Contents

Preface XVII List of Contributors XIX

Part I Preparation and Characterization of Carbon Nanotubes 1

1	Structures and Synthesis of Carbon Nanotubes 3
	Yahachi Saito
1.1	Structures of Carbon Nanotubes 3
1.1.1	Single-Wall CNTs 3
1.1.2	Multiwall CNTs 6
1.1.3	Thin-Walled CNTs 7
1.2	Synthesis of Carbon Nanotubes 7
1.2.1	Arc Discharge 7
1.2.2	Chemical Vapor Deposition 8
1.2.2.1	Thermal CVD 9
1.2.2.2	Plasma-Enhanced CVD 9
1.3	Electrical and Mechanical Properties of Carbon Nanotubes 10
1.3.1	Electronic Structure 10
1.3.2	Electric Properties 11
1.3.3	Mechanical Properties 12
1.3.4	Heat-Transport Properties 13
	References 13
2	Preparation of CNT Emitters 15
-	Yahachi Saito
2.1	Introduction 15
2.2	CNT Point Emitters 15
2.2.1	Manual Attachment of a CNT Bundle 15
2.2.2	Mounting Inside an SEM 16
2.2.3	Electrophoric and Magnetophoretic Methods 16
2.2.4	Direct Growth on the Apex of a Tip 18
225	Other Methods 19

2.2.5 Other Methods 19

Carbon Nanotube and Related Field Emitters: Fundamentals and Applications. Edited by Yahachi Saito Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32734-8

- VI Contents
 - 2.3 CNT Film Emitters 19
 - 2.3.1 Spray Coating 19
 - 2.3.2 Screen Printing 19
 - 2.3.3 Electrophoresis 20
 - 2.3.4 CVD Method 20
 - References 21
 - **3** Preparation of Patterned CNT Emitters 23
 - Mark Mann, William Ireland Milne, and Kenneth Boh Khin Teo
 - 3.1 Background 23
 - 3.2 Growth of Carbon Nanotubes from Patterned Catalysts 25
 - 3.2.1 Patterned Growth from Catalyst Film Edges 25
 - 3.2.2 Patterned Growth from Catalyst Thin Films on a Diffusion Barrier 27
 - 3.3 Single Nanotube Growth Requirements and Uniformity 28
 - 3.4 Nanotube Growth without Surface Carbon 32
 - 3.4.1 Analysis of Substrate Surfaces Exposed to the Plasma 32
 - 3.4.2 Analysis of Substrate Surfaces Shielded from the Plasma 37
 - 3.5 Summary 38

Acknowledgments 40 References 40

Part II Field Emission from Carbon Nanotubes 41

- 4 Field Emission Theory 43
- Seungwu Han
- 4.1 Fowler–Nordheim Theory 43
- 4.2 Field Emission from CNTs 44
- 4.2.1 Computational Methods to Calculate the Emission Currents from Carbon Nanotubes 46
- 4.2.1.1 The Integration of Time-Dependent Schrödinger Equation 46
- 4.2.1.2 Transfer Matrix Method 47
- 4.2.1.3 Other Quantum Mechanical Methods 49
- 4.2.1.4 Semiclassical Approaches 49
- 4.2.2 Current–Voltage Characteristics of Field Emission Currents from Carbon Nanotubes 51
- 4.3 Concluding Remarks 52 References 52

5 Field Emission from Graphitic Nanostructures 55

Kazuyuki Watanabe and Masaaki Araidai

- 5.1 Introduction 55
- 5.2 Method and Model 56
- 5.3 Results 57
- 5.3.1 Graphitic Ribbons: H Termination and Field Direction 57
- 5.3.2 Graphene Arrays: Interlayer Interaction 61

