Contents

Preface XV List of Contributors XIX

1 Containerless Undercooling of Drops and Droplets 1

v

- Dieter M. Herlach
- 1.1 Introduction 1
- 1.2 Drop Tubes 3
- 1.2.1 Short Drop Tubes 4
- 1.2.2 Long Drop Tubes 5
- 1.3 Containerless Processing Through Levitation 8
- 1.3.1 Electromagnetic Levitation 9
- 1.3.2 Electrostatic Levitation 16
- 1.3.3 Electromagnetic Levitation in Reduced Gravity 23
- 1.4 Summary and Conclusions 26 References 27
- 2 Computer-Aided Experiments in Containerless Processing of Materials 31
 - Robert W. Hyers
- 2.1 Introduction 31
- 2.1.1 Nomenclature 32
- 2.2 Planning Experiments 33
- 2.2.1 Example: Feasible Range of Conditions to Test Theory of Coupled-Flux Nucleation 33
- 2.2.2 Example: The Effect of Fluid Flow on Phase Selection 37
- 2.3 Operating Experiments 40
- 2.4 Data Reduction, Analysis, Visualization, and Interpretation 41
- 2.4.1 Example: Noncontact Measurement of Density and Thermal Expansion 42
- 2.4.2 Example: Noncontact Measurement of Creep 45

