Contents

List of Contributors XI Preface XIII

1 Green Chemistry Metrics 1

David J.C. Constable

- 1.1 Introduction and General Considerations 1
- 1.2 Feedstocks 5
- 1.3 Chemicals 6
- 1.3.1 Hazard and Risk 6
- 1.4 General Chemistry Considerations and Chemistry Metrics 10
- 1.5 Evolution of Green Chemistry Metrics 11
- 1.6 Andraos: Tree Analysis 14
- 1.7 Process Metrics 15
- 1.8 Product Metrics 16
- 1.9 Sustainability and Green Chemistry 17
- 1.10 Making Decisions 18

References 19

2 Expanding Rational Molecular Design beyond Pharma: Metrics to Guide Safer Chemical Design 29

Nicholas D. Anastas, John Leazer, Michael A. Gonzalez, and Stephen C. DeVito

- 2.1 Introduction to Safer Chemical Design 29
- 2.2 Life Cycle Thinking 30
- 2.2.1 Sustainability, Green Chemistry, and Green Engineering 30
- 2.2.2 Life Cycle Considerations 31
- 2.2.3 Life Cycle Assessment 32
- 2.2.4 Chemical Process Sustainability Evaluation Metrics 34
- 2.3 Attributes of Chemicals of Good Character 36
- 2.4 Tools for Characterizing the Attributes of Chemicals of Good Character 37
- 2.4.1 Strive to Reduce or Eliminate the Use of Chemicals 40
- 2.4.2 Maximize Biological and Use Potency and Efficacy 40

v

VI Contents

0.4.0	Stuine for From one in Effection on 10
2.4.3	Strive for Economic Efficiency 40
2.4.4	Limited Bioavailability 41
2.4.5	Limited Environmental Mobility 41
2.4.6	Design for Selective Reactivity: Toxicity 41
2.4.7	Minimize the Incorporation of Known Hazardous Functional Groups:
	Toxicophores and Isosteres 42
2.4.8	Minimize the Use of Toxic Solvents 42
2.4.9	Limited Persistence and Bioaccumulation 43
2.4.10	Quick Transformation to Innocuous Products 44
2.4.11	Avoid Extremes of pH 44
2.5	A Decision Framework 44
2.5.1	A Suggested Protocol for Approaching Safer Chemical Design 45
2.5.2	Alternatives and Chemical Risk Assessment 45
2.6	The Road Ahead: Training of a Twenty-First Century Chemist 46
	References 46
-	
3	Key Metrics to Inform Chemical Synthesis Route Design 49
0.1	John Andraos and Andrei Hent
3.1	Introduction 49
3.2	Material Efficiency Analysis for Synthesis Plans 50
3.3	Case Study I: Bortezomib 56
3.3.1	Millennium Pharmaceuticals' Process 59
3.3.2	Pharma-Sintez Process 62
3.3.3	Material Efficiency – Local and Express 64
3.3.4	Synthesis Strategy for Future Optimization 72
3.3.5	Summary 73
3.4	Case Study II: Aspirin 74
3.4.1	Reaction Network 74
3.4.2	Material Efficiency 76
3.4.3	Environmental and Safety–Hazard Impact 78
3.4.4	Input Energy 84
3.4.5	Case I 84
3.4.6	Case II 85
3.4.7	Case III 85
3.4.8	Case IV 85
3.4.9	Case V 86
3.4.10	Case VI 86
3.4.11	Concluding Remarks and Outlook for Improvements 88
	References 91
4	Life Cycle Assessment 05
4	Life Cycle Assessment 95
4.1	Concepción Jiménez-González
4.1	Introduction 95
4.2	The Evolution of Life Cycle Assessment 96
4.3	LCA Methodology at a Glance 97

