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Modeling Principles

1.1 Fundamentals of Modeling

1.1.1 Use of Models for Understanding, Design, and Optimization of
Bioreactors

Any system used for carrying out bioreactions, from single enzymatic reactions to
complex multicellular reaction systems, requires a containment called a bioreactor.
The performance of a bioreactor may conventionally be investigated almost entirely
empirically. In this approach, the bioreactor behavior would be studied under prac-
tically all combinations of possible operating conditions. The results would then
be expressed as a series of input–output correlations, from which the performance
could be determined. This empirical procedure can be carried out in a routine man-
ner and requires relatively little thought concerning the actual details of the process.
While this might seem to be rather convenient, the procedure has actually disad-
vantages, since very little real understanding of the process would be obtained. Also
very many costly experiments would be required in order to obtain correlations that
would cover every process eventuality.

Compared to this, the modeling approach attempts to describe both actual and
probable bioreactor performances, by means of a well-established theory. Described
in mathematical terms, a working model for the process is established. In carrying
out a modeling task, the modeler is forced to consider the nature of all the important
parameters of the process, their effect on the process, and how each parameter must
be defined in quantitative terms. The modeler must identify the important variables
and their separate effects, which may have a highly interactive combined effect on
the overall process performance. Thus, the very act of modeling is one that forces a
better understanding of the process, since all the relevant theory must be critically
assessed. In addition, the task of formulating theory into terms of mathematical
equations is also very beneficial in that it forces a clear formulation of basic
concepts.

Once formulated, the model can be solved, and the predicted behavior can be com-
pared with experimental data. Any differences in performance may then be used
to further redefine or refine the model until a good agreement is obtained. Once
the model is established, it can then be used, with reasonable confidence, to predict
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4 1 Modeling Principles

performance under differing process conditions. It can also be used for purposes as
process design, optimization, and control. An input of plant or experimental data
is of course required in order to establish or validate the model, but the quantity of
experimental data required, as compared to that of the empirical approach, is consid-
erably reduced. The major advantage of modeling based on the underlying physical
and biological principles is the increased understanding of the process that will be
linked to an increased power of resulting models, particularly with respect to their
prediction power even outside the experimentally studied parameter space. It also
serves as an unambiguous basis for communication.

These ideas are summarized below:
Empirical approach: Measure productivity for all combinations of reactor operat-

ing conditions, and make correlations.

● Advantage: Little thought is necessary.
● Disadvantages: Many experiments are required. Poor predictivity outside range of

experimental observation.

Modeling approach: Establish a model and design experiments to determine the
model parameters. Compare the model behavior with the experimental measure-
ments. Use the model for rational design, control, and optimization.

● Advantages: Fewer experiments are required, and greater understanding is
obtained. Good predictive power even outside experimental space used for setting
up and tuning the model.

1.1.2 General Aspects of the Modeling Approach

An essential stage in the development of any model is the formulation of the appro-
priate mass and energy balance equations (Russell and Denn 1972). Though syn-
onymous, often the term “material balance” is preferred than “mass balance.” Both
rely on the conservation of mass in any closed system, on which energy balances are
based. To these balances must be added appropriate kinetic equations for rates of
cell growth, substrate consumption, and product formation; equations representing
rates of heat and mass transfer; and equations representing system property changes,
equilibrium relationships, and process control (Blanch and Dunn 1973). Addition-
ally, the conservation of momentum is the basis for corresponding balances, for
example, Navier–Stokes equations, that are used for building fluid dynamic mod-
els. These are, however, more complex and are not used in this book. The com-
bination of these relationships provides a basis for the quantitative description of
the process and comprises the basic mathematical model. The resulting model can
range from a very simple case of relatively few equations to models of very great
complexity.

Simple models are often very useful, since they can be used to determine the
numerical values for many important process parameters. For example, a model
based on a simple Monod kinetics can be used to determine basic parameter val-
ues such as the specific growth rate (𝜇), saturation constant (KS), biomass yield
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coefficient (Y X/S), and maintenance coefficient (m). This basic kinetic data can be
supplemented by additional kinetic factors such as oxygen transfer rate (OTR), car-
bon dioxide production rate (CPR), and respiration quotient (RQ) based on off-gas
analysis. Related quantities such as specific oxygen uptake rate (qO2

) and specific
CPR (qCO2

) or the specific heat production rate (qQ) may also be derived and used to
provide a complete kinetic description of, say, a simple batch fermentation.

For complex fermentations, involving product formation, the specific product for-
mation rate (qP) is often correlated as a complex function of fermentation conditions,
e.g. stirrer speed, air flow rate, pH, dissolved oxygen content, and substrate con-
centration. In other cases, simple kinetic models can also be used to describe the
functional dependence of productivity on cell density, cell growth rate, and environ-
mental parameters as concentrations of substrates, intermediates, and products.

A more detailed “structured kinetic model” may be required to give an adequate
description of the process, since cell composition may change in response to changes
in the local environment within the bioreactor. Even whole-genome based stoichio-
metric network models can be directly incorporated. This kind of modeling can be
rationalized by applying modules in a systematic way (Garcia and Trinh 2019). The
greater the complexity of the model, however, the greater then the difficulty in iden-
tifying the numerical values for the increased number of model parameters, and one
of the skills of modeling is to derive the simplest possible model that is capable of a
realistic representation of the process.

The basic uses of a process model is thus to analyze experimental data and to use
them to characterize the process, by assigning numerical values to the important
process variables. The model can then also be solved with appropriate numerical
data values, and the model predictions are compared with actual practical results.
This procedure is known as simulation and may be used to confirm that the model
and the appropriate parameter values are “correct”. Simulations, however, can also
be used in a predictive manner to test probable behavior under varying conditions;
this leads on to the use of models for process optimization and their use in advanced
control strategies.

The application of a combined modeling and simulation approach leads to the
following advantages:

1) Modeling improves understanding: and it is through understanding that progress
is made. In formulating a mathematical model, the modeler is forced to consider
the complex cause-and-effect sequences of the process in detail, together with
all the complex interrelationships that may be involved in the process. The com-
parison of a model prediction with actual behavior usually leads to an increased
understanding of the process, simply by having to consider the ways in which
the model might be in error. The results of a simulation can also often suggest
reasons why certain observed, and apparently inexplicable, phenomena occur in
practice.

2) Modeling clarifies communication: Modeling has proven to be an excellent plat-
form for unambiguous communication between experts. This is essential in any
modern teamwork in industry and academia.
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3) Models help in experimental design: It is important that experiments be designed
in such a way that the model can be properly tested. Often the model itself will
suggest the need for data for certain parameters, which might otherwise be
neglected, and hence the need for a particular type of experiment to provide
the required data. Conversely, sensitivity tests on the model may indicate that
certain parameters may have a negligible effect and hence that these effects
therefore can be neglected both from the model and from the experimental
program.

4) Models may be used predictively for design and control: Once the model has been
established, it should be capable of predicting performance under differing sets
of process conditions. Mathematical models can also be used for the design of
relatively sophisticated control algorithms, and the model itself can often form an
integral part of the control algorithm. Both mathematical and knowledge-based
models can be used in designing and optimizing new processes.

5) Models may be used in training and education: Many important aspects of
bioreactor operation can be simulated using very simple models such as linear
growth, double substrate limitation, changeover from batch to fed-batch oper-
ation dynamics, fed-batch feeding strategies, aeration dynamics, measurement
probe dynamics, cell retention systems, microbial interactions, biofilm diffusion,
and bioreactor control. Such effects are very easily demonstrated by computer,
as shown in the accompanying simulation examples, but are often difficult and
expensive to demonstrate in practice.

6) Models may be used for process optimization: Optimization usually involves con-
sidering the influence of two or more operational variables, related to profits and
to costs. For example, the objective might be to run a reactor to produce product
at a maximum rate while leaving a minimum amount of unreacted substrate.

1.1.3 General Modeling Procedure

One of the more important features of modeling is the frequent need to reassess both
the basic theory (physical model) and the mathematical equations, representing the
physical model (mathematical model), in order to achieve the required degree of
agreement, between the model prediction and actual process performance (experi-
mental data).

As shown in Figure 1.1, the following stages in the modeling procedure can be
identified:

(i) The first stage involves the proper definition of the problem and hence the
goals and objectives of the study. These may include process analysis, improve-
ment, optimization, design, and control, and it is important that the aims of the
modeling procedure are properly defined. All the relevant theory must then be
assessed in combination with any practical experience with the process, and
perhaps alternative physical models for the process need to be developed and
examined. At this stage, it is often helpful to start with the simplest possible
conception of the process and to introduce complexities as the development
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Figure 1.1 Information flow diagram for model building.

proceeds, rather than trying to formulate the full model with all its complexities
at the beginning of the modeling procedure.

(ii) The available theory must then be formulated in mathematical terms. Most
bioreactor operations involve quite a large number of variables (cell, substrate,
and product concentrations; rates of growth, consumption, and production)
and many of these vary as functions of time (batch, fed-batch operation). For
these reasons, the resulting mathematical relationships often consist of quite
large sets of differential equations.

(iii) After a model has been developed, the model equations must then be solved.
Mathematical models of biological systems are usually quite complex and
highly nonlinear, such that the mathematical complexity of the equations
is usually sufficient to prohibit the use of an analytical means of solution.
Numerical methods of solution must therefore be employed, preferably digital
simulation in which the solution of very complex models is accomplished with
relative ease.

Digital simulation languages are designed especially for the solution of sets
of simultaneous differential equations using numerical integration. Many fast and
efficient numerical integration routines are now available and implemented within
the structure of the languages, such that many digital simulation languages are able
to offer options for integration routine. Sorting algorithms within the structure of the
language enable very simple programs to be written, having an almost one-to-one
correspondence with the way in which the basic model equations were originally
formulated. The resulting simulation programs are therefore very easy to understand
and also to write. A further major advantage is a convenient output of results, in
both tabulated and graphical forms that can be obtained via very simple program
commands.

(iv) The validity of the computer prediction must be checked and steps (i)–(iii) will
often need to be revised at frequent intervals during the modeling procedure.
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The validity of the model depends on the correct choice of the available theory
(physical and mathematical model), the ability to identify the model parameters
correctly, and the accuracy of the numerical solution method.