2.5 Conclusion 47 References 47

VI Contents

3	Demixing of Cu–Co Alloys Showing a Metastable Miscibility Gap <i>Matthias Kolbe</i>	51
3.1	Introduction 51	
3.2	Mechanism of Demixing 52	
3.3	Demixing Experiments in Terrestrial EML and in Low Gravity 54	
3.4	Demixing Experiments in a Drop Tube 56	
3.5	Spinodal Decomposition in Cu–Co Melts 62	
3.6	Conclusions 64	
	References 66	
4	Short-Range Order in Undercooled Melts 69 Dirk Holland- Moritz	
4.1	Introduction 69	
4.2	Experiments on the Short-Range Order of Undercooled Melts <i>71</i>	
4.2.1	Experimental Techniques 72	
4.2.2	Structure of Monatomic Melts 73	
4.2.3	Structure of Alloy Melts 77	
4.3	Conclusions 83	
	References 84	
5	Ordering and Crystal Nucleation in Undercooled Melts 87 Kenneth F. Kelton and A. Lindsay Greer	
5 5.1	Ordering and Crystal Nucleation in Undercooled Melts 87 Kenneth F. Kelton and A. Lindsay Greer Introduction 87	
5 5.1 5.2	Ordering and Crystal Nucleation in Undercooled Melts 87 Kenneth F. Kelton and A. Lindsay Greer Introduction 87 Nucleation Theory—Some Background 88	
5 5.1 5.2 5.2.1	Ordering and Crystal Nucleation in Undercooled Melts 87 Kenneth F. Kelton and A. Lindsay Greer Introduction 87 Nucleation Theory—Some Background 88 Classical Nucleation Theory 88	
5 5.1 5.2 5.2.1 5.2.1.1	Ordering and Crystal Nucleation in Undercooled Melts 87 Kenneth F. Kelton and A. Lindsay Greer Introduction 87 Nucleation Theory—Some Background 88 Classical Nucleation Theory 88 Homogeneous Steady-State Nucleation 88	
5 5.1 5.2 5.2.1 5.2.1.1 5.2.1.2	Ordering and Crystal Nucleation in Undercooled Melts 87 Kenneth F. Kelton and A. Lindsay Greer Introduction 87 Nucleation Theory—Some Background 88 Classical Nucleation Theory 88 Homogeneous Steady-State Nucleation 88 Heterogeneous Nucleation 90	
5 5.1 5.2 5.2.1 5.2.1.1 5.2.1.2 5.2.2	Ordering and Crystal Nucleation in Undercooled Melts87Kenneth F. Kelton and A. Lindsay GreerIntroduction87Introduction87Nucleation Theory—Some Background88Classical Nucleation Theory88Homogeneous Steady-State Nucleation88Heterogeneous Steady-State Nucleation88Heterogeneous Nucleation90Nucleation Models that Take Account of Ordering93	
5 5.1 5.2 5.2.1 5.2.1.1 5.2.1.2 5.2.2 5.2.2	Ordering and Crystal Nucleation in Undercooled Melts 87 Kenneth F. Kelton and A. Lindsay Greer Introduction 87 Nucleation Theory—Some Background 88 Classical Nucleation Theory 88 Homogeneous Steady-State Nucleation 88 Heterogeneous Nucleation 90 Nucleation Models that Take Account of Ordering 93 Diffuse-Interface Model 94	
5 5.1 5.2 5.2.1 5.2.1.1 5.2.1.2 5.2.2 5.2.2 5.2.2.1 5.2.2.2	Ordering and Crystal Nucleation in Undercooled Melts 87 Kenneth F. Kelton and A. Lindsay Greer Introduction 87 Nucleation Theory—Some Background 88 Classical Nucleation Theory 88 Homogeneous Steady-State Nucleation 88 Heterogeneous Nucleation 90 Nucleation Models that Take Account of Ordering 93 Diffuse-Interface Model 94 Density-Functional Models 95	
5 5.2 5.2.1 5.2.1.1 5.2.1.2 5.2.2 5.2.2 5.2.2.1 5.2.2.2 5.3	Ordering and Crystal Nucleation in Undercooled Melts 87 Kenneth F. Kelton and A. Lindsay Greer Introduction 87 Nucleation Theory—Some Background 88 Classical Nucleation Theory 88 Homogeneous Steady-State Nucleation 88 Heterogeneous Nucleation 90 Nucleation Models that Take Account of Ordering 93 Diffuse-Interface Model 94 Density-Functional Models 95 Liquid Metal Undercooling Studies 97	
5 5.1 5.2 5.2.1 5.2.1.1 5.2.1.2 5.2.2 5.2.2.1 5.2.2.2 5.3 5.3.1	Ordering and Crystal Nucleation in Undercooled Melts 87 Kenneth F. Kelton and A. Lindsay Greer Introduction 87 Nucleation Theory—Some Background 88 Classical Nucleation Theory 88 Homogeneous Steady-State Nucleation 88 Heterogeneous Nucleation 90 Nucleation Models that Take Account of Ordering 93 Diffuse-Interface Model 94 Density-Functional Models 95 Liquid Metal Undercooling Studies 97 Experimental Techniques 97	
5 5.1 5.2 5.2.1 5.2.1.1 5.2.1.2 5.2.2 5.2.2.1 5.2.2.2 5.3 5.3.1 5.3.2	Ordering and Crystal Nucleation in Undercooled Melts 87 Kenneth F. Kelton and A. Lindsay Greer Introduction 87 Nucleation Theory—Some Background 88 Classical Nucleation Theory 88 Homogeneous Steady-State Nucleation 88 Heterogeneous Nucleation 90 Nucleation Models that Take Account of Ordering 93 Diffuse-Interface Model 94 Density-Functional Models 95 Liquid Metal Undercooling Studies 97 Experimental Techniques 97 Selected Experimental Results 98	
5 5.1 5.2 5.2.1 5.2.1.1 5.2.1.2 5.2.2 5.2.2.1 5.2.2.2 5.3 5.3.1 5.3.2 5.3.2.1	Ordering and Crystal Nucleation in Undercooled Melts87Kenneth F. Kelton and A. Lindsay GreerIntroductionNucleation Theory—Some Background88Classical Nucleation Theory88Homogeneous Steady-State Nucleation88Heterogeneous Nucleation90Nucleation Models that Take Account of Ordering93Diffuse-Interface Model94Density-Functional Models95Liquid Metal Undercooling Studies97Selected Experimental Results98Maximum-Undercooling Data98	