- 4.3.1 Goal and Scope 98
- 4.3.2 Inventory Analysis 98
- 4.3.3 Impact Assessment 99
- 4.3.4 Interpretation 99
- 4.3.5 LCI/A Limitations 100
- 4.3.6 Critical Review 101
- 4.3.7 Streamlined Life Cycle Assessment 102
- 4.4 Measuring Greenness with LCI/A Applications 103
- 4.4.1 Probing Case Studies 103
- 4.4.2 Chemical Route Comparison 106
- 4.4.3 Material Assessment 109
- 4.4.4 Product LCAs 112
- 4.4.5 Footprinting 115
- 4.5 Final Remarks 117
 - References 118

5 Sustainable Design of Batch Processes 125

Tânia Pinto-Varela and Ana Isabel Carvalho

- 5.1 Introduction 125
- 5.2 State of the Art 126
- 5.2.1 Design and Retrofit of Batch Processes 127
- 5.2.2 Sustainability Assessment 131
- 5.3 Framework for Design and Retrofitting in Batch Processes 136
- 5.3.1 Economic Assessment 138
- 5.3.2 Environmental Assessment 139
- 5.3.3 Social Assessment 140
- 5.3.4 Methodologies 141
- 5.4 Case Studies 142
- 5.4.1 Retrofit Sustainable Batch Design 142
- 5.4.2 Design of Batch Process 147
- 5.5 Conclusions 150 References 152
- 6 Green Chemistry Metrics and Life Cycle Assessment for Microflow Continuous Processing 157

Lihua Zhang, Qi Wang, and Volker Hessel

- 6.1 Introduction 157
- 6.1.1 Green Chemistry and Green Engineering in the Pharmaceutical Industry *157*
- 6.1.2 Green Metrics and Life Cycle Assessment 158
- 6.1.3 Continuous Processing at Small Scale 159
- 6.2 Environmental Analysis through Green Chemistry Metrics and Life Cycle Assessment 162
- 6.2.1 Green Chemistry Metrics *162*
- 6.2.2 Life Cycle Assessment (LCA) 163

VIII Contents

6.3	Application of Green Chemistry Metrics and Life Cycle Assessment to Assess Microflow Processing 163
6.3.1	Use as Benchmarking Tool for Continuous versus Batch; at Lab and
0.5.1	Production Scale 164
6.3.2	Use as Decision Support Tool for Single Innovation Drivers – Choice
	of Type of Microreactor and Type of a Catalyst
	(Including Use/Not Use) 167
6.3.2.1	Reaction Conditions of Batch Process and Continuous Microflow
	Process 167
6.3.2.2	SLCA Results 168
6.3.2.3	Economic Evaluation 170
6.3.2.4	Conclusions 171
6.3.3	Use as Decision Support Tool for Single Innovation Drivers – Solvent
	Choice and Role of Recycling 171
6.3.4	Use as Decision Support Tool for Bundled Innovation Drivers Such as
	Multifacetted Process Optimization versus Process
	Intensification 174
6.3.4.1	API Production Process at Sanofi 174
6.3.4.2	Process Alternatives for Optimization and Intensification 174
6.3.4.3	Ecological Profile Comparison of Crude Batch and Continuous
	Operation 175
6.3.4.4	Cost Analysis of Batch and Continuous Operation 178
6.3.4.5	Conclusions 179
6.3.5	Cascading Reactions Into a Microreactor Flow Network – Greenness
	of Multistep Reaction/Separation Integration 179
6.3.5.1	LCA Study for Single-Step Analyses in Batch and Flow 181
6.3.5.2	LCA Study for "Two-Reactor Network" Process Designs 184
6.3.5.3	LCA Study for "Three-Reaction Network" Process Designs 184
6.3.6	Use as Process-Design Guidance and Benchmarking Tool Against
0.3.0	Conventional Processes 186
6.3.6.1	Process Simulation and CAPEX Cost Study 188
6.3.6.2	LCA for Continuous Flow Synthesis of ADA 190
6.3.6.3	LCA for Two-Step Conventional Synthesis of ADA 191
6.3.6.4	Complete LCA Picture 191
6.3.6.5	Green Metrics Compared for the Direct Microflow Route and
	Conventional Two-Step Route 192
6.3.6.6	Conclusions 194
6.4	Economic Analysis and Snapshot on Applications with Continuous
	Microflow Processing 195
6.4.1	Life Cycle Costing (LCC) 195
6.4.2	Snapshot on LCC Applications with Continuous Microflow
	Processing 196
6.5	Conclusions and Outlook 199
	References 201