(v) In many cases, owing to the complexity and very interactive nature of biologi-
cal processes, the system will not be fully understood, thus leaving large areas
of uncertainty in the model. Also, in cases where the relevant theory may be
very difficult to apply, it is then often necessary to make rather gross simpli-
fying assumptions, which may subsequently be eliminated or improved as a
better understanding is obtained. Care must be taken when making judgments
to avoid a model from becoming overly complex and hence not defined in terms
of too many immeasurable parameters. Often an incorrect choice of parameter
values can result in a disagreement between the model and practice and differ-
ent trends in the variation of parameters during the simulation.

It should be noted, however, that often the results of a simulation model do not
have to give an exact fit to the experimental data, and often it is sufficient to simply
have a qualitative agreement. Thus, a very useful qualitative understanding of the
process and its natural cause-and-effect relationships is obtained.

1.1.4 Simulation Tools

Many different digital simulation software packages are available on the market for
PC and Mac applications. Modern tools are numerically powerful and highly interac-
tive and allow sophisticated types of graphical and numerical output. Most packages
also allow optimization and parameter estimation. In this book, we have chosen
BERKELEY MADONNA (https://berkeley-madonna.myshopify.com) because it is
very user-friendly and very fast (details can be found in the Appendix). With it, data
fitting and optimization can be done very easily. MATLAB-SIMULINK (https://de
.mathworks.com) is a popular and very powerful software for dynamic simulation
and includes many powerful algorithms for nonlinear optimization, which can also
be applied for parameter estimation. It also provides a direct link to all the powerful
computational tools contained in MATLAB.

1.1.5 Teaching Applications

For effective teaching, the introduction of computer simulation methods into mod-
eling courses can be achieved in various ways, and the method chosen will depend
largely on how much time can be devoted, both inside and outside the classroom.
The most time-consuming method for the students is to assign modeling problems to
be solved outside the classroom. If scheduling time allows, computer laboratory ses-
sions could be extended, so the students could work either alone or in groups of up to
three on each monitor or computer. In this way, preprogrammed examples, as found
in this text, can be used to emphasize particular points related to a previous theoreti-
cal presentation. This method has been found to be particularly effective when used
for short, continuing-education, professional courses. Using the computer examples,
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the students may vary parameters interactively and make program alterations, as
well as work through the suggested exercises at his or her own pace. Demonstration
of a particular simulation problem via a single personal computer and video projec-
tor is also an effective way of conveying the basic ideas in a short period of time, since
students can still be very active in suggesting parametric changes and in anticipating
the results. The best approach is probably to combine all three methods.

1.2 Development and Meaning of Dynamic Differential
Balances

As indicated in Section 1.1, many models for biological systems are expressed in
terms of sets of differential equations, which arise mainly as a result of the predom-
inantly time-dependent nature of the process phenomena concerned.

For many people and especially for many students of life sciences, the mention
of differential equations can cause considerable aversion. This section is therefore
intended, hopefully, to bring the question of differential equations into perspective.
The differential equations arise in the model formulation, simply by having to
express rates of change of material, due to flow effects or chemical and biological
reaction effects. The method for solution of the differential equations will be
handled automatically by the computer. It is hoped that much of the difficulty can
be overcome by considering the following case. In this section a simple example,
based on the filling of a tank of water, is used to develop the derivation of a mass
balance equation from the basic physical model and thereby to give meaning to the
terms in the equations. Following the detailed derivation, a short-cut method based
on rates is given to derive the dynamic balance equations.

Simple introductory examples are provided in the second part of the book starting
with filling tanks and later addition of more and more complexity (Section 10.1.4).

Consider a tank into which water is flowing at a constant rate F (m3/s), as shown
in Figure 1.2. At any time t, the volume of water in the tank is V (m3) and the density
of water is 𝜌 (kg/m3).

During the time interval Δt (s), a mass of water 𝜌 FΔt (kg) flows into the tank.
As long as no water leaves the tank, the mass of water in the tank will increase by a
quantity 𝜌 FΔt, causing a corresponding increase in volume, ΔV .

Equating the accumulation of mass in the tank to the mass that entered the tank
during the time interval Δt gives

𝜌ΔV = 𝜌FΔt

Figure 1.2 Tank of water being filled
by stream with flow rate F.

V

F
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If 𝜌 is constant,

ΔV
Δt

= F

Applying this to very small differential time intervals (Δt → dt) and replacing the Δ
signs by the differential operator “d” gives the following simple first order differential
equation, to describe the tank filling operation:

dV
dt

= F

What do we know about the solution of this equation? That is, how does the volume
change with time or in model terms, how does the dependent variable, V , change
with respect to the independent variable, t? To answer this, we can rearrange the
equation and integrate it between appropriate limits to give

V1 − V0 = ∫
t1

t0

Fdt

or for constant F,

V1 − V0 = F∫
t1

t0

dt = F(t1 − t0)

Integration is equivalent to summing all the contributions, such that the total change
of volume is equal to the total volume of water added to the tank:∑

V =
∑

FΔt

For the case of constant F, it is clear that the analytical solution to the differential
equation is

V = F t + constant

In this case, as shown in Figure 1.3, the constant of integration is the initial volume
of water in the tank, V 0, at time t = 0.

Note that the slope in the variation of V with respect to t, dV/dt, is constant and
that from the differential equation it can be seen that the slope is equal to F.

Suppose F is not constant but varies linearly with time (Figure 1.4).

F = F0 − kt

The above model equation applies also to this situation.

V
dV

t

0V
dt

Figure 1.3 Volume change with time for constant
flow rate.
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Solving the model equation to obtain the functional dependence of V with respect
to t,

∫ dV = ∫ Fdt = ∫ (F0 − kt)dt = F0 ∫ dt − k ∫ tdt

Integrating analytically,

V = F0t − kt2

2
+ constant

The solution is

V = F0t − kt2

2
+ V0

Note that the dependent variable starts at the initial condition, V 0, and that the slope
is always F. When F becomes zero and remains at this value, the slope of the curve
relating V and t also becomes zero. In other words, the volume in the tank remains
constant and does not change as long as the value of F remains zero.

F
V

t

V0

t

F
–k

Figure 1.4 Variation of F and V for the tank-filling problem.

1.2.1 Derivation of a Balance Equation Using Rates

A differential balance can best be derived directly in terms of rates of change. For
the above example, the balance can then be expressed as(

The rate of accumulation
of mass within the tank

)
=
(

The flow rate of mass
entering the tank

)
Thus, the rate of accumulation of mass within the tank can be written directly as
dM/dt where the mass M is equal to 𝜌V . The rate of mass entering the tank is given
by 𝜌F, where both sides of the equation have quantities of mass per unit time with
units of, e.g. kg/s.

dM
dt

= 𝜌F

and
d(𝜌V)

dt
= 𝜌F

Thus, this approach leads directly to a differential equation model, which is the
desired form for dynamic simulation. Note that both terms in the above relationship
are expressed in quantities of mass per unit time or units of, e.g. kg/s.
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At constant density, the equation again reduces to

dV
dt

= F

which is to be solved for the initial condition, that at time t = 0, V =V 0. Consider
the same situation of a variable flow rate, which is linearly decreasing with time, as
given by

F = F0 − kt

which is valid until F = 0.
These two equations, plus the initial condition, form the mathematical representa-

tion or the mathematical model of the physical model, represented by the tank filling
with an entering flow of water that is decreasing linearly with time. This approach
can be applied not only to the total mass but also to the mass of any component.

As shown above, this model is simple enough to obtain an analytical solution
to give V = f (t). However, for more complex cases, for example, when F varies
according to a complex function, it is necessary to obtain a computer solution by
a numerical integration of the model equations. This is important to understand,
since analytical integration is seldom possible in the case of real complex problems.

1.2.2 Computer Solution

In principle, the numerical integration can be performed using the relations:

dV
dt

= ΔV
Δt

=
Vi+1 − Vi

ti+1 − ti

where ti+ 1 − t1 represents a very short time interval and V i+ 1 −V i is the resulting
change in volume of the water in the tank. As before, the flow is assumed to decrease
with time according to F = F0 − kt.

This integration procedure is equivalent to the following steps:

(1) Set the integration time interval.
(2) Assign a value to the inlet water flow rate at the initial value, time t = t0.
(3) The term involving the water flow rate, F0 − kt, is equal to the derivative value,

(dV/dt), at time t = t0.
(4) Knowing the initial value of V , V 0, and the slope dV/dt, a new value of V 1 can

be calculated over the small interval of time, equivalent to the integration time
interval or integration step length.

(5) At the end of the integration time interval, the value of V will have changed to
a new value, representing the change of V with respect to time from its original
value. The new value of V can thus be calculated.

(6) Using this new value of V , a next value for the rate of change of V with respect
to time (dV/dt) at the end of the integration time interval can now be calculated.

(7) Knowing the value of V and the value of dV/dt at the end of the integration time
interval, a further value of V can be estimated over a further integration step
forward in time.
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Figure 1.5 Graphical portrayal of
numerical integration, showing slopes
and approximated values of V at each
time interval. The solid line
represents the exact solution, and the
dots show the values resulting from
numerical integration. This method
was actually already published in the
eighteenth century by Swiss scientist
Leonhard Euler. 1           2           3           4           5 
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(8) The entire procedure, as represented by steps (2)–(7) in Figure 1.5, is then
repeated with the calculation moving forward with respect to time, until the
value of F reaches zero. At this point the volume no longer increases, and the
resulting final steady-state value of V is obtained, as well as all the intermediate
values of V and F, which were determined during the course of the calculation.

Using such a numerical integration procedure, the computer can thus be used
to generate data concerning the time variations of both F and V . In practice, more
complex and more powerful numerical procedures are employed in digital simula-
tion languages to give ismproved accuracy and speed of solution (Rasmuson et al.
2014).

1.3 Formulation of Mass Balance Equations

Here we describe mass and energy balances that are based on the conservation of
mass and energy in any closed system.