5 5.1 5.2 5.2.1 5.2.1.1 5.2.1.2 5.2.2 5.2.2 5.2.2 5.3 5.3.1 5.3.2 5.3.2.1 5.3.2.2	Ordering and Crystal Nucleation in Undercooled Melts87Kenneth F. Kelton and A. Lindsay GreerIntroduction87Nucleation Theory—Some Background88Classical Nucleation Theory88Homogeneous Steady-State Nucleation88Heterogeneous Nucleation90Nucleation Models that Take Account of Ordering93Diffuse-Interface Model94Density-Functional Models95Liquid Metal Undercooling Studies97Selected Experimental Results98Maximum-Undercooling Data98Nucleation Rate Measurements99	
5 5.1 5.2 5.2.1 5.2.1.1 5.2.1.2 5.2.2 5.2.2 5.2.2 5.3 5.3.1 5.3.2 5.3.2.1 5.3.2.2 5.3.2.1 5.3.2.2 5.4	Ordering and Crystal Nucleation in Undercooled Melts87Kenneth F. Kelton and A. Lindsay GreerIntroduction87Nucleation Theory—Some Background88Classical Nucleation Theory88Homogeneous Steady-State Nucleation88Heterogeneous Nucleation90Nucleation Models that Take Account of Ordering93Diffuse-Interface Model94Density-Functional Models95Liquid Metal Undercooling Studies97Selected Experimental Results98Maximum-Undercooling Data98Nucleation Rate Measurements99Coupling of Ordering in the Liquid to the Nucleation	
5 5.1 5.2 5.2.1 5.2.1.1 5.2.1.2 5.2.2 5.2.2 5.2.2.1 5.2.2.2 5.3 5.3.1 5.3.2 5.3.2.1 5.3.2.2 5.4	Ordering and Crystal Nucleation in Undercooled Melts87Kenneth F. Kelton and A. Lindsay GreerIntroduction87Nucleation Theory—Some Background88Classical Nucleation Theory88Homogeneous Steady-State Nucleation88Heterogeneous Nucleation90Nucleation Models that Take Account of Ordering93Diffuse-Interface Model94Density-Functional Models95Liquid Metal Undercooling Studies97Selected Experimental Results98Maximum-Undercooling Data98Nucleation Rate Measurements99Coupling of Ordering in the Liquid to the NucleationBarrier101	
5 5.1 5.2 5.2.1 5.2.1.1 5.2.1.2 5.2.2 5.2.2 5.2.2.1 5.2.2.2 5.3 5.3.1 5.3.2 5.3.2.1 5.3.2.2 5.4	Ordering and Crystal Nucleation in Undercooled Melts87Kenneth F. Kelton and A. Lindsay GreerIntroduction87Nucleation Theory—Some Background88Classical Nucleation Theory 88Homogeneous Steady-State Nucleation88Heterogeneous Nucleation90Nucleation Models that Take Account of Ordering93Diffuse-Interface Model94Density-Functional Models95Liquid Metal Undercooling Studies97Selected Experimental Results98Nucleation Rate Measurements99Coupling of Ordering in the Liquid to the NucleationBarrier101Icosahedral Ordering101	
5 5.1 5.2 5.2.1 5.2.1.1 5.2.2 5.2.2 5.2.2 5.2.2.1 5.2.2.2 5.3 5.3.1 5.3.2 5.3.2.1 5.3.2.2 5.4 5.4.1 5.4.2	Ordering and Crystal Nucleation in Undercooled Melts87Kenneth F. Kelton and A. Lindsay GreerIntroduction87Nucleation Theory—Some Background88Classical Nucleation Theory88Homogeneous Steady-State Nucleation88Heterogeneous Nucleation90Nucleation Models that Take Account of Ordering93Diffuse-Interface Model94Density-Functional Models95Liquid Metal Undercooling Studies97Selected Experimental Results98Maximum-Undercooling Data98Nucleation Rate Measurements99Coupling of Ordering101Icosahedral Ordering101Coupling of Ordering101Coupling of Ordering102	
5 5.1 5.2 5.2.1 5.2.1.1 5.2.2 5.2.2 5.2.2 5.2.2.1 5.2.2.2 5.3 5.3.1 5.3.2 5.3.2.1 5.3.2.2 5.4 5.4.1 5.4.2 5.4.3	Ordering and Crystal Nucleation in Undercooled Melts87Kenneth F. Kelton and A. Lindsay GreerIntroduction87Nucleation Theory—Some Background88Classical Nucleation Theory 88Homogeneous Steady-State Nucleation88Heterogeneous Nucleation90Nucleation Models that Take Account of Ordering93Diffuse-Interface Model94Density-Functional Models95Liquid Metal Undercooling Studies97Experimental Techniques97Selected Experimental Results98Nucleation Rate Measurements99Coupling of Ordering101Icosahedral Ordering101Coupling of Ordering and Nucleation Barrier102Ordering in the Liquid Adjacent to a Heterogeneity106	
5 5.1 5.2 5.2.1 5.2.1.1 5.2.1.2 5.2.2 5.2.2 5.2.2 5.3 5.3.1 5.3.2 5.3.2 5.3.2.1 5.3.2.2 5.4 5.4.1 5.4.2 5.4.3 5.5	Ordering and Crystal Nucleation in Undercooled Melts87Kenneth F. Kelton and A. Lindsay GreerIntroduction87Nucleation Theory—Some Background88Classical Nucleation Theory88Homogeneous Steady-State Nucleation88Heterogeneous Nucleation90Nucleation Models that Take Account of Ordering93Diffuse-Interface Model94Density-Functional Models95Liquid Metal Undercooling Studies97Experimental Techniques97Selected Experimental Results98Nucleation Rate Measurements99Coupling of Ordering101Icosahedral Ordering101Coupling of Ordering and Nucleation Barrier102Ordering in the Liquid Adjacent to a Heterogeneity106Conclusions107	