Contents IX

7	Benchmarking the Sustainability of Biocatalytic Processes 207
	John M. Woodley
7.1	Introduction 207
7.2	Biocatalytic Processes 207
7.3	Biocatalytic Process Design and Development 210
7.4	Sustainability of Biocatalytic Processes 210
7.5	Quantitative Measuring of the Sustainability of Biocatalytic
	Processes 212
7.6	Early Stage Sustainability Assessment 213
7.6.1	Evaluation of Route Feasibility 214
7.6.1.1	Atom Economy 214
7.6.1.2	Carbon Mass Efficiency 214
7.6.2	Evaluation of Biocatalyst and Reaction Development 215
7.6.2.1	Process Mass Intensity 215
7.6.2.2	Solvent Intensity 215
7.6.2.3	Water Intensity 216
7.6.2.4	E-factor 216
7.7	Benchmarking 216
7.7.1	Route Selection 216
7.7.2	Biocatalyst and Reaction Development 217
7.8	Examples 217
7.8.1	Biocatalytic Route to Atorvastatin 218
7.8.2	Biocatalytic Route to Sitagliptin 219
7.9	Future Perspectives 221
7.9.1	Process Development 221
7.9.2	Methodology 223
7.10	Concluding Remarks 224
	References 225
8	How Chemical Hazard Assessment in Consumer Products Drives Green
	Chemistry 231
	Lauren Heine and Margaret H. Whittaker
8.1	Introduction 231
8.2	What Drives Consumer Product Companies to Look for Less
	Hazardous Chemical Ingredients 232
8.2.1	Chemical Substitution and Regrettable Substitution 233
8.2.2	Nonprofit Organization (NPO) Campaigns 235
8.2.3	Retailer Initiatives 237
8.2.4	State Initiatives 240
8.2.5	Consumer Product Sector Leaders: Setting the Example for
	Others 242
8.3	What is Chemical Hazard Assessment? 243
8.3.1	Globally Harmonized System of Classification and Labelling of
	Chemicals (GHS) 244
8.3.2	Comprehensive and Abbreviated Forms of CHA 247

X Contents

8.3.2.1	GreenScreen for Safer Chemicals 248
8.3.2.2	Quick Chemical Assessment Tool (QCAT) 252
8.3.2.3	GreenScreen List Translator (GS LT) 253
8.4	How Chemical Hazard Assessment is Used 255
8.4.1	Chemical Footprint Project 255
8.4.2	1 /
01112	Health Product Declaration Version 2.0 (HPD) 259
8.4.3	Red List – Declare Label 259
8.4.4	United States Environmental Protection Agency: Safer Choice
0.4.5	Program 260
8.4.5	International Living Future Institute's Living Product
	Challenges 262
8.4.6	Cradle to Cradle Certified Product Program 262
8.4.7	Chemical Alternatives Assessment 263
8.5	Case Studies Showing How CHA Leads to Safer Consumer
	Products 264
8.5.1	Case Study 1. US EPA Safer Choice Product Certification 264
8.5.2	Case Study 2. Levi Strauss & Co. Screened Chemistry 267
8.5.3	Case Study 3. Development of an Alternative Food Can Liner 269
8.6	Challenges: Beyond Chemical Hazard Assessment 271
8.6.1	Transparency 271
8.6.2	Filling Data Gaps for Existing and Emerging Hazards:
	Predictive Toxicology and Tox21 272
8.6.3	Integrating CHA into Green Product Design 272
8.7	Conclusion 274
	References 275
9	Tying it all together to drive Sustainability in the Chemistry
	Enterprise 281
	David J.C. Constable and Concepción Jiménez-González
9.1	New Areas of Sustainable and Green Chemistry Metrics
	Research 286
	References 290

Index 291