Contents VII

5.3.3	Graphene Sheet: Defects 61
5.3.4	Diamond Surfaces: Impurities 62
5.4	Conclusion 64
	Acknowledgments 64
	References 65
6	The Optical Performance of Carbon Nanotube Field Emitters 67
	Niels de Jonge
6.1	Introduction 67
6.2	Making an Electron Source from an Individual Carbon Nanotube 68
6.3	The Emission Process 69
6.3.1	The Fowler–Nordheim Model 69
6.3.2	Measurement of the Fowler-Nordheim Plot 70
6.3.3	The Energy Spread 71
6.3.4	Measurement of Energy Spectra 72
6.3.5	Comparing the Measured Tunneling Parameter with Theory 74
6.3.6	Determining the Work Function 74
6.4	The Brightness 74
6.4.1	Measuring the Brightness 74
6.4.2	New Model for the Brightness 75
6.4.3	Discussion of the New Model 76
6.4.4	The Total Figure of Merit for Carbon Nanotube Electron Sources 77
6.5	Conclusions 78
	Acknowledgments 78
	References 78
-	
/	Reat Generation and Losses in Carbon Nanotubes during Field
	Emission 81 Charless T. Durcell, Decert Kinson and Authorn Augui
71	Stephen I. Purcei, Pascai Vincent, and Anthony Ayari
/.1 7.2	Heat Diffusion Equation for Nanatuber 82
7.Z 7.2	Simulations 25
7.5	Simulations 85
7.4	Conclusion 92
/.5	Conclusion 92
	Kelefences 92
8	Field Emission Microscopy of Multiwall CNTs 95
	Yahachi Saito
8.1	Introduction 95
8.2	FEM of Carbon Nanotubes 96
8.2.1	FEM Measurement 96
8.2.2	MWNTs with Clean Surfaces 97
8.2.3	FEM Patterns Depending on Tip Radius 98
8.3	Field Emission from Adsorbates on an MWNT 99
8.3.1	Molecules 99