Contents VII

6	Phase-Field Crystal Modeling of Homogeneous and Heterogeneous Crystal Nucleation 113 Gyula I. Tóth, Tamás Pusztai, György Tegze, and László Gránásy
6.1	Introduction 113
6.2	Phase-Field Crystal Models 114
6.2.1	Free Energy Functionals 115
6.2.2	Euler–Lagrange Equation and the Equation of Motion 117
6.3	Homogeneous Nucleation 118
6.3.1	Solution of the Euler–Lagrange Equation 118
6.3.2	Solution of the Equation of Motion 120
6.4	PFC Modeling of Heterogeneous NuCleation 129
6.5	Summary 134
	References 135
7	Effects of Transient Heat and Mass Transfer on Competitive
	Nucleation and Phase Selection in Drop Tube Processing
	of Multicomponent Alloys 139
	M. Krivilyov and Jan Fransaer
7.1	Introduction 139
7.2	Model 140
7.2.1	Equations of Time-Dependent Motion, Fluid Flow, and Heat Transfer 141
7.2.2	Equations of Nucleation Kinetics and Crystal Growth 143
7.2.3	Coupling of the Models and Experiment Data 144
7.3	Effect of Transient Heat and Mass Transfer on Nucleation
	and Crystal Growth 145
7.3.1	Transients in the Internal Flow 145
7.3.2	Heat Transfer, Cooling Rates, and Temperature Distribution 146
7.4	Competitive Nucleation and Phase Selection in Nd–Fe–B Droplets 148
7.4.1	Calculation of the Temperature–Time Profiles 148
7.4.2	Critical Undercooling as a Function of the Drop Size 151
7.4.3	Delay Time as a Function of the Convection Intensity 152
7.5	Summary 153
	Appendix 7.A: Extended Model of Nonstationary Heterogeneous
	Nucleation 154
	References 157
8	Containerless Solidification of Magnetic Materials Using the
	ISAS/JAXA 26-Meter Drop Tube 161
	Shumpei Ozawa
8.1	Introduction 161
8.2	Drop Tube Process 162
8.2.1	Experimental Procedure 162
8.2.2	Undercooling Level and Cooling Rate of the Droplet during
	the Drop Tube Process 163

VIII Contents

8.3	Undercooling Solidification of Fe-Rare Earth (RE)
	Magnetostriction Alloys 165
8.3.1	Fe ₆₇ Nd ₃₃ Alloy 167
8.3.2	Fe ₆₇ Tb ₃₃ and Fe ₆₇ Dy ₃₃ Alloys 168
8.3.3	Fe ₆₇ Nd _{16.5} Tb _{16.5} and Fe ₆₇ Nd _{16.5} Dy _{16.5} Alloys 170
8.4	Undercooling Solidification of Nd–Fe–B Magnet Alloys 173
8.4.1	Phase Selection and Microstructure Evolution of Nd–Fe–B Alloys Solidified from Undercooled Melt 174
8.4.2	Magnetic Property of the Metastable Phase 177
8.4.3	Mechanism of Transformation of the $Nd_2Fe_{17}B_x$ Metastable Phase 178
8.5	Concluding Remarks 183 References 184
9	Nucleation and Solidification Kinetics of Metastable Phases in
	Undercooled Melts 187
	Wolfgang Löser and Olga Shuleshova
9.1	Introduction 18/
9.2	I hermodynamic Aspects and Nucleation of Metastable Phases 188
9.3	Metastable Phase Formation from Undercooled Melts in Various
0.2.1	Alloy Systems 190
9.3.1	The Metastable Supersaturated Solid Solution Phases 190
9.3.2	The Metastable Phase Formation for Refractory Metals 192
9.3.3	The Metastable DCC Phase Formation in Peritagia Sustaina with
9.3.4	Ordered Intermetallic Compounds 198
9.3.5	The Metastable Phase Formation in Eutectic Systems with
	Ordered Intermetallic Compounds 203
9.3.6	The Formation of Metastable Quasicrystalline Phases 204
9.3.7	The Formation of Amorphous Phases 206
9.4	Summary and Conclusions 207
	References 208
10	Nucleation Within the Mushy Zone 213
	Douglas M. Matson
10.1	Introduction 213
10.1.1	Double Recalescence 213
10.1.2	Solidification Path 217
10.2	Incubation Time 218
10.3	Cluster Formation 219
10.3.1	Homogeneous Nucleation of a Spherical Cluster 219
10.3.2	Heterogeneous Nucleation of a Spherical Cap on a Flat Surface 221
10.4	Transient Development of Heterogeneous Sites 224
10.4.1	Dendrite Fragmentation 225
10.4.2	Crack Formation 225
10.4.3	Dendrite Collision 227