1.3.1 Types of Mass Balance Equations

Dynamic Total Mass Balances
Based on the principle of conservation of mass, the general total mass balance for a
system is defined as(

Rate of accumulation of
mass in the system

)
=
(

Rate of mass flow
into the system

)
−
(

Rate of mass flow
out of the system

)
Here the rate of accumulation term represents the rate of change in the total mass
of the system, with respect to time.

Steady-state Total Mass Balance
At steady state, i.e. if all variables of a system do not change with time, the rate of
accumulation is zero, and the balance simplifies to(

Rate of mass flow
into the system

)
=
(

Rate of mass flow
out of the system

)
This equation can be applied to total mass and also to individual components as long
as no conversion by reaction is occurring.
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Component Balances
The previous discussion has been in terms of the total mass of the system, but most
fluid streams, encountered in practice, contain more than one chemical or biological
species. Provided no chemical change occurs, the generalized dynamic equation for
the conservation of mass can also be applied to each component. Thus for any par-
ticular component:

⎛⎜⎜⎜⎜⎜⎝

Rate of
accumulation

of mass
of component
in the system

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

Mass flow
of the

component
into

the system

⎞⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎝

Mass flow
of the

component
out of

the system

⎞⎟⎟⎟⎟⎟⎠
Component Balances with Reaction
Where chemical or biological reactions occur, this can be taken into account by the
addition of a further term, the reaction rate, into the generalized component balance.
Thus in the case of material produced by the reaction,

⎛⎜⎜⎜⎜⎜⎝

Rate of
accumulation

of mass
of component
in the system

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

Mass flow
of the

component
into

the system

⎞⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎝

Mass flow
of the

component
out of

the system

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝

Rate of
production

of the
component

by the reaction

⎞⎟⎟⎟⎟⎟⎠
and in the case of material consumed by the reaction the value of the rate of produc-
tion would be negative.

Elemental Balances
The principle of mass balancing can also be extended to the atomic level and applied
to particular chemical elements. Thus in the case of bioreactor operation, the gen-
eral mass balance equation can also be applied to the four main elements, carbon,
hydrogen, oxygen, and nitrogen and also to other elements if relevant to the partic-
ular problem. Thus for the case of carbon,

⎛⎜⎜⎜⎜⎝

Rate of
accumulation
of carbon in
the system

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝

Mass flow rate
of carbon

into
the system

⎞⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎝

Mass flow rate
of carbon

out of
the system

⎞⎟⎟⎟⎟⎠
Note the elemental balances do not involve reaction terms since the elements do not
change by reaction.

PENFERM is based on the use of elemental mass balance equations for C, H, O,
and N, which when combined with other empirical rate data, provide a working
model for a penicillin production process.

While the principle of the mass balance is very simple, its application can often
be quite difficult. It is important therefore to have a clear understanding of both
the nature of the system (physical model), which is to be modeled using the mass
balance equations and also of the methodology of modeling.
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1.3.2 Balancing Procedure

The methodology described below outlines six steps to establish the model balances.
The first task is to define the system by choosing the balance or control region.

Step I. Choose the balance region such that the variables are constant or change little
within the system. Draw boundaries around the balance region.

The balance region may be a reactor, a reactor region, a single phase within a reac-
tor, a single cell, or a region within a cell, but it will always be based on a region of
assumed constant composition. Generally, the modeling exercises will involve some
prior simplification. Often the system being modeled is usually considered to be
composed of either systems of tanks (stagewise or lumped parameter systems) or
systems of tubes (differential systems), or even combinations of tanks and tubes, as
used in Case C.

In a first view, this step of modeling is usually considered the simplest one but
turns out to be probably the most demanding one in more complex real cases. There-
fore, we try to provide a flavor of this step in Chapter 9 where we provide a few cases
of increasing complexity that are modeled with increasing consideration of details.
In this first step, drawing a well-arranged sketch is most important and helps tremen-
dously in creating good models that might be modular and thus expandable. This
step requires the ability to abstract from an often confusing, real physical situation,
e.g. an incompletely mixed reactor or a tissue. This process of abstraction requires a
good knowledge of such physical systems and at the same time the ability to distin-
guish between important and less important issues.

1.3.2.1 Case A: Continuous Stirred Tank Bioreactor
If the tank is well mixed, the concentrations and density of the tank contents are uni-
form throughout. This means that the outlet stream properties are identical with the
properties within the tank, in this case CA and 𝜌. The balance region can therefore
be taken around the whole tank (Figure 1.6).

The total mass in the system is given by the product of the volume of the tank
contents V (m3) multiplied by the density 𝜌 (kg/m3), thus V𝜌 (kg). The mass of any

Balance 
region

, ,AC Vρ

Total mass = 

Mass of A   = A

V

C V

ρ 

0 0, AF C 1, AF C

Figure 1.6 The balance region around the well-mixed continuous reactor.
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component A in the tank is given as the product of V times the concentration of
A, CA (kg of A/m3 or kmol of A/m3), thus V CA (kg or kmol). The mass flow is the
product of volumetric flow F (m3/s) times the density 𝜌 (kg/m3), thus F𝜌 (kg/s).
Correspondingly the mass flow of component A is F CA (kg/s or kmol/s).

1.3.2.2 Case B: Tubular Reactor
In the case of tubular reactors, the concentrations of the products and reactants
will vary continuously along the length of the reactor, even when the reactor is
operating at steady state. This variation can be regarded as being equivalent to that
of the time of passage of material as it flows along the reactor and is equivalent
to the time available for reaction to occur. Under steady-state conditions, the
concentration at any position along the reactor will be constant with respect to time,
though not with position. This type of behavior can be approximated by choosing
the balance regions sufficiently small so that the concentration of any component
within a region can be assumed to be approximately uniform. Thus, in this case,
many uniform property subsystems (well-stirred tanks or increments of volume
elements with each of uniform concentration) comprise the total reactor volume
(Figure 1.7).

Balance region 

0, AF C 1, AF C

AC

Z

Figure 1.7 The tubular reactor
axial concentration gradient and
approximation by segmented
balance regions.

1.3.2.3 Case C: River with Eddy Current
For this example, the combined principles of both the stirred tank and differential
tubular modeling approaches need to be applied. As shown in Figure 1.8, the main
flow along the river is very analogous to that of a column or tubular process, whereas
the eddy region can be approximated by the behavior of a well-mixed tank. The inter-
action between the main flow of the river and the eddy, with flow into the eddy from
the river and flow out from the eddy back into the river’s main flow, must be included
in a realistic model.

The real-life and rather complex behavior of the eddying flow of the river
might thus be represented, by a series of many well-mixed subsystems (or tanks)
representing the main flow of the river. This interacts at some particular stage
of the river with a single well-mixed tank, representing the turbulent eddy. In
modeling this system by means of mass balance equations, it would be necessary
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Figure 1.8 A complex
river flow system.

River 

Eddy

0, AF C

Flow interaction

1 2 3 4 5 6 7 8 9 10 11
11, AF C

7,E AF C,E AEF C

,E AEV C

Figure 1.9 A multi-tank model for the complex river flow system.

to draw boundary regions around each of the individual subsystems representing
the main river flow (sections 1–11 in Figure 1.9) and also around the tank system
representing the eddy indicated by E. This would lead to 12 balance equations being
required for each component. The resulting model could be used, for example, to
describe the flow of a pollutant down the river in rather simple terms.

Step II. Identify the transport streams that flow across the system.

Having defined the balance regions, the next task is to identify all the relevant inputs
and outputs to the system. These may be well-defined physical flow rates (convective
streams), diffusive fluxes, and also interphase transfer rates. As seen in Figure 1.10,
it is important to assume a direction of transfer and to specify this by means of an
arrow. This direction might reverse itself but will be accommodated by a reversal
in sign.

Figure 1.10 Balance region
depicting convective, diffusive,
and interfacial transfer flows in
and out.

Out by interfacial 
transfer

Convective 
flow out 

In by 
diffusion 

Convective 
flow in 

In by interfacial 
transfer

Out by 
diffusion
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Step III. Write the mass balance in word form.

This is an important step because it helps to ensure that the resulting mathematical
equation will have an understandable physical meaning. Just starting off by writing
down equations is often liable to lead to fundamental errors, at least on the part of
the beginner. All balance equations have a basic logic as expressed by the generalized
statement of the component balance given below, and it is very important that the
mathematical equations should retain this. Thus:

⎛⎜⎜⎜⎜⎜⎝

Rate of
accumulation

of mass
of component
in the system

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

Mass flow
of the

component
into

the system

⎞⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎝

Mass flow
of the

component
out of

the system

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝

Rate of
production

of the
component
by reaction

⎞⎟⎟⎟⎟⎟⎠
This can be abbreviated as

Accumulation = In − Out + Production

Step IV . Express each balance term in mathematical form with measurable variables

A. Rate of Accumulation Term
This is given by the derivative of the mass of the system with respect to time. For the
total mass of the system:

dM
dt

= d(𝜌V)
dt

with units
kg
s

=
kg
m3

m3

s
For the mass of some component i within the system, we get(

Rate of accumulation of mass
of component i within the system

)
=

dMi

dt

where mass, M, is in kg or mol and time, t, is in h, min, or s.
Volume, concentration, and, in the case of gaseous systems, partial pressure are

usually the measured variables. Thus for any component i,

dMi

dt
=

d(CiV)
dt

where, Ci is the concentration of i (kmol/m3 or kg/m3). In the case of gases, the Ideal
Gas Law can be used to relate concentrations to partial pressures and mol fractions.

Thus,

piV = niRT

where pi is the partial pressure of i within the gas phase system and ni is the num-
ber of moles of i. The gas constant, R ((m3 Pa)/(K mol)), is in units compatible with
p (Pa), V (m3), n (mol), and T (K).
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In terms of concentration,

Ci =
ni

V
=

pi

RT
=

yip
RT

with units
mol
m3 = Pa K mol

m3 Pa K
where yi is the mole fraction of the component in the gas phase and p is the total
pressure.