VIII Contents

8.3.1.1	Hydrogen 99
8.3.1.2	Nitrogen 99
8.3.1.3	Oxygen 101
8.3.1.4	Carbon Monoxide 101
8.3.1.5	Carbon Dioxide 101
8.3.1.6	Methane 102
8.3.1.7	Comparison with Related Theoretical Studies 103
8.3.2	Aluminum Clusters 103
8.4	Resolution in FEM and Possible Observation of Atomic Detail 105
8.5	Concluding Remarks 106
	References 107
9	In situ Transmission Electron Microscopy of CNT Emitters 109
	Koji Asaka and Yahachi Saito
9.1	Introduction 109
9.2	Degradation and Failure of Nanotubes at Large Emission Current Conditions 110
9.3	Effect of Tip Structure of Nanotubes on Field Emission 112
9.4	Relationship between Field Emission and Gap Width 113
9.5	Other Studies by In situ TEM of CNT Emitters 114
	References 116
10	Field Emission from Single-Wall Nanotubes 119 Kenneth A. Dean
10 10.1	Field Emission from Single-Wall Nanotubes 119 Kenneth A. Dean Introduction 119
10 10.1 10.2	Field Emission from Single-Wall Nanotubes119Kenneth A. Dean119Introduction119Single-Wall Nanotubes and Field Emission119
10 10.1 10.2 10.3	Field Emission from Single-Wall Nanotubes119Kenneth A. Dean119Introduction119Single-Wall Nanotubes and Field Emission119Measuring the Properties of a Single SWNT120
10 10.1 10.2 10.3 10.4	Field Emission from Single-Wall Nanotubes119Kenneth A. Dean119Introduction119Single-Wall Nanotubes and Field Emission119Measuring the Properties of a Single SWNT120Field Emission from a Clean SWNT Surface121
10 10.1 10.2 10.3 10.4 10.4.1	Field Emission from Single-Wall Nanotubes119Kenneth A. Dean119Introduction119Single-Wall Nanotubes and Field Emission119Measuring the Properties of a Single SWNT120Field Emission from a Clean SWNT Surface121Clean SWNT Field Emission Microscope Images122
10 10.1 10.2 10.3 10.4 10.4.1 10.4.2	Field Emission from Single-Wall Nanotubes119Kenneth A. DeanIntroductionIntroduction119Single-Wall Nanotubes and Field Emission119Measuring the Properties of a Single SWNT120Field Emission from a Clean SWNT Surface121Clean SWNT Field Emission Microscope Images122Clean SWNT I-Vs124
10 10.1 10.2 10.3 10.4 10.4.1 10.4.2 10.4.3	Field Emission from Single-Wall Nanotubes119Kenneth A. DeanIntroduction119Single-Wall Nanotubes and Field Emission119Measuring the Properties of a Single SWNT120Field Emission from a Clean SWNT Surface121Clean SWNT Field Emission Microscope Images122Clean SWNT $I-Vs$ 124Thermal Field Emission126
10 10.1 10.2 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4	Field Emission from Single-Wall Nanotubes119Kenneth A. DeanIntroduction119Single-Wall Nanotubes and Field Emission119Measuring the Properties of a Single SWNT120Field Emission from a Clean SWNT Surface121Clean SWNT Field Emission Microscope Images122Clean SWNT I-Vs124Thermal Field Emission126High Current and Field Evaporation128
10 10.1 10.2 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5	Field Emission from Single-Wall Nanotubes 119 Kenneth A. Dean Introduction 119 Single-Wall Nanotubes and Field Emission 119 Measuring the Properties of a Single SWNT 120 Field Emission from a Clean SWNT Surface 121 Clean SWNT Field Emission Microscope Images 122 Clean SWNT I–Vs 124 Thermal Field Emission 126 High Current and Field Evaporation 128 Anomalous High-Temperature Behavior 130
10 10.1 10.2 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 10.5	Field Emission from Single-Wall Nanotubes 119 Kenneth A. Dean Introduction 119 Single-Wall Nanotubes and Field Emission 119 Measuring the Properties of a Single SWNT 120 Field Emission from a Clean SWNT Surface 121 Clean SWNT Field Emission Microscope Images 122 Clean SWNT $I-Vs$ 124 Thermal Field Emission 126 High Current and Field Evaporation 128 Anomalous High-Temperature Behavior 130 SWNT-Adsorbate Field Emission 131
10 10.1 10.2 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 10.5 10.5.1	Field Emission from Single-Wall Nanotubes 119 Kenneth A. Dean Introduction 119 Single-Wall Nanotubes and Field Emission 119 Measuring the Properties of a Single SWNT 120 Field Emission from a Clean SWNT Surface 121 Clean SWNT Field Emission Microscope Images 122 Clean SWNT $I-Vs$ 124 Thermal Field Emission 126 High Current and Field Evaporation 128 Anomalous High-Temperature Behavior 130 SWNT-Adsorbate Field Emission 131 Field Emission Microscopy 131
10.1 10.2 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 10.5 10.5.1 10.5.2	Field Emission from Single-Wall Nanotubes 119 Kenneth A. Dean Introduction 119 Single-Wall Nanotubes and Field Emission 119 Measuring the Properties of a Single SWNT 120 Field Emission from a Clean SWNT Surface 121 Clean SWNT Field Emission Microscope Images 122 Clean SWNT $I-Vs$ 124 Thermal Field Emission 126 High Current and Field Evaporation 128 Anomalous High-Temperature Behavior 130 SWNT-Adsorbate Field Emission 131 Field Emission Microscopy 131 Electron Energy Distributions 133