Contents IX

10.4.4	Internal Grain Boundary Formation 229
10.4.5	Heterogeneous Nucleation Within a Crevice 230
10.5	Comparing Critical Nucleus Development Mechanisms 235
10.6	Concluding Remarks 236
	References 237
11	Measurements of Crystal Growth Velocities in Undercooled Melts
	of Metals 239
	Thomas Volkmann
11.1	Introduction 239
11.2	Experimental Methods 241
11.3	Summary and Conclusions 256
	References 257
12	Containerless Crystallization of Semiconductors 261
12	Kazuhiko Kurihavashi
12.1	Introduction 261
12.1	Status of Research on Facetted Dendrite Crowth 262
12.2	Twin-Related Lateral Growth and Twin-free Continuous Growth 264
12.3	Twin-Related Lateral Growin and Twin-files Continuous Growin 204
12.3.1	Twin-Free /100\ Eacet Dendrites 266
12.3.2	Transition from Twin-Related Facet Dendrites to Twin-Free
12.3.3	Facet Dendrites 267
1234	Rate-Determining Process for Crystallization into
12.3.4	Undercooled Melts 268
124	Containerless Crystallization of Si 270
12.1	Experimental 270
12.1.1	Application to Drop-Tube Process 275
12.1.2	Summery and Conclusion 276
12.5	Appendix 12 A. LKT Model 276
12.0 12 A 1	Wilson-Frenkel Model 277
12.01.11	References 278
13	Measurements of Crystal Growth Dynamics
	in Glass-Fluxed Melts 281
	Jianrong Gao, Zongning Zhang, Yikun Zhang, and Chao Yang
13.1	Introduction 281
13.2	Methods and Experimental Set-Up 282
13.2.1	Access to Large Undercoolings 282
13.2.2	In-Situ Observations 283
13.2.3	Data Processing 283
13.2.4	Experimental SetUp and Procedures 284
13.3	Growth Velocities in Pure Ni 286
13.3.1	
	Overview of Literature Data 286
13.3.2	Overview of Literature Data 286 Recalescence Characteristic 287

X Contents

13.4	Growth Velocities in Ni ₃ Sn ₂ Compound 291
13.4.1	Peculiarities of Intermetallic Compounds 291
13.4.2	Novel Data of Growth Velocities 291
13.5	Crystal Growth Dynamics in Ni–Sn Eutectic Alloys 293
13.5.1	Background 293
13.5.2	Recalescence Behavior and Growth Velocities 293
13.5.3	Microstructure 295
13.6	Opportunities with High Magnetic Fields 295
13.6.1	Motivation 295
13.6.2	Opportunities with High Magnetic Fields 296
13.6.3	Effects of Static Magnetic Fields on Undercooling Behavior 297
1364	Measured Growth Velocities of Pure Ni 298
13.7	Summary 300
15.7	References 301
14	Influence of Convection on Dendrite Growth by the AC+DC
	Levitation Technique 305
	Hidevuki Yasuda
14.1	Convection in a Levitated Melt 305
14.1.1	Challenges in Conventional Levitation 305
1412	Influence of Convection 306
14.2	Static Levitation Using the Alternating and Static Magnetic
11.2	Field (AC $+$ DC Levitation) 307
1421	Simultaneous Imposition of $AC + DC$ Magnetic Fields 307
14.2.2	Setup of the AC + DC Levitator 309
1423	Dynamics of a Droplet Under $AC + DC$ Fields 309
1424	Effect of the Static Magnetic Field on Flow Velocity 312
14.3	Effect of Convection on Nucleation and Solidification 313
1431	Nucleation Undercooling 313
1432	Solidification Structure 314
14.3.2	Crowth Velocity of Dendrite 317
17.3.3	References 310
	Ketterkes 517
15	Modeling the Fluid Dynamics and Dendritic Solidification
	in EM-Levitated Allov Melts 321
	Valdis Bojarevics, Andrew Kao, and Koulis Pericleous
15 1	Introduction 321
15.2	Mathematical Models for Levitation Thermofluid Dynamics 322
15.2.1	Thermofluid Equations 326
15.2.1	Simulations of Droplet Levitation 327
15.2.2	DC Field Stabilization 330
15.2.5	Levitating Large Masses 332
15.2.4	Impurity Separation 335
13.2.3	
15 2	Thermoelectric Magnetohydrodynamics in Levitated Droplets 226