The accumulation term for the gas phase can be written as

dMi

dt
=

d(CiV)
dt

=
d
(

piV
RT

)
dt

=
d
(

yipV
RT

)
dt

B. Convective Flow Terms
Total mass flow rates are given by the product of volumetric flow multiplied by
density, and component mass flows by volumetric flow rates multiplied by concen-
trations.(

Convective
mass flow rate

)
=
(

Volumetric
flow rate

) ( Mass
Volume

)
kg
s

= m3

s
kg
m3(

Total mass
flow rate

)
=

•
M = F 𝜌(

Component
mass flow rate

)
=

•
Mi = F Ci

A stream leaving a well-mixed region, such as a well stirred tank, has the same
properties as the system volume as a whole, since for perfect mixing the contents of
the tank will have uniform properties, identical to the properties of the fluid leaving
at the outlet. Thus, the concentrations of component i, both within the tank and in
the tank effluent, are equal to Ci1, as shown in Figure 1.11.

Figure 1.11 Convective flow terms for a
well-mixed tank bioreactor.

F0, Ci0 F1, Ci1

V, Ci1
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0
0,

i
ij C

1
1,

i
ij C

A

ΔZ

Figure 1.12 Diffusion flux ji driven by
concentration gradient (Ci0 − Ci1)/ΔZ through
surface area A.

C. Diffusion of Components
Figure 1.12 depicts the diffusion of a component i through a slab of area A thickness
ΔZ. Diffusional flow contributions are then expressed by Fick’s law for molecular
diffusion

ji = −Di
dCi

dZ

where ji is the flux of any component i flowing across an interface (kmol/m2 s or
kg/m2 s) and dCi/dZ (kmol/m4) is the concentration gradient.

In accordance with Fick’s law, diffusive flow always occurs in the direction of
decreasing concentration and at a rate proportional to the concentration gradient.
Under true conditions of molecular diffusion, the constant of proportionality is equal
to the molecular diffusivity for the system, Di (m2/h). For other cases, such as dif-
fusion in porous matrices and turbulent diffusion, an effective diffusivity value is
used, which must be determined experimentally. The concentration gradient may
have to be approximated in finite-difference terms. Finite-differencing techniques
are described in more detail in Section 6.2. Calculating the total diffusive mass rate,
Ji, requires the area, through which diffusive transfer occurs.

(
Mass rate of
component i

)
=
(

Diffusivity of
component i

)⎛⎜⎜⎝
Area
perpendicular
to transport

⎞⎟⎟⎠
(

Concentration
gradient of i

)

Ji = −Di A
(dCi

dZ

)
In terms of the concentration differences, the flux is

Ji = −DiA
(ΔCi

ΔZ

)
kg
s

= m2

s
m2 kg

m3m
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Figure 1.13 Transfer of oxygen from
gas phase with volume VG across a
gas–liquid interface of area A into a
liquid phase of volume VL. Liquid 

Gas

LV

GV  A  

D. Interphase Transport
Interphase mass transport also represents a possible flow into or out of a system or
balance region and may occur between gas, liquid, and solid phases (G/L, L/L, L/S,
or G/S). In bioreactor modeling applications, this is most frequently represented by
the case of oxygen transfer from air to the liquid medium, followed by oxygen taken
up by the cells during respiration. In this case, the transfer of oxygen occurs across
the gas liquid interface, which exists between the surface of the air bubbles and the
surrounding liquid medium, as shown in Figure 1.13.

Other applications may involve the supply of oxygen to the bioreactor by trans-
fer from the air, across a membrane and then into the bulk liquid. Where there is
interfacial transfer from one phase to another, the component balance equations
will need appropriate modification to consider this. Thus, an oxygen balance for the
well-mixed gas phase, with transfer from the gas to the liquid, can be written as

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Rate of
accumulation

of the
mass of oxygen

in the
gas phase

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

Mass flow
of the

oxygen
into the

gas phase

⎞⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎝

Mass flow
of the

oxygen
out the

gas phase

⎞⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Rate of
interfacial

mass transfer
from the
gas phase
into the

liquid phase

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
This form of transfer rate equation will be examined in much more detail in
Chapter 5. Suffice it to say here that the rate of transfer can be expressed in the form
shown below:⎛⎜⎜⎝

Rate of
mass
transfer

⎞⎟⎟⎠ =
⎛⎜⎜⎝

Mass
transport
coefficient

⎞⎟⎟⎠
⎛⎜⎜⎝

Interfacial
area per
liquid volume

⎞⎟⎟⎠
(

Concentration
driving force

)(
Liquid
volume

)

rMTR = K a ΔC VL

where rMTR is the rate of mass transfer, a is a specific area for mass transfer, A/V
(m2/m3), A is the total interfacial area for mass transfer (m2), V is the liquid phase
volume (m3), ΔC is the concentration driving force (kmol/m3 or kg/m3), and K is
the overall mass transfer coefficient (m/s). Mass transfer rate expressions are usually
expressed in terms of kmol/s and can be converted to mass flows (kg/s), if desired.

The units of the terms in the equation (with appropriate mass quantity units) are
kg
s

= m
s

m2

m3
kg
m3 m3
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E. Production Rate
This term in the component balance equation allows for the production or con-
sumption of material by reaction and is incorporated into the component balance
equation. Thus,

⎛⎜⎜⎜⎜⎜⎝

Rate of
accumulation

of mass
of component
in the system

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

Rate of
mass flow of

the component
into the
system

⎞⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎝

Rate of
mass flow of

the component
out of the

system

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝

Rate of
production

of the
component
by reaction

⎞⎟⎟⎟⎟⎟⎠
Chemical production rates are often expressed on a molar basis, e.g. (mol/m3s), and,
as in the case of the interfacial mass transfer rate expressions, can be easily converted
to mass flow quantities (kg/s). The mass balance equation can then be expressed as

⎛⎜⎜⎝
Mass rate

production of
component A

⎞⎟⎟⎠ = rAV =
(

Reaction rate
per unit volume

)(
Volume of
the system

)
kg A

s
=

kg A
s m3 m3

Equivalent molar quantities may also be used. The quantity rA is positive when A is
formed as product, and rA is negative when a reactant A is consumed.

The growth rate for cells can be expressed in the same manner, using the symbol
rX . Thus,(

Mass rate of
biomass production

)
= rX V =

(
Growth rate
per volume

)(
Volume

of system

)
kg
s

=
kg

s m3 m3

The consumption rate of substrate, rS, is often directly related to the cell growth rate
by means of a constant yield coefficient Y X/S, which has the units of kg biomass
produced per kg substrate consumed. Thus,

⎛⎜⎜⎝
Mass rate

of substrate
consumption

⎞⎟⎟⎠ =
(

Growth rate
per volume

)
(

Biomass yield
on substrate

) (
Volume

of system

)

rSV = −
rX

YX∕S
V

kg
m3 s

m3 =
kg biomass

m3 s
kg substrate
kg biomass

m3

Note that the value of rS will have the opposite sign of rX .

Step V . Introduce other relationships and balances such that the number of equations
equals the number of dependent variables

The system mass balance equations are often the most important elements of any
modeling exercise, but are themselves rarely sufficient to completely formulate
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the model. Other relationships are therefore needed to supplement the material
balance relations, both to complete the model in terms of other important aspects
of behavior and to satisfy the mathematical rigor of the modeling, such that
the number of unknown variables must be equal to the number of defining
equations.

Examples of this type of relationships that are not based on balances, but never-
theless form an important, usually essential part of any model are as follows:

● Stoichiometric or yield relationships for relation between reaction rates or
metabolic fluxes

● Reaction rates as functions of concentration, temperature, and pH
● Ideal gas law behavior
● Physical property correlations as functions of concentration
● Pressure variations as a function of flow rate
● Dynamics of measurement instruments as a function of the instrument response

time
● Equilibrium relationships (e.g. Henry’s law)
● Controller equations
● Correlations of mass transfer coefficient, gas holdup volume, and interfacial area,

as functions of system physical properties and degree of agitation or flow velocity
● Flow as function of pressure

How these and other relationships are incorporated within the development of
particular modeling instances are shown later in the cases given throughout the text
and in the simulation examples.

Step VI. For additional insight with complex problems, draw an information flow dia-
gram

Information flow diagrams can be useful in understanding complex interactions
(Franks 1967). They help to identify missing relationships and provide a graphical
aid to a full understanding of the interactive nature of systems. Such a diagram is
given in the simulation example BATFERM.

1.3.3 Total Mass Balances

In this section the application of the total mass balance principles will be presented.
Consider some arbitrary balance region, represented by the gray area in Figure 1.14.
Mass accumulates within the system at a rate dM/dt, owing to the competing effects
of a convective flow input (mass flow rate in) and an output stream (mass flow
rate out).

Figure 1.14 Balancing the
total mass of an arbitrary
system.

Mass flow 
rate out

Mass flow 
rate in

dM
dt
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The total mass balance is expressed by

⎛⎜⎜⎝
Rate of

accumulation of mass
in the system

⎞⎟⎟⎠ =
(

Mass flow rate
into the system

)
−
(

Mass flow rate
out of the system

)
dM
dt

= (Mass rate in) − (Mass rate out)

or in terms of volumetric flow rates, F, densities, 𝜌, and volume, V :

dM
dt

=
d(V𝜌1)

dt
= F0𝜌0 − F1𝜌1

Indices 0 and 1 represent flow in and flow out. When densities are equal, as in the
case of water flowing in and out of a tank,

dV
dt

= F0 − F1

The steady-state condition of constant volume in the tank (dV/dt = 0) occurs when
the volumetric flow in, F0, is exactly balanced by the volumetric flow out, F1. Total
mass balances therefore are mostly important for those bioreactor-modeling situa-
tions in which volumes are subject to change.

1.3.4 Component Balances for Reacting Systems

Each chemical species can be described with a component balance around an arbi-
trary, well-mixed, balance region, as shown in Figure 1.15.

Species i 
outflow

Species i 
inflow

( )id VC

dt

Figure 1.15 Component balancing for species i.