10 10.1 10.2 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 10.5 10.5.1 10.5.2 10.5.3	Field Emission from Single-Wall Nanotubes 119 Kenneth A. Dean Introduction 119 Single-Wall Nanotubes and Field Emission 119 Measuring the Properties of a Single SWNT 120 Field Emission from a Clean SWNT Surface 121 Clean SWNT Field Emission Microscope Images 122 Clean SWNT I–Vs 124 Thermal Field Emission 126 High Current and Field Evaporation 128 Anomalous High-Temperature Behavior 130 SWNT-Adsorbate Field Emission 131 Field Emission Microscopy 131 Electron Energy Distributions 133 Current Saturation and Field-Emission-Induced Surface
10 10.1 10.2 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 10.5 10.5.1 10.5.1 10.5.2 10.5.3	Field Emission from Single-Wall Nanotubes 119 Kenneth A. Dean Introduction 119 Single-Wall Nanotubes and Field Emission 119 Measuring the Properties of a Single SWNT 120 Field Emission from a Clean SWNT Surface 121 Clean SWNT Field Emission Microscope Images 122 Clean SWNT I–Vs 124 Thermal Field Emission 126 High Current and Field Evaporation 128 Anomalous High-Temperature Behavior 130 SWNT-Adsorbate Field Emission 131 Field Emission Microscopy 131 Electron Energy Distributions 133 Current Saturation and Field-Emission-Induced Surface Cleaning 134
10 10.1 10.2 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 10.5.1 10.5.1 10.5.2 10.5.3 10.6	Field Emission from Single-Wall Nanotubes 119 Kenneth A. Dean Introduction 119 Single-Wall Nanotubes and Field Emission 119 Measuring the Properties of a Single SWNT 120 Field Emission from a Clean SWNT Surface 121 Clean SWNT Field Emission Microscope Images 122 Clean SWNT I–Vs 124 Thermal Field Emission 126 High Current and Field Evaporation 128 Anomalous High-Temperature Behavior 130 SWNT-Adsorbate Field Emission 131 Field Emission Microscopy 131 Electron Energy Distributions 133 Current Saturation and Field-Emission-Induced Surface Cleaning 134 Field Emission Stability 136
10 10.1 10.2 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 10.5 10.5.1 10.5.2 10.5.3 10.6 10.6.1	Field Emission from Single-Wall Nanotubes 119 Kenneth A. Dean Introduction 119 Single-Wall Nanotubes and Field Emission 119 Measuring the Properties of a Single SWNT 120 Field Emission from a Clean SWNT Surface 121 Clean SWNT Field Emission Microscope Images 122 Clean SWNT I–Vs 124 Thermal Field Emission 126 High Current and Field Evaporation 128 Anomalous High-Temperature Behavior 130 SWNT-Adsorbate Field Emission 131 Field Emission Microscopy 131 Electron Energy Distributions 133 Current Saturation and Field-Emission-Induced Surface Cleaning 134 Field Emission Stability 136 Current Fluctuation 137
10.1 10.2 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.5.1 10.5.2 10.5.3 10.6 10.6.1 10.6.2	Field Emission from Single-Wall Nanotubes 119 Kenneth A. Dean Introduction 119 Single-Wall Nanotubes and Field Emission 119 Measuring the Properties of a Single SWNT 120 Field Emission from a Clean SWNT Surface 121 Clean SWNT Field Emission Microscope Images 122 Clean SWNT I–Vs 124 Thermal Field Emission 126 High Current and Field Evaporation 128 Anomalous High-Temperature Behavior 130 SWNT-Adsorbate Field Emission 131 Field Emission Microscopy 131 Electron Energy Distributions 133 Current Saturation and Field-Emission-Induced Surface Cleaning 134 Field Emission Stability 136 Current Fluctuation 137 Current Degradation 137
10.1 10.2 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.5.1 10.5.2 10.5.3 10.6 10.6.1 10.6.2 10.7	Field Emission from Single-Wall Nanotubes 119 Kenneth A. Dean Introduction 119 Single-Wall Nanotubes and Field Emission 119 Measuring the Properties of a Single SWNT 120 Field Emission from a Clean SWNT Surface 121 Clean SWNT Field Emission Microscope Images 122 Clean SWNT I–Vs 124 Thermal Field Emission 126 High Current and Field Evaporation 128 Anomalous High-Temperature Behavior 130 SWNT-Adsorbate Field Emission 131 Field Emission Microscopy 131 Electron Energy Distributions 133 Current Saturation and Field-Emission-Induced Surface Cleaning 134 Field Emission Stability 136 Current Fluctuation 137 Current Degradation 137 Conclusions 140
10 10.1 10.2 10.3 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 10.5.1 10.5.1 10.5.2 10.5.3 10.6 10.6.1 10.6.2 10.7	Field Emission from Single-Wall Nanotubes 119 Kenneth A. Dean Introduction 119 Single-Wall Nanotubes and Field Emission 119 Measuring the Properties of a Single SWNT 120 Field Emission from a Clean SWNT Surface 121 Clean SWNT Field Emission Microscope Images 122 Clean SWNT I–Vs 124 Thermal Field Emission 126 High Current and Field Evaporation 128 Anomalous High-Temperature Behavior 130 SWNT-Adsorbate Field Emission 131 Field Emission Microscopy 131 Electron Energy Distributions 133 Current Saturation and Field-Emission-Induced Surface Cleaning 134 Field Emission Stability 136 Current Fluctuation 137 Current Degradation 137 Conclusions 140 References 140