15.3.1 Thermoelectricity 337

15.3.2 15.3.3 15.3.4 15.4	Solidification by the Enthalpy Method 338 TEMHD in Dendritic Solidification 339 Solidification of an Externally Cooled Droplet 345 Concluding Remarks 346 References 346
16	Forced Flow Effect on Dendritic Growth Kinetics in a Binary
	Nonisothermal System 349
	P.K. Galenko, S. Binder, and G.J. Ehlen
16.1	Introduction 349
16.2	Convective Flow in Droplets Processed in Electromagnetic
	Levitation 350
16.3	The Model Equations 351
16.4	Predictions of the Model 355
16.4.1	Dendrite Growth in a Pure (One-Component)
	System 355
16.4.2	Dendrite Growth in a Binary Stagnant System 356
16.5	Quantitative Evaluations 356
16.5.1	Modified Ivantsov Function 356
16.5.2	Dendrite Growth Velocity and Tip Radius 357
16.6	Summary and Conclusions 360
	References 361
17	Atomistic Simulations of Solute Trapping and Solute Drag 363 J.J. Hoyt, M. Asta and A. Karma

- 17.1 Introduction 363
- 17.2 Models of Solute Trapping 364
- 17.3 Solute Drag 367
- 17.4 MD Simulations 368
- 17.4.1 The LJ System 369
- 17.4.2 The Ni–Cu System 371
- 17.5 Implications for Dendrite Growth 376 References 379
- 18 Particle-Based Computer Simulation of Crystal Nucleation and Growth Kinetics in Undercooled Melts 381

Roberto E. Rozas, Philipp Kuhn, and Jürgen Horbach

- 18.1 Introduction 381
- 18.2 Solid–Liquid Interfaces in Nickel 383
- 18.3 Homogeneous Nucleation in Nickel 389
- 18.4 Crystal Growth 393
- 18.5 Conclusions 398
 - References 399

