crystal Microbalance 301
- 9.2.5 Use of Scanning Electrochemical Microscopy 301 References 304

10 Purification of Solvents and Tests for Impurities 307

- 10.1 Effects of Solvent Impurities on Electrochemical Measurements 308
- 10.2 Procedures for the Purification of Solvents 309
- 10.3 Tests for Purity of Solvents 311
- 10.4 Purification Methods for Solvents in Common Use 314 References 320

11 Selection and Preparation of Supporting Electrolytes 321

- 11.1 Selection of Supporting Electrolytes for Electrochemical Measurements *321*
- 11.1.1 Solubility and Conductivity of Supporting Electrolytes 321
- 11.1.2 Potential Windows and Supporting Electrolytes 324
- 11.1.3 Influences of Supporting Electrolytes on Electrode Reactions in Nonaqueous Solutions 326
- 11.2 Methods for Preparing and Purifying Supporting Electrolytes 328 References 330

12 Use of Nonaqueous Solutions in Modern Electrochemical Technologies 333

- 12.1 Batteries Using Nonaqueous Solutions Lithium Batteries 333
- 12.2 Capacitors Using Nonaqueous Solutions 337
- 12.2.1 Electrochemical Double-Layer Capacitors and Pseudocapacitors 337
- 12.2.2 Aluminum Electrolytic Capacitors 339
- 12.3 Conducting Polymers and Electrochemistry in Nonaqueous Solutions 340
- 12.4 Electrochemiluminescence (ECL) 343

X Contents

12.5	Electrochemical	Reduction of	CO ₂ in	Nonaqueous Solutions	346
------	-----------------	--------------	--------------------	----------------------	-----

- Use of Acetonitrile in Electrowinning and Electrorefining 12.6 of Copper 349
- 12.7 Electrodeposition of Metals and Semiconductors from Nonaqueous Solutions 351 References 352

Part Three Electrochemistry in New Solvent Systems 355

13	Electrochemistry in Clean Solvents 357			
13.1	Introduction 357			
13.2	Supercritical Fluids 358			
13.2.1	General Aspects of Supercritical Fluids 358			
13.2.2	Electrochemical Aspects of Supercritical Fluids 362			
13.3	Ionic Liquids 364			
13.3.1	Physical, Chemical and Electrochemical Properties of ILs 366			
13.3.2	Voltammetry in ILs 372			
13.3.3	Applications of ILs in Electrochemical Technologies 376			
13.3.4	Risks of ILs and Their Decomposition 379			
	References 381			
14	Electrochemistry at the Liquid–Liquid Interfaces 385			
14.1	Interfaces Between Two Immiscible Electrolyte Solutions (ITIES) 385			
14.1.1	Fundamentals of Electrochemistry at the ITIES 385			
14.1.2	Practical Applications of Electrochemistry at the ITIES 392			
14.1.3	Three-Phase Electrochemistry 394			
14.2	Interfaces Between Ionic Liquids and Water 395			
14.2.1	Fundamentals 395			
14.2.2	Salt Bridges and Reference Electrodes 397			
14.2.3	Potential Windows and Voltammograms 397			
	References 399			
	Index 401			

Index 401