Thus for any species i, involved in the system, the component mass balance is
given by

⎛⎜⎜⎜⎜⎜⎝

Rate of
accumulation

of mass
of component i
in the system

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

Mass flow
rate of

component i
into the
system

⎞⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎝

Mass flow
rate of

component i
out of the

system

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝

Rate of
production

of
component i
by reaction

⎞⎟⎟⎟⎟⎟⎠
Expressed in terms of volume, volumetric flow rate and concentration, this is equiv-
alent to

d(VCi)
dt

= FinflowCi,inflow − FoutflowCi + routflowV

with units of mass/time:

m3 kg
m3

s
= m3

s
kg
m3 − m3

s
kg
m3 +

kg
m3s

m3 =
kg
s
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1.3.4.1 Case A: Constant Volume Continuous Stirred Tank Reactor
A constant volume, continuous, tank reactor with reaction A→ 2B is considered
here, as shown in Figure 1.16.

Component A is converted to component B in a 1–2 M ratio.
The total mass balance is

d(V𝜌1)
dt

= F0𝜌0 − F1𝜌1

The component balances for A and B are
d(VCA1)

dt
= F0CA0 − F1CA1 + rA1V

d(VCB1)
dt

= F0CB0 − F1CB1 + rB1V

Here it is convenient to use molar amounts, such that each term has the units of
kmol/s.

Since rules of differentiation of products yield

d(VCA) = VdCA + CAdV

we get under constant volume conditions, dV = 0:

d(VCA) = VdCA

d(VCB) = VdCB

and from the total mass balance with constant density, we additionally get F0 = F1.
Thus the two model equations of A and B then simplify to give

dCA1

dt
= F

V
(CA0 − CA1) + rA1

and
dCB1

dt
= F

V
(CB0 − CB1) + rB1

In these two balances, there are four unknowns: CA1, CB1, rA1, and rB1. The kinetics
are assumed to be first order, as often found in biological systems at low concentra-
tion. Then,

Figure 1.16 Continuous stirred,
well-mixed tank reactor with
reaction A→ 2B.

1AC 1BC

V

1ρ

A     2B→

F1, CA1, CB1, ρ1F0, CA0, CB0, ρ0
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rA1 = −k CA1

According to the molar stoichiometry,

rB1 = −2 rA1 = +2 k CA1

Together with the kinetic relations, there are four equations and four unknowns,
thus satisfying the conditions necessary for the model solution. With the initial con-
ditions, CA1 and CB1 at time t = 0, specified, the solution to these two simultaneous
equations, combined with the two kinetic relations, will give the resulting changes of
concentrations CA1 and CB1 as functions of time. The simulation example ENZCON
is similar to this situation.

1.3.4.2 Case B: Semicontinuous Reactor with Volume Change
The reaction and reaction rate data are the same as in the preceding example, but
now the reactor has no effluent stream (Figure 1.17). The operation of the reactor is
therefore semicontinuous or fed batch.

The total mass balance with constant density is
dV
dt

= F0

The component balances with no flow of material leaving the reactor are now

d(VCA)
dt

= F0CA0 + rAV

d(VCB)
dt

= rBV

Note that V must remain within the differential, because the volume of the reactor
contents is now also a variable and is determined by the total mass balance specified
above. The kinetics is as before

rA = −k CA

mol
m3 s

= 1
s

mol
m3

0 0, ,AF C ρ

, ,AV C ρ

A 2B→

Figure 1.17 A semicontinuous, well-mixed
reactor example.
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In terms of moles, the stoichiometry gives,

rB = −2 rA = +2 k CA

With initial conditions for the initial molar quantities of A and B, (VCA, VCB) and
the initial volume of the contents, V , at time t = 0 specified, the resulting system
of equations can be solved to obtain the time-varying quantities VCA(t), VCB(t),
V(t) and hence also concentrations CA and CB as functions of time. Similar variable
volume situations are found in examples FEDBAT, VARVOL, and various others.
There are also examples with repeated feeding and emptying, e.g. REPFED and
REPLCUL.

1.3.4.3 Case C: Steady-state Oxygen Balancing in Fermentation
Calculation of the oxygen uptake rate, OUR, by means of a steady-state oxygen
balance is an important application of component balancing for fermentation. In
the reactor in Figure 1.18, the entering air stream flow rate, oxygen concentration,
here expressed using the molar fraction y, temperature, and pressure conditions are
designated by the subscript 0 and the exit conditions by the subscript 1.

Writing a balance for O2 around the combined gas and liquid phases in the reactor
gives

⎛⎜⎜⎝
Rate of

accumulation
of O2

⎞⎟⎟⎠ =
(

Flow rate
of O2 in

)
−
(

Flow rate
of O2 out

)
−
⎛⎜⎜⎝

Rate of O2
uptake

by the cells

⎞⎟⎟⎠
At steady state, the accumulation terms for both phases are zero and

⎛⎜⎜⎝
Rate of O2

uptake
by the cells

⎞⎟⎟⎠ =
(

Flow rate
of O2 in

)
−
(

Flow rate
of O2 out

)

The assumption of steady-state is usually well justified because of the very low solu-
bility of O2. For gaseous systems, the quantities are often expressed in terms of molar
quantities.

Figure 1.18 Entering air and exit gas during the
continuous aeration of a bioreactor.

1 1 1 1, , ,F y T p

0 0 0 0, , ,F y T p

Air

Off-gas
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Often only the inlet air flow rate, F0, and the mole fraction of O2 in the outlet gas,
y1, are measured. It is often assumed that the total molar flow rate of gas is constant.
This is a valid assumption as long as the number of carbon dioxide moles produced
is nearly equal to the number of oxygen moles consumed.

Converting to molar quantities, using the Ideal Gas Law,

p V = n R T

or in flow terms

p F = N R T

where N is the molar flow rate (mol/s), R is the gas constant ((m3 Pa)/(K mol)), and
F is the volumetric flow rate (m3/s). Thus, for the inlet gas flow,

N0 =
p0

R T0
F0

where N0 is molar flow rate of the oxygen entering. Note that the pressure, p0, and
temperature, T0, are measured at the point of flow measurement.

Assuming N0 = N1, then measurement of N0 gives enough information to calcu-
late oxygen uptake rate, OUR, from the steady-state balance. Thus,

0 = y0N0 − y1N1 + rO2
VL

OUR = −rO2
VL = y0N0 − y1N1

If N0 is not equal to N1, then this equation will give large errors in oxygen uptake
rate, and N1 must be measured, or determined indirectly by an inert balance. This
is explained in detail below.

1.3.4.4 Case D: Inert Gas Balance to Calculate Flow Rates
Differences in the inlet and outlet-gas flow rates of a tank fermenter can be calcu-
lated by measuring one gas flow rate and the mole fraction of an inert gas in the gas
streams. Since inert gases, such as nitrogen or argon, are not consumed or produced
within the system (rinert = 0), their mass rates must therefore be equal at the inlet
and outlet streams of the reactor, assuming steady-state conditions apply. Then for
nitrogen,(

Molar flow of
nitrogen in

)
=
(

Molar flow of
nitrogen out

)
and in terms of mole fractions,

N1yinert1 = N0yinert0

From this balance, calculation of N1 can be made on the basis of a combination of
measurements of N0 and the inert gas partial pressures yinert, at both inlet and outlet
conditions.

N1 = N0
yinert0

yinert1
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Since the inlet mole fraction for nitrogen in air is known, the outlet mole fraction,
yinert1, must be measured. This is often done by difference, having measured the mole
fraction of oxygen and carbon dioxide concentration in the exit gas.

1.4 Additional Relationships

1.4.1 Stoichiometry and Metabolite and Elemental Balancing

Stoichiometry is the basis for any quantitative treatment of chemical and biochem-
ical reactions. In biochemical processes, it is a necessary basis for building kinetic
models.

1.4.1.1 Simple Stoichiometry
The stoichiometry of chemical reactions is used to relate the relative quantities of
the different materials, which react with one another and also the relative quantities
of product that are formed. Most chemical and biochemical reactions are relatively
simple in terms of their molar relationship or stoichiometry. For single reactions,
stoichiometric coefficients are clearly defined and may usually be determined easily.
Some examples are given below:

C3H4O3 + NADH + H+ → C3H6O3 + NAD+

Pyruvic acid Lactic acid

This relation indicates that 1 mol of pyruvic acid reacts with 1 mol of NADH to pro-
duce 1 mol of lactic acid.

Another example of stoichiometry is that of the more complex oxidative decar-
boxylation of pyruvic acid that yields acetyl-CoA:

C3H4O3 + CoA-SH + NAD+ → CH3CO-S-CoA + CO2 + NADH + H+

Pyruvic acid Acetyl-CoA

Stoichiometry relations also describe even more complex pathways and can be writ-
ten with exact molar relationships, like the pentose-phosphate pathway operating in
a fully cyclic mode as shown below.

Glucose + 12NADP+ + ATP + 7H2O → 6CO2 + 12
(
NADPH + H+) + ADP + Pi

where 1 mol of glucose reacted consumes 7 mol of water and produces 6 mol of
carbon dioxide. Here the molar quantities of NADPH and ATP produced and
consumed, respectively, are shown.

For many complex biological reactions, however, not all the elementary reactions
and their contributions to the overall observed reaction stoichiometry are known
(Roels 1983; Bailey and Ollis 1986; Moser 1988; Villadsen et al. 2011).

Thus the case of a general fermentation is usually approximated by an overall reac-
tion equation, where

Substrate + Nitrogen source + O2 → Product + CO2 + H2O
CSCHSHOSO + 𝜈NH3

(t)NH3 + 𝜈O2
(t)O2 → 𝜈Pi

(t)CPiCHPiHOPiONPiN
+𝜈CO2

(t)CO2 + 𝜈H2O(t)H2O
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where the ith product, such as metabolites or biomass, is given by a general formula.
In the case above, the generalized elemental formulae are used for substrate,

biomass, and products, but the nitrogen source is given simply as ammonia.
The stoichiometric coefficients, 𝜈, for each component are taken relative to that
of substrate and their coefficients may vary with time, as a result of changing
fermentation conditions. Some indication as to the relative magnitudes of the
stoichiometric coefficients can be obtained from elemental balancing techniques
or by using the stoichiometry of a large, even genome-scale network. However,
particularly in fermentations using complex media, the problem is so complex that
other concepts, such as the more approximate yield coefficient concept, are used
to relate the relative proportions of materials undergoing conversion during the
fermentation in a more empirical way.