Contents IX

11	Simulated Electric Field in an Array of CNTs 143
	Hidekazu Murata and Hiroshi Shimoyama
11.1	Introduction 143
11.2	Simulation Method 143
11.3	Computational Model 145
11.4	Field Analysis for the VA-CNT System 148
11.4.1	Dependence of Numerical Accuracy in Electric Field Calculation on the
	Discretization Number 148
11.4.2	Appropriateness of 9×9 CNT Computational Model 149
11.5	Field Analysis for VA-CNT System with Uniform Length 150
11.5.1	Dependence of the Electric Field Strength at the CNT Apex on
	Geometrical Parameters of the CNTs 152
11.5.2	Universal Curve 153
11.6	Field Analysis for VA-CNT System with Nonuniform Length 154
11.7	Effect of Shape of CNT Apex 157
11.8	Effect of CNT Length 158
11.9	Electric Field Analysis of Network-Structured CNT System 160
	References 162
12	Surface Coating of CNT Emitters 163
	Yoshikazu Nakayama
12.1	Effects of Surface Coating of CNT Emitters 164
12.1.1	Parameters Determining Field Emission Properties 164
12.1.2	Lowering of the Potential Barrier 165
12.1.2.1	Coating Layer with Low Work Function 165
12.1.2.2	Coating Layer with Wide Band Gap 165
12.1.3	Stabilization of Emission Current 167
12.2	Field Emission from Individual CNT Coated with BN 167
12.3	Field Emission from Brush-Like CNTs Coated with MgO 169
12.4	Field Emission from Brush-Like CNTs Coated with TiC 172
	References 174
	Part III Field Emission from Related Nanomaterials 177
13	Graphite Nanoneedle Field Emitter 179
	Takahiro Matsumoto and Hidenori Mimura
13.1	Introduction 179
13.2	Fabrication and Structure Characterization 179
13.3	Field Emission Characteristics 181
13.4	Applications 182
13.4.1	Pulse X-ray Generation and Time-Resolved X-ray Radiography 182
13.4.2	Construction of a Compact FE Scanning Electron Microscope
	(FE-SEM) System 184
13.4.3	Stabilization of the FE-SEM System by Thermal Field Operation 186