XII Contents

19	Solidification Modeling: From Electromagnetic Levitation
	to Atomization Processing 403
	ChA. Gandin, D. Tourret, T. Volkmann, D.M. Herlach,
	A. Ilbagi, and H. Henein
19.1	Introduction 403
19.2	Electromagnetic Levitation 404
19.3	Impulse Atomization 405
19.4	Modeling 406
19.4.1	General Assumptions 407
19.4.2	Mass Conservations 407
19.4.3	Specific Surfaces 408
19.4.4	Diffusion Lengths 409
19.4.5	Nucleation 410
19.4.6	Heat Balance 410
19.4.7	Thermodynamics Data 410
19.4.8	Growth Kinetics 411
19.4.9	Numerical Solution 412
19.5	EML Sample 413
19.6	IA Particles 418
19.6.1	Regime of Distinct Successive Growth 419
19.6.2	Regime of Shortcut of the Primary Growth 421
19.7	Conclusion 422
	Deferences 122
	Relefences 425
20	Properties of p-Si-Ge Thermoelectrical Material Solidified from
20	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition
20	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425
20	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425 Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai
20	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425 Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai Introduction 425
20 20.1 20.2	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425 Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai Introduction 425 Simultaneous Imposition of Static and Alternating Magnetic
20 20.1 20.2	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425 Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai Introduction 425 Simultaneous Imposition of Static and Alternating Magnetic Fields 427
20 20.1 20.2 20.3	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425 Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai Introduction 425 Simultaneous Imposition of Static and Alternating Magnetic Fields 427 Experimental 429
20 20.1 20.2 20.3 20.3.1	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425 Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai Introduction 425 Simultaneous Imposition of Static and Alternating Magnetic Fields 427 Experimental 429 Si-Ge Alloy Preparation 429
20.1 20.2 20.3 20.3.1 20.3.2	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425 Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai Introduction 425 Simultaneous Imposition of Static and Alternating Magnetic Fields 427 Experimental 429 Si-Ge Alloy Preparation 429 Synthesis of Si _{0.8} Ge _{0.2} with 1 at% B by Electromagnetic Levitation
 20.1 20.2 20.3 20.3.1 20.3.2 	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425 Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai Introduction 425 Simultaneous Imposition of Static and Alternating Magnetic Fields 427 Experimental 429 Si-Ge Alloy Preparation 429 Synthesis of Si _{0.8} Ge _{0.2} with 1 at% B by Electromagnetic Levitation with Simultaneous Imposition of Static and Alternating Magnetic
20 20.1 20.2 20.3 20.3.1 20.3.2	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425 Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai Introduction 425 Simultaneous Imposition of Static and Alternating Magnetic Fields 427 Experimental 429 Si-Ge Alloy Preparation 429 Synthesis of Si _{0.8} Ge _{0.2} with 1 at% B by Electromagnetic Levitation with Simultaneous Imposition of Static and Alternating Magnetic Fields 429
 20.1 20.2 20.3 20.3.1 20.3.2 	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425 Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai Introduction 425 Simultaneous Imposition of Static and Alternating Magnetic Fields 427 Experimental 429 Si-Ge Alloy Preparation 429 Synthesis of Si _{0.8} Ge _{0.2} with 1 at% B by Electromagnetic Levitation with Simultaneous Imposition of Static and Alternating Magnetic Fields 429 Evaluation 431
 20.1 20.2 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4 	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425 Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai Introduction 425 Simultaneous Imposition of Static and Alternating Magnetic Fields 427 Experimental 429 Si-Ge Alloy Preparation 429 Synthesis of Si _{0.8} Ge _{0.2} with 1 at% B by Electromagnetic Levitation with Simultaneous Imposition of Static and Alternating Magnetic Fields 429 Evaluation 431 Results and Discussion 432
 20.1 20.2 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4.1 	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425 Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai Introduction 425 Simultaneous Imposition of Static and Alternating Magnetic Fields 427 Experimental 429 Si-Ge Alloy Preparation 429 Synthesis of Si _{0.8} Ge _{0.2} with 1 at% B by Electromagnetic Levitation with Simultaneous Imposition of Static and Alternating Magnetic Fields 429 Evaluation 431 Results and Discussion 432 Temperature and Solidification Behavior 432
 20.1 20.2 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2 	References423Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields425Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai Introduction 425425Simultaneous Imposition of Static and Alternating Magnetic Fields427Experimental Si-Ge Alloy Preparation Vintesis of Si _{0.8} Ge _{0.2} with 1 at% B by Electromagnetic Levitation with Simultaneous Imposition of Static and Alternating Magnetic FieldsFields 429429Evaluation Fields431Results and Discussion Crystalline Orientation of Solidified Product from UndercooledMake EMI Make State432
 20.1 20.2 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2 	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425 Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai Introduction 425 Simultaneous Imposition of Static and Alternating Magnetic Fields 427 Experimental 429 Si-Ge Alloy Preparation 429 Synthesis of Si _{0.8} Ge _{0.2} with 1 at% B by Electromagnetic Levitation with Simultaneous Imposition of Static and Alternating Magnetic Fields 429 Evaluation 431 Results and Discussion 432 Temperature and Solidification Behavior 432 Crystalline Orientation of Solidified Product from Undercooled Melt by EML with SMF 436
 20.1 20.2 20.3 20.3.1 20.3.2 20.4.2 20.4.1 20.4.2 20.4.3 	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425 Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai Introduction 425 Simultaneous Imposition of Static and Alternating Magnetic Fields 427 Experimental 429 Si-Ge Alloy Preparation 429 Synthesis of Si _{0.8} Ge _{0.2} with 1 at% B by Electromagnetic Levitation with Simultaneous Imposition of Static and Alternating Magnetic Fields 429 Evaluation 431 Results and Discussion 432 Temperature and Solidification Behavior 432 Crystalline Orientation of Solidified Product from Undercooled Melt by EML with SMF 436 Microstructure and Si and Ge Distributions of Si _{0.8} Ge _{0.2} -1at% B
 20.1 20.2 20.3 20.3.1 20.3.2 20.3.3 20.4 20.4.1 20.4.2 20.4.3 20.4.4 	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425 Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai Introduction 425 Simultaneous Imposition of Static and Alternating Magnetic Fields 427 Experimental 429 Si-Ge Alloy Preparation 429 Synthesis of Si _{0.8} Ge _{0.2} with 1 at% B by Electromagnetic Levitation with Simultaneous Imposition of Static and Alternating Magnetic Fields 429 Evaluation 431 Results and Discussion 432 Temperature and Solidification Behavior 432 Crystalline Orientation of Solidified Product from Undercooled Melt by EML with SMF 436 Microstructure and Si and Ge Distributions of Si _{0.8} Ge _{0.2} -1at% B Solidified from Undercooled Melts by EML with SMF 439
 20.1 20.2 20.3 20.3.1 20.3.2 20.4.2 20.4.1 20.4.2 20.4.3 20.4.4 	Properties of p-Si-Ge Thermoelectrical Material Solidified from Undercooled Melt Levitated by Simultaneous Imposition of Static and Alternating Magnetic Fields 425 Takeshi Okutani, Tsuyoshi Hamada, Yuko Inatomi, and Hideaki Nagai Introduction 425 Simultaneous Imposition of Static and Alternating Magnetic Fields 427 Experimental 429 Si-Ge Alloy Preparation 429 Synthesis of Si _{0.8} Ge _{0.2} with 1 at% B by Electromagnetic Levitation with Simultaneous Imposition of Static and Alternating Magnetic Fields 429 Evaluation 431 Results and Discussion 432 Temperature and Solidification Behavior 432 Crystalline Orientation of Solidified Product from Undercooled Melt by EML with SMF 436 Microstructure and Si and Ge Distributions of Si _{0.8} Ge _{0.2} -1at% B Solidified from Undercooled Melts by EML with SMF 439 Thermoelectrical Properties of Si _{0.8} Ge _{0.2} -1at% B Solidified from