1.4.1.2 Metabolic Network Stoichiometry: Metabolite Balancing
A metabolic network of a cell is basically composed of simple reactions as exempli-
fied above. Whole genome data are presently made publicly available on a dramati-
cally increasing number of organisms, e.g. on KEGG (Kyoto Encyclopedia of genes
and genomes; Kanehisa et al. 2012). This greatly supports metabolite balancing of
whole cells. For practical reasons these networks are usually simplified and can be
made part of a dynamic model.

In Chapter 8, we will derive material balances for whole cells leading to metabo-
lite balancing. The result for intracellular steady state, with neglecting cell volume
increase, is best shown with an example network as given below (Figure 1.19).

This network can be written in matrix form as

0 =

⎡⎢⎢⎢⎢⎣

1 −1 0 0 −1 0 0
0 2 −1 0 −1 0 0
0 0 1 −1 0 1 0
0 0 0 0 1 −1 −1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1
r2
r3
r4
r5
r6
r7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Sr

S A B C

D

P1

P2

P3

E1 E2 E3

E5

E7

E6

E4

E1   : S A
E2   : A 2 B
E3   : B C
E4   : C P1
E5   : A+B D
E6   : D C+P2
E7   : D P3

Figure 1.19 Example
metabolic network with
components. E1 to E7 are
enzymes catalyzing the
corresponding reactions r1
to r7.
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This system has seven unknowns and four equations and is therefore underdeter-
mined. Three measurements would make the system fully determined, e.g. S, P1,
and P2, allowing the determination of r1, r4, and r7 in a batch or continuous culture.
Splitting the system into measured variables, Sm and rm, and in calculated ones, Sc
and rc results in

0 =

⎡⎢⎢⎢⎢⎣

−1 0 −1 0
2 −1 −1 0
0 1 0 1
0 0 1 −1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

r2
r3
r5
r6

⎤⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎣

1 0 0
0 0 0
0 −1 0
0 0 −1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣
r1
r4
r7

⎤⎥⎥⎦ = Scrc + Smrm

and allows the estimation of nonmeasurable fluxes or rates, rc, after inversion of
matrix Sc

rc = −(Sc)−1Smrm

This can be used to calculate intracellular metabolic fluxes if sufficient measure-
ments are available. This method has been used in mammalian cell cultivation
(Niklas et al. 2011; Niklas and Heinzle 2012). Stoichiometric network calculations
can also be coupled to dynamic models if, e.g. the rates of rm are determined by
corresponding kinetics (Dorka et al. 2009). The network stoichiometry can also be
decomposed into elementary modes and then connected to kinetics of, e.g. growth
and substrate uptake (Provost et al. 2006; Zamorano et al. 2013). Experimentally
established but incomplete metabolite balances can also be applied in kinetic
models, e.g. to describe the production of antibodies in mammalian cell culture
(Ben Yahia et al. 2017). See the simulation example on such production using CHO
cells, CHOMAB.

1.4.1.3 Elemental Balancing
The technique of elemental balancing can be represented as follows:

Take the general case of

CHmO1 + aNH3 + bO2 → cCHpOnNq + dCHrOsNt + eH2O + f CO2
Substrate Biomass Product

where c, d, and f are the fractions of carbon converted to biomass, product, and CO2,
respectively.

Elemental balances for C, H, O, and N give

C 1
H m + 3a
O 1 + 2b
N a

=
=
=
=

c + d + f
cp + dr + 2e
cn + ds + e + 2f
cq + dt

In this general problem, there are too many unknowns for the solution method to be
taken further, since the elemental balances provide only four equations and hence
can be solved for only four unknowns. Assuming that the elemental formulae for
substrate, biomass, and product and hence l, m, n, p, q, r, s, and t are defined, there
still remain six unknown stoichiometric coefficients a, b, c, d, e, and f and only four
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5r

2r 3r

4r 1r

6r 7r

2O

substrate
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Ca3Hb3Oc3Nd3

Figure 1.20 Flow inputs into a
system. ri are the fluxes or
reaction rates feeding into the
system.

elemental balance equations. Thus the elemental balances need supplementation by
other measurable quantities such as substrate, oxygen, and ammonia consumption
rates (assuming controlled pH conditions) and carbon dioxide or biomass produc-
tion rates, to satisfy the condition that the number of unknowns is equal to the
number of defining equations. In principle, the problem then becomes solvable. In
practice, there can be considerable difficulties and inaccuracies involved, although
the technique of elemental balancing can still provide useful data. The application
of so-called macroscopic principles (Roels 1983; Heijnen and Roels 1981) introduces
a more strict systematic system of analysis (depicted in Figure 1.20).

The system is represented here in terms of the various flow inputs, where r is the
corresponding flow vector

r =
[
r1 r2 r3 r4 r5 r6 r7

]
The steady-state balance for the system is then represented by:

E × r′ = 0

where E is the elemental composition matrix

E =

⎡⎢⎢⎢⎢⎣

a1 a2 a3 a4 0 1 0
b1 b2 b3 b4 0 0 2
c1 c2 c3 c4 2 2 1
d1 d2 d3 d4 0 0 0

⎤⎥⎥⎥⎥⎦

(C)
(H)
(O)
(N)

The combination of seven unknown quantities and four elemental balance
equations leaves three independent quantities. Thus assuming fluxes r1 (biomass),
r2 (substrate), and r3 (product) are known, the unknown fluxes r4, r5, r6, and r7
can be obtained by methods of linear algebra given in detail by Roels (1983) and
later Villadsen et al. (2011) using the term “black box” stoichiometry. The system is
also completely determined if three kinetic expressions are available, e.g. for r1, r2,
and r3.
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In more complex cases with growth and product formation, more information is
needed. The introduction of the concept of the degree of reduction is useful (Erick-
son et al. 1978). For organic compounds, this is defined as the number of equivalent
available electrons per gram atom C that would be transferred to CO2, H2O, and
NH3 upon oxidation. Taking charge numbers C = 4, H = 1, O = −2, and N = −3,
reductance degrees, 𝛾 , can be defined for

Substrate(S) 𝛾S
Biomass(X) 𝛾X
Product(P) 𝛾P

= 4 + m − 2l
= 4 + p − 2n − 3q
= 4 + r − 2s − 3t

The reductances for NH3, H2O, and CO2 are of course zero.
Often the elemental composition of the substrate is not known, and then the

reductance method may be supplemented by the following regularities, which
apply to a wide variety of organic molecules.

QO2
= 27 J/g equivalent of available electrons transferred to oxygen

𝛾X = 4.29 g equivalent of available electrons per equivalent 1 g atom C in biomass
𝜎X = 0.462 g carbon/g dry biomass

1.4.2 Yield Coefficients

1.4.2.1 Mass Yield Coefficients
Yield coefficients are biological variables resulting from a certain metabolic network
activity, which are used to relate the ratio between various consumption and produc-
tion rates or fluxes of mass and energy. Thus they are representing the lumped stoi-
chiometry of a complex system. They are typically assumed to be time-independent
and are calculated on an overall basis. This concept should not be confused with the
overall yield of a reaction or a process. The biomass yield coefficient on substrate,
Y X/S, is defined as

YX∕S =
rX

rS

In batch systems, reaction rates are equal to accumulation rates, and therefore

YX∕S = −

(
dCX

dt

)
(

dCS

dt

) = −
dCX

dCS

After integration from time 0 to time t, the integral value is obtained:

YX∕S =
Amount of biomass produced

Total amount of substrate consumed

YX∕S =
CX (t) − CX (t = 0)
CS(t = 0) − CS(t)

For a steady-state continuous system, the mass balances give

YX∕S =
rX

rS
=

CX1 − CX0

CS0 − CS1

where index 0 and 1 indicate feed and effluent values, respectively.
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Table 1.1 Typical mass and energy yield values.

Type of yield coefficient Unit Value

Y X/S,aer C-mol/C-mol 0.4–0.7
Y X/S,anaer C-mol/C-mol 0.1–0.2
YX∕O2

(glucose) C-mol/mol 1–2
Y X/ATP C-mol/mol 0.35
YQ∕O2

kJ/mol 380–490
YQ∕CO2

kJ/mol 460
Y Q/X,aer (glucose) kJ/C-mol 325–500
Y Q/X,anaer kJ/C-mol 120–190

Note: The molecular weight of biomass is taken here as 24.6 g/C-mol
where C-mol denotes the number of moles of carbon.
Source: Data from Roels (1983); Moser (1988); Atkinson and Mavituna
(1991) and Villadsen et al. (2011).

In the literature, yield coefficients for biomass with respect to nutrients are most
often used (Mou and Cooney 1983; Roels 1983; Moser 1988; Villadsen et al. 2011). In
many cases, this is very useful because the biomass composition is quite uniform and
often product selectivity does not change very much during an experiment involving
exponential growth and associated production. Some useful typical values are given
in Table 1.1.

The yield coefficients are usually determined as a result of a large number of ele-
mentary biochemical reactions, and it can easily be understood that their values
might vary depending on environmental and operating conditions leading, e.g. to
different growth phases. A detailed description of some of these dependencies is
given in the literature. Despite their variability though within often small ranges,
measured yield coefficients are often very useful for practical purposes of process
description and modeling. Such yield coefficients are used in almost all simulation
examples comprising growth of microorganisms or animal cells.

1.4.2.2 Selectivity
Selectivity (Si,j) describes ratios of rates as well but usually the ratio of a desired
product to the total production rate or to the production rate of one specific product.