13.5 Stochastic Model 188

X Contents		
13.6	Summary 191 References 191	
14	Field Emission from Carbon Nanowalls 193	
141	Coneral Description of Carbon Nanowalls 193	
14.1	Synthesis of Carbon Nanowall Films 194	
14.2.1	Synthesis of Carbon Nanowan Thins 194	
14.2.2	Characterization 195	
14.2.3	Morphology of Carbon Nanowall Film 197	
14.3	Field Emission Properties of Carbon Nanowalls 199	
14.4	Surface Treatment for Improvement of Field Emission Properties 20	0
14.4.1	Metal Nanoparticle Deposition 200	
14.4.2	N ₂ Plasma Treatment 202	
14.5	Prospects for the Future 203	
	References 203	
15	Flexible Field Emitters: Carbon Nanofibers 205	
	Masaki Tanemura and Shu-Ping Lau	
15.1	Introduction 205	
15.2	Room Temperature Fabrication of Ion-Induced Carbon Nanofibers 205	
15.3	Applications to Field Electron Emission Sources 208	
15.3.1	Current–Voltage $(I-V)$ Characteristics 208	
15.3.2	Lifetime 209	
15.3.3	Flexible CNF Cathode 211	
15.4	Summary 215	
	References 215	
16	Diamond Emitters 219	
16 1	Shozo Koho Field Emission from Intrinsis or n Type Diamonda 210	
16.2	Field Emission from Nitrogen-Doped n-Type Diamonds 219	
16.2	Field Emission from Phosphorus-Doped n-Type Diamonds 220	
16.4	Electron Emission from pn-Junction Diamond Diodes 225	
16.5	Other Application of Diamond Emitter 228	
16.5.1	Diamond Cold-Discharge Cathodes for Cold-Cathode Fluorescent	
	Lamps 228	
16.5.2	Low-Temperature Thermionic Emitters Based on N-Incorporated	
	Diamond Films 229	
	References 229	
17	ZnO Nanowires and Si Nanowires 231	
	Baoqing Zeng and Zhi Feng Ren	
17.1	Introduction 231	

Contents XI

- 17.2 Synthesis of ZnO and Si Nanowires or Nanobelts 231
- 17.2.1 Vapor–Liquid–Solid Nanowire Growth 232
- 17.2.2 Controlled Growth of Si Nanowires and ZnO Nanowires 236
- 17.2.2.1 Diameter Control 236
- 17.2.2.2 Orientation Control 237
- 17.2.2.3 Positional Control 238
- 17.2.3 Hydrothermal-Based Chemical Approach 240
- 17.3 Field Emission of Si and ZnO Nanowires 241
- 17.3.1 ZnO Nanowires 244
- 17.3.2 Si Nanowires 248
- 17.4 Summary 253
 - Acknowledgment 253
 - References 253

Part IV Applications of Carbon Nanotubes 259

18	Lamp Devices and Character Displays 261
	Sashiro Uemura
18.1	Introduction 261
18.2	Lamp Devices for Light Sources 261
18.2.1	Structure of the Lighting Element 261
18.2.2	Carbon Nanotube Emitter for the Lighting Element 263
18.2.3	Performance of the Lighting Elements 265
18.3	Super-High-Luminance Light Source Device 266
18.3.1	Device Structure of the Super-High-Luminance Light Source
	Device 267
18.3.2	Performance of the Super-High-Luminance Light Source Device 268
18.4	Summary of Lamp Devices 271
18.5	Carbon Nanotube Field Emission Displays for Low-Power Character
	Displays 272
18.5.1	Panel Structure and Rib Design 273
18.5.2	Pixel Design 274
18.5.3	CNT Electrode for the Display Panel 275
18.5.4	Uniform Emission from the CNT Electrode 275
18.5.5	Preparation of CNT Selectively Deposited Lead Frame 277
18.5.6	Fabrication Process for the Display Panel 279
18.5.7	Performance of the Display Panel 280
18.6	Summary of the Display Panel 282
	Acknowledgments 284
	References 284
19	Screen-Printed Carbon Nanotube Field Emitters for Display
	Applications 287
	Yong Churl Kim, In Taek Han, and Jong Min Kim
19.1	Introduction 287