- 20.4.4.1 Thermal Conductivity 442
- 20.4.4.2 Electrical Conductivity 443
- 20.4.4.3 Seebeck Coefficient 446
- 20.4.4.4 Figure of Merit 446
- 20.5 Summary and Conclusions 448 References 448
- 21 Quantitative Analysis of Alloy Structures Solidified Under Limited Diffusion Conditions 451

Hani Henein, Arash Ilbagi, and Charles-André Gandin

- 21.1 The Need for an Instrumented Drop Tube 451
- 21.2 Description of IA 454
- 21.3 Powder Characteristics 455
- 21.4 Quantification of Microstructure 459
- 21.4.1 Secondary Dendrite Arm Spacing 459
- 21.4.2 X-Ray Microtomography 461
- 21.4.3 Neutron Diffraction 467
- 21.5 Modeling 469
- 21.5.1 Cooling Rate 469
- 21.5.2 Eutectic Undercooling 473
- 21.5.3 Peritectic Systems 477 References 480
- 22 Coupled Growth Structures in Univariant and Invariant Eutectic Solidification 483

Ralph E. Napolitano

- 22.1 Introduction 483
- 22.2 Historical Perspective and Background 484
- 22.3 Basic Theory of Eutectic Solidification 490
- 22.4 Eutectic Solidification Theory for Ternary Systems 493
- 22.5 Solidification Paths and Competitive Growth Considerations 496
- 22.6 Recent Developments, Emerging Issues, and Critical Research Needs 499 References 504

- Krishanu Biswas and Sumanta Samal
- 23.1 Introduction 509
- 23.2 Peritectic Equilibrium and Transformation 510
- 23.3 Peritectic Reactions in the Ternary System 512
- 23.4 Nucleation Studies 514
- 23.4.1 Solidification of Peritectic Alloys at Low Undercooling 515
- 23.4.2 Solidification of Peritectic Alloys at High Undercooling 518
- 23.5 Growth 522
- 23.5.1 Peritectic Reaction 524

Contents

- Peritectic Transformation 526 23.5.2
- 23.5.3 Direct Solidification of the Peritectic Phase 528
- 23.5.4 Peritectic Reaction in Ternary Systems 529
- 23.5.5 Peritectic Solidification Under Reduced Gravity Conditions 536
- 23.6 Conclusions 539
 - References 539

Index 543

xıv