Si,j =
ri

rj

1.4.2.3 Energy Yield Coefficients
Energy yield coefficients may be defined similar to mass yield coefficients.

In terms of oxygen uptake,

YQ∕O2
=

rQ

rO2

= Amount of heat released
Amount of oxygen consumed
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In terms of carbon substrate consumed,

YQ∕S =
rQ

rS
= Amount of heat released

Amount of carbon consumed

1.5 Thermodynamics and Equilibrium Relationships

1.5.1 Reaction Enthalpy

All chemical reactions are inherently related to changes in enthalpy, ΔHr , the
enthalpy of reaction that can be calculated from heats of formation or heats of
combustion

ΔHr =
n∑

n=1
viΔHFi =

n∑
n=1

viΔHCi

where ΔHFi is the heat of formation of component i, ΔHCi is the heat of combus-
tion of component i, and vi is the stoichiometric coefficient for component i. Usually
ΔHr < 0 and therefore heat is released to the environment during reaction (Ingham
et al. 2000; Villadsen et al. 2011). Enthalpies of reaction are essential parts of energy
balances of biochemical processes.

1.5.2 Chemical Equilibrium

The second most important relationship describes chemical equilibrium. For a typ-
ical biochemical reaction

A + B ⇌ C + D

the equilibrium constant, Keq, is defined as

Keq =
CCCD

CACB

for low aqueous concentrations Ci that are specified as molar concentrations. The
equilibrium constant is related to the free enthalpy, ΔGr

ΔGr = ΔG0
r + RT ln Keq

where R is the universal gas constant and T the absolute temperature. ΔGr
0 is the

standard free enthalpy, usually at T = 25 ∘C, all reacting species are 1 M concen-
tration, and in biochemical reactions pH = 7. Equilibrium is reached if ΔGr = 0.
An exergonic reaction is characterized by ΔGr < 0 and can proceed spontaneously
or catalytically accelerated by an enzyme. For a more detailed discussion, see, e.g.
Villadsen et al. (2011).

1.5.3 Receptor Binding

A typical equilibrium reaction is the dissociation of a receptor-protein ligand com-
plex, LP, into the free ligand protein, L, and the receptor protein, P:
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LP
k1−−−−−⇀↽−−−−−

k−1

L + P

This reaction is characterized by the corresponding dissociation equilibrium con-
stant KD

KD =
CL CP

CLP
=

k1

k−1

Such relationships can be used to express the concentration of free protein P in an
explicit function of concentration of the total concentration, CPtot, and the free ligand
concentration, CL, by adding a protein balance.

CPtot = CP + CLP

CP = CPtot
KD

CL + KD

Such type of equilibrium interactions exist for many biological component pairs, e.g.
metabolite/protein, drug/transporter protein, protein/DNA, etc.

In more complex cases with interactions of various receptors or with a buffer sys-
tem containing several components, it is not possible to express the concentrations in
explicit forms and a nonlinear algebraic equation has to be solved during the simula-
tion. The implementation of such problems into Madonna is shown below with the
example of pH calculation. See also simulation examples ANAMEAS and DCMDEG.

1.5.4 Case A: Calculation of pH with an Ion Charge Balance

Modeling systems with variable pH requires modeling of acid–base equilibria, whose
reactions are almost instantaneous. Production of acids or bases causes a variation
of pH, which depends on the buffer capacity of the system. pH also influences the
biological kinetics. It has been shown that only the non-dissociated acid forms are
kinetically important substrates in anaerobic systems. The concentration of these
species is a function of the pH as can be seen in the equilibrium equation

Acid ⇌ Base− + H+

with dissociation constant

KD =
CBase− CH+

CAcid

where CAcid is the concentration of the non-dissociated acid and CBase− is the con-
centration of the corresponding base (salt).

An ion charge balance can be written as∑(
Cations × Charge

)
=
∑(

Anions × Charge
)

The conservation of charge is actually a special form of mass balance considering
the mass of electrons. In the pH range of interest (usually around pH = 7), all strong
acids and strong bases are completely dissociated. Moderately strong acids and bases
exist in both the dissociated and non-dissociated forms.
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In the usual pH range, the sum of the cations are much larger than the H+ ions.∑
CK+ >> CH+

where
∑

CK+ is the total cation concentration.
Negative ions not only originate mainly from strong acids (e.g. Cl−, SO4

2−)
but also arise from weak acids, e.g. acetic, propionic, butyric, and carbonic acids
(Ac−, Pr−, Bu−, HCO3

−). In biological systems, the concentration of CO3
2− is always

much smaller than that of HCO3
−.

The ion balance reduces to∑ KBi

KBi +
KW
CH+

CBtot,i +
∑

CK+ =
∑ KAi

KAi + CH+
CAtot,i +

∑
CA−

where KAi are the acid dissociation constants (e.g. KAc); KBi are the base dissociation
constants (e.g. KNH3

); KW is the dissociation constant of water; CBtot,i are the total
concentrations of base i;

∑
CAn−. is the sum of the cation concentrations; CAtot,i are

the total concentrations of acid i; and
∑

CA− is the sum of the anion concentrations.
The pH can be estimated from the above equation for any situation by solving the

resulting nonlinear implicit algebraic equation, provided the total concentrations of
the weak acids, CAtot,i, weak bases, CBtot,i, cations of strong bases, CK+ , and anions of
strong acids, CA− , are known.

It is convenient to use only the difference between cations and anions, CZ:

CZ =
∑

CK+ −
∑

CA−

After neglecting any ammonia buffering effect, it is useful to rearrange the above
equations in the form,

𝛿 =
∑ Ki

Ki + CH+
Ctot,i − CZ

To satisfy equilibrium conditions, 𝛿 should be zero. The example ANAMEAS
includes this ion balance for pH calculation. This equation represents an algebraic
loop in a dynamic simulation, which is solved by iteration at each time interval
until 𝛿 approaches zero. This is accomplished with the root-finding function of
BERKELEY MADONNA.

For pH control, a strong base or acid is usually added. The addition of strong alkali
for pH control would cause an increase in

∑
CK+ , which in accordance with the

above equation would result in a decrease of CH+ .
An alternative approach, which avoids an algebraic loop, is to treat the instan-

taneous equilibrium reactions as reactions with finite forward and backward rates.
These rates must be adjusted with their kinetic constants to maintain the equilib-
rium for the particular system; that is, these rates must be very fast compared with
the other rates of the model. This approach replaces the algebraic loop iteration with
a stiffer and larger set of differential equations, which could be an advantage in some
cases.

In simple cases, only one buffer system is present, e.g. bicarbonate. Then an
explicit solution for the pH can be obtained as shown in the simulation example
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DCMDEG. In MADONNA this is very helpful for staged systems, since root finding
with arrays is not supported there.

1.6 Energy Balancing for Bioreactors

Energy balances are needed whenever temperature changes are important, as caused
by reaction heating effects or by cooling and heating for temperature control. For
example, such a balance is needed when the heat of fermentation causes a variation
in bioreactor temperature. Energy balances are essential for modeling heat steriliza-
tion processes. Energy balances are written following the same set of rules as given
above for mass balances in Section 1.3. Thus the general form is as follows:

⎛⎜⎜⎝
Accumulation

rate of
energy

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎝

Rate
of

energy
in by
flow

⎞⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎝

Rate
of

energy
out by
flow

⎞⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎝

Rate of
energy
out by

transfer

⎞⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝

Rate of
energy

generated
by

reaction

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝

Rate of
energy
added

by
agitation

⎞⎟⎟⎟⎟⎟⎠
In a general case it includes all forms of energy. The above balance in word form is
now applied to the case of a continuous reactor as shown in Figure 1.21.

Considering only those forms of energy that are relevant in biological reaction
systems, we can get an easily applicable form of the energy balance equation. An
exact derivation of this was given by Aris (1989) and results in

S∑
i=1

(ni1cpi1)
dT1

dt
= F0

∑
(Ci0(hi0 − hi1)) + UA(Ta − T1) + rQV

where ni is the number of moles of component i, cpi is the partial molar heat capaci-
ties, and hi is the partial molar enthalpies. In this equation, the rate of heat produc-
tion, rQ, changes at temperature T1. If the heat capacities, cpi, are independent of
temperature, the enthalpies at T1 can be expressed in terms of heat capacities as

hi1 = hi0 + cpi(T1 − T0)

ρ0 0 0 0 0 0, , , , ,i i pF C h c T ρ
1 1 1 1 1 1, , , , ,i i pF C h c T

, , aU A T

Qr

1 1 1, , ,i iV C h T

Qagitr Figure 1.21 A continuous tank
bioreactor giving flows with
energy-related variables.
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and with
S∑

i=1
(ni0cpi0) ≈

S∑
i=1

(nicpi) = V𝜌cp

We eventually get the energy balance form as provided below:

V𝜌cp
dT1

dt
= F0𝜌cp(T0 − T1) + UA(Ta − T1) + rQV

The units of each term of the equation are energy per time (kJ/s or kcal/s). This form
is usually applied after neglecting agitation heat effects.

In highly agitated reactors, the heat dissipated by the stirrer may become impor-
tant and is characterized by rQagit. This term may be particularly important in
slowly growing and viscous cultures. In aerated bioreactors, rQagit usually has values
between 1 and 10 kW/m3.

In aerated bioreactors, an additional heat flow term related to the evaporation of
water may also be significant. Gas introduced into the reactor is usually dry and does
therefore not contain any water vapor. Evaporation of water changes its enthalpy
causing heat removal from the reactor liquid at a rate rQevap.

The resulting modified energy balance is

V𝜌cp
dT1

dt
= F0𝜌cp(T0 − T1) + UA(Ta − T1) + rQV − rQevapV + rQagit

1.6.1 Accumulation Term

Densities and heat capacities of liquids can be taken as essentially constant. The term

V𝜌cp
dT
dt

has units of

m3 kg
m3

kJ
kg K

K
s
= kJ

s
Here (𝜌 cp T) is an energy “concentration” term and has quantities of( Mass

Volume

)(
Energy

Mass Degree

)
(Degree) =

(
Energy
Volume

)
Thus the accumulation term has the quantities of energy/time and units of kJ/s.
This term is actually describing the accumulation of energy in the form of heat and
is therefore often called heat accumulation.

1.6.2 Flow Term

The liquid flow term is

(Heat flow term) = F0𝜌cp(T0 − T1)

which comprises the quantities(
Energy
Time

)
=
(Volume

Time

)(
Energy
Volume

)
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and has units
kJ
s

= m3

s
kg
m3

kJ
kg K

K

This term actually describes heating of the stream entering the system with T0 to
the reaction temperature T1. It is important to note here that this term is exactly the
same for a continuous reactor as for a fed-batch system.