- XII Contents
 - 19.2 Formulation of Photoimageable CNT Paste 292
 - 19.3 Posttreatment 295
 - 19.4 Field Emission Display Based on Printed CNTs 300
 - 19.4.1 Cathode 300
 - 19.4.2 Anode: Phosphors and Phosphor Plate 305
 - 19.5 Conclusion 306
 - References 307
 - 20 Nanotube Field Emission Displays: Nanotube Integration by Direct Growth Techniques 311
 - Kenneth A. Dean
 - 20.1 Introduction *311*
 - 20.2 Field Emission Display Design and Drive Voltage 312
 - 20.3 Fabricating the Display 316
 - 20.3.1 Building the Structure *316*
 - 20.3.2 Growth of Carbon Nanotubes on Glass 316
 - 20.4 Luminance Uniformity and Control and Nanotube Distributions 321
 - 20.5 Display Performance 323
 - 20.5.1 Luminance *323*
 - 20.5.2 Color Purity 325
 - 20.6 Sealing 327
 - 20.7 Operating Lifetime 328
 - 20.8 Conclusions 329
 - References 330

21 Transparent-Like CNT-FED 333

- Takeshi Tonegawa, Masateru Taniguchi, and Shigeo Itoh
- 21.1 Diode-Type CNT-FED 333
- 21.2 Structure of Diode-Type CNT-FED 333
- 21.3 Characteristics of CNT-FED 335
- 21.4 Relation between Gap and Emission 337
- 21.5 Property of CNT-FED 338
- 21.6 Nonevaporable Getter 338
- 21.7 Summary 340
- References 341

22 CNT-Based FEL for BLU in LCD 343

- Yoon-Ho Song, Jin-Woo Jeong, and Dae-Jun Kim
- 22.1 Introduction 343
- 22.2 CNT-FEL Structure 346
- 22.3 CNT Cathode 348
- 22.4 Anode 356
- 22.5 Vacuum Packaging 358
- 22.6 Driving and Characterization 360
- 22.7 Future Works 368

Contents XIII

Acknowledgments 368 References 368

23	High-Current-Density Field Emission Electron Source 373
	Shigeki Kato and Tsuneyuki Noguchi
23.1	Introduction 373
23.2	Guiding Principles and Practical Methods for High-Performance
	Emitter 374
23.2.1	Elicitation of Inherent Emission Properties of Individual CNTs 375
23.2.2	Increase in Field Enhancement Factor at the CNT Surface 375
23.2.3	Optimization of Electric Field Distribution on Film Emitter
	Surface 376
23.2.4	Reduction of Work Function of Emitter 376
23.2.5	Improvement of Thermal Conduction and Mitigation of Joule Heating
	at CNT Junction 377
23.2.6	Restraint of CNT Disappearance 377
23.2.7	Mitigation of Ion Sputtering and Reactive Etching of Emitter
	Surface 378
23.3	Impregnation of RuO ₂ and OsO ₂ 379
23.3.1	Properties of RuO ₂ and OsO ₂ 379
23.3.2	The Method of RuO_2 Impregnation 379
23.3.3	Observation of CNTs with Impregnation of RuO ₂ 379
23.4	CNT Rooting 380
23.5	Effect of Impregnation on Field Emission Properties 381
23.6	Effect of Rooting on Field Emission Properties 384
23.7	Influence of Residual Gas 386
	References 388
24	High-Resolution Microfocused X-ray Source with Functions of Scanning
	Electron Microscope 389
	Koichi Hata and Ryosuke Yabushita
24.1	Introduction 389
24.2	Multiwalled CNT Field Emission Cathode 390
24.3	Construction of High-Resolution Transmission X-ray Microscope
	Equipped with the Function of SEM 392
24.4	Characteristic Evaluation of High-Resolution X-ray Microscope
	Provided with SEM Function 394
24.4.1	Resolution of SEM 394
24.4.2	Resolution of Transmission X-ray Microscope 395
24.5	Factors Limiting Resolution of X-ray Transmission Image 396
24.5.1	Lateral Distribution d_s of X-ray Generating Region 396
24.5.2	Blurring δ_F Caused by Fresnel Diffraction 397
24.5.3	Evaluation of Theoretical Resolution δ_X 398
24.6	Conclusion 398
	D - (