1.6.3 Water Evaporation Term

An additional flow term is related to the heat of evaporation of volatiles, primarily
water, from the fermentation fluid as shown in Figure 1.22.

ρ0 0, , ,pF c T ρ1 1, , ,pF c T

, , aU A T

Qr

1,V T

Qagitr

PH2O, sat, T1

rQevap, FG

Figure 1.22 A continuous tank
fermenter giving flows with
energy-related variables.

In most cases the incoming gas, i.e. air, is dry because it was compressed leading
to condensation of water. The gas leaving the reactor will be saturated with water at
typical operating conditions (Oeggerli and Heinzle 1994). The resulting molar flow
of water out of the reactor, NH2O, is

NH2O =
pH2O,satFG

VLRT
and has units of

mol
m3s

=
kPa m3

s

m3 m3kPa
K mol

K

Together with the molar heat of evaporation, we get the respective heat flow, rQevap

rQevap = NH2OΔHevap

with units of
kJ

m3s
= mol

m3s
kJ

mol
With T = 303 K, pH2O,sat = 4.25 kPa, R= 8.315 m3 Pa/K mol, andΔHevap = 40.8 kJ/mol,
the heat removal rate has values of rQevap of 0.122 and 1.22 kJ/m3 s at gas flow rates
of 0.1 and 1 vvm (volume gas [volume liquid]−1/min). This is usually significantly
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smaller than the reaction heat term but creates a constant bias at constant flow rate
and temperature. Reducing the gas flow rate will proportionally reduce rQevap. In
this way one can estimate whether inclusion of an evaporation term in the energy
balance is required or not.

1.6.4 Heat Transfer Term

The heat transfer term is

(Heat transfer rate) = UA(Ta − T1)

The important quantities in this term are the heat transfer area A, the temperature
driving force or difference (Ta −T1), where Ta is the temperature of the heating or
cooling source, and the overall heat transfer coefficient, U. The heat transfer coeffi-
cient, U, has the quantities of energy/(time area degree) with units kJ/(s m2 K).

The quantities for UAΔT are thus(
Energy
Time

)
=
(

Energy
Area Time Degree

)
(Area)(Degree)

with units
kJ
s

= kJ
Km2s

m2K

The sign of the temperature difference determines the direction of heat flow. Here if
Ta > T1 heat flows into the reactor.

1.6.5 Reaction Heat Term

The reaction heat term is defined as

(Reaction heat term) = rQV

rQV gives the rate of heat released by the bioreaction and has quantities of(
Energy
Time

)
=
(

Energy
Volume Time

)
(Volume)

and units
kJ
s

= kJ
m3s

m3

The rate term rQ can alternatively be written in various ways as follows.
In terms of substrate uptake and a substrate-related heat yield,

rQ = rSYQ∕S

In terms of oxygen uptake and an oxygen-related heat yield,

rQ = rO2
YQ∕O2

In terms of a heat of reaction per mole of substrate and a substrate uptake rate,

rQ = ΔHr,SrS
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Here rS is the substrate uptake rate and ΔHr,S is the heat of reaction for the sub-
strate, for example, kJ/mol or kcal/kg. The ΔHr,S rS term therefore has quantities of
energy/(time volume) and is equal to rQ.

Simulation examples using energy balances are TEMPCONT, FERMTEMP, BAT-
STER, and PENFERM.

1.6.6 Case B: Determining Heat Production Rate of a Batch
Fermentation

For a constant-volume batch reactor with no agitation heat effects, as depicted in
Figure 1.23, the reactor energy balance is(

Accumulation rate
of heat

)
= −

(
Energy out
by transfer

)
+
(

Heat generated
by reaction

)

V1𝜌1cp
dT1

dt
= −UA(T1 − Ta) + rQV1
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Figure 1.23 A batch-stirred
tank bioreactor with cooling
jacket.

Combined with the energy balance of a cooling jacket with the assumption of
well-mixing,

VJ𝜌CcpC
dTa

dt
= F0𝜌CcpC(T0 − Ta) + UA(T1 − Ta)

where F0 is the coolant stream with entering temperature T0. At constant temper-
atures (dTi/dt = 0), and after combining both equations, we get for specific rate of
heat production

rQ =
F0𝜌CcpC

V1
(T0 − Ta).

1.6.7 Case C: Determining Heat Transfer Area or Cooling Water
Temperature

If we want to determine the heat transfer area of the reactor depicted in Figure 1.23,
we may also use known respiration data of the organism of interest. For aerobic fer-
mentation, the rate of heat production per unit volume of reactor is usually directly
related to the oxygen uptake rate, rO2

, as described above (see also Table 1.1).

rQ = rO2
YQ∕O2
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After rearrangement of the reactor balance equation of Case A, we get

dT1

dt
= UA

V𝜌cp
(Ta − T1) + rO2

YQ∕O2

1
𝜌cp

If the temperature is kept constant (dT1/dt = 0),

UA(Ta − T1) = rO2
YQ∕O2

V

(
Heat transfer rate

)
= (Rate of heat release)

Using this steady-state energy balance, one can calculate the required heat transfer
area for a given cooling water temperature and heat production rate.

A =
rO2

YQ∕O2
V

U(Ta − T1)

To determine the heat transfer coefficient, U, electrical heating can be applied
replacing the biological heat formation term.

A =
Qel

U(Ta − T1)

Qel is the heat production rate by the electrical heating system (kJ/s). Using this
steady-state energy balance, it is possible to calculate the needed cooling water tem-
perature (Ta) for a given oxygen uptake rate and cooling device after rearrangement
of the equation:

Ta =
rO2

YQ∕O2
V + UAT1

UA
In this way one can check whether a certain heat production rate can be reached
while keeping the reactor temperature at T1 if cooling water at Ta is available. Higher
heat production rate would require much more expensive cooling systems.

Alternatively this same relation can be used to calculate the biomass concentra-
tion allowable for a given cooling system and available cooling water temperature,
knowing the specific oxygen uptake rate (kg O2/kg biomass h).

1.7 Time Constants

Time constants are characteristic parameters that describe the response of a
first-order system to a step input. In the context of this book, first-order systems
are, e.g. first-order chemical/biochemical reactions, dynamic response of a sensor,
mixing in a well-mixed tank. In systems only comprising processes of first order,
time constants can be used to compare the time behavior of these processes in a
strict sense. Time constants can, however, also be defined for process of orders
different from one but only in an approximate way. This is very useful to set up
dynamic processes. We can e.g. identify that for growth of microorganisms the time
constant is roughly of the order of hours, whereas e.g. evolution has a time constant
that is much longer and the dissociation of an enzyme–substrate complex is much
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faster than growth. Therefore, we do not have to consider the latter processes for
setting up a growth model. Time constants can be used to discover whether a
change of regime occurs during scale up. Generally, they can be applied for an
order-of-magnitude analysis. Time constants can also be used to determine whether
the overall rate of a process is limited by a particular rate process, e.g. by kinetics,
mass transfer, mixing, or diffusion.

In many biological systems, processes with large ranges of time constants have to
be. Usually it is important to start with a simplification of a system focusing on the
most important time constant or rate. For example, if the growth of an organism is
to be modeled with a time constant of the order of hours, it is very useful to ignore
all aspects of biological evolution with time constants of years. Also fast equilibrium
reactions or conformational changes of proteins having time constants below mil-
liseconds should be ignored. Fast reactions can, however, be very important when
considering allosteric activation or deactivation of proteins or simply pH changes
during biochemical reactions. pH changes can have dramatic effects on the enzyme
and microbial activity but can also strongly influence absorption and desorption of
carbon dioxide (Section 1.5.4).

Time constants are used in many simulation examples, e.g. OXDYN, KLA-
DYN, ELECTFIT, KLAFIT, TITERDYN, TITERBIO, BIOFILM, CELLDIFFBEAD,
CELLDIFFCYL, TURBCON, ADAPTOXCONT, and PLASMID.

1.7.1 Derivation from Differential Equations

Ideally, time constants are derived from their governing differential equations. A
general first-order process is described by

𝜏
dy
dt

+ y = y0

Here, 𝜏 is the time constant (s). In this book, we often derive and use the same
equation in this form

dy
dt

=
y0 − y
𝜏

Integration of this equation yields

y = y0(1 − e−t∕𝜏 )

For t = 𝜏, we get

y𝜏 = y0(1 − e−1) = 0.632y0

The first-order response to a step change in an incoming signal is depicted in
Figure 1.24. It also shows a straightforward determination of 𝜏 by just taking the
time at a response of 0.632 of the final value. This procedure may be very useful for
a quick determination of a sensor time constant that may be applied in a control
circuit, as described in Sections 7.2.1 and 7.3.3, and related simulation examples. It
may also be applied for the dynamic determination of mass transfer using e.g. an
oxygen probe (Section 5.3.1.3)
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Figure 1.24 First-order
response of a process after
a step change.
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As described in Section 4.1.2, the time constant for pure mixing a well-mixed reac-
tor, 𝜏mix is V/F. The time constant of a reaction of first order is 𝜏r = 1/k. A diffusion
time constant is derived from Fick’s Law as shown in Section 6.2.3, 𝜏mix = L2/D,
where L (m) is the diffusion length and D (m2/s) the diffusion coefficient.

1.7.2 Derivation from Capacity and Rate

An alternative definition of time constants uses capacity and rate (Table 1.2). The
time constant is then

𝜏 = time constant =
capacity

rate
These and other time constants are used throughout this book and particularly in

simulation examples.

Table 1.2 Time constants defined by capacity and rate.

Description Symbol Capacity symbol Units Rate symbol Units

Traveling time 𝜏 L m v m/s
Residence time 𝜏 V m3 F m3/s
Mass transfer 𝜏ht V C kmol V kLa C kmol/s
Reaction time 𝜏r V C kmol V rC kmol/s
Heat transfer 𝜏ht V 𝜌 cp dT J U A dT J/s
Heat production 𝜏hp V 𝜌 cp dT J V rQ J/s
Diffusion time 𝜏D V C kmol (A D C)/L kmol/s