XIV Contents

25	Miniature X-ray Tubes 401
	Fumio Okuyama
25.1	Introduction 401
25.2	Our Technical Basis for Miniaturizing X-ray Tubes 402
25.3	The Pd Emitter 404
25.4	Devising X-ray Tubes with Miniature Dimensions 405
25.4.1	The 10-mm-Diameter Tube 405
25.4.2	The 5-mm-Diameter Tube 409
25.5	Status Quo of Our MXT Technique 413
25.5.1	DSB 413
25.5.2	Apoptosis 415
25.6	Future Prospect of MXTs in Radiation Therapy 416
	References 416
26	Carbon Nanotube-Based Field Emission X-ray Technology 417
	Otto Zhou and Xiomara Calderon-Colon
26.1	Introduction 417
26.1.1	Current Thermionic X-ray Technology 417
26.1.2	Previous Studies of Field Emission X-ray 418
26.1.3	Carbon Nanotube-Based Field Emission X-ray 418
26.2	Fabrication of CNT Cathodes for X-ray Generation 420
26.2.1	Fabrication Process 420
26.2.2	Field Emission Properties 424
26.3	Field Emission Microfocus X-ray Tube 425
26.3.1	Tube Design 425
26.3.2	Tube Current and Lifetime 426
26.3.3	Focal Spot Size 427
26.4	Distributed Multibeam Field Emission X-ray 428
26.5	Imaging Systems 430
26.5.1	Dynamic Micro-Computed Tomography 430
26.5.2	Stationary Digital Breast Tomosynthesis 431
26.6	Summary and Outlook 434
	Acknowledgments 434
	References 435
27	Microwave Amplifiers 439
	Pierre Legagneux, Pierrick Guiset, Nicolas Le Sech, Jean-Philippe Schnell,
	Laurent Gangloff, William I. Milne, Costel S. Cojocaru, and Didier Pribat
27.1	Introduction 439
27.2	State of the Art of Thermionic Cathodes and Methodology to Review
	CNT Cathodes 441
27.2.1	State of the Art of Thermionic Cathodes Used in Traveling-Wave
	Tubes 441
27.2.2	Interest in Cathodes Delivering a High-Frequency Modulated Electron
	Beam 442

Contents XV

27.2.3	Methodology of Reviewing CNT Cathodes 443
27.3	CNT-Based Electron Guns as High Current Electron Sources 444
27.3.1	Current Density at Cathode Level 444
27.3.1.1	Currents Emitted by Individual CNTs 444
27.3.1.2	Current Density Emitted by CNT Cathodes 444
27.3.2	Convergence Factors Obtained with CNT-Based Electron Gun 446
27.3.2.1	Simulation of a CNT-Based Electron Gun 446
27.3.2.2	Design of Cathodes Delivering Low Transverse Electron
	Velocities 448
27.3.3	Potential of CNT Electron Guns as High Current Electron
	Sources 450
27.4	CNT Cathodes Delivering a Modulated Electron Beam 450
27.4.1	Modulation of the Applied Electric Field 450
27.4.1.1	Modulation of the Applied Electric Field with an Integrated Grid 450
27.4.1.2	Modulation of the Applied Electric Field with an External Grid
	Electrode 451
27.4.1.3	Modulation of the Applied Electric Field with a Resonant Cavity 452
27.4.1.4	Conclusion about the Approach Consisting in Modulating the Applied
	Field 456
27.4.2	Optical Modulation of the Current Supplied to the CNTs 457
27.4.2.1	Design of a CNT Photocathode 457
27.4.2.2	Demonstration of a 300 MHz CNT Photocathode 462
27.4.2.3	Development of High-Frequency CNT Photocathodes for Microwave
	Amplifiers 463
27.4.3	Optical Modulation of the Electric Field at Nanotube Apex: THz
	Cathodes 465
27.5	Conclusion 466
	References 468

Index 471