Contents

Preface XIII List of Contributors XV

1 Biomolecular Computing: From Unconventional Computing to "Smart" Biosensors and Actuators – Editorial Introduction 1 Evgeny Katz

٧

References 5

2 Peptide-Based Computation: Switches, Gates, and Simple Arithmetic 9 Zehavit Dadon, Manickasundaram Samiappan, Nathaniel Wagner,

Nurit Ashkenasy, and Gonen Ashkenasy

- 2.1 Introduction 9
- 2.2 Peptide-Based Replication Networks 10
- 2.2.1 Template-Assisted Replication 10
- 2.2.2 Theoretical Prediction of the Network Connectivity 11
- 2.2.3 *De novo* Designed Synthetic Networks *12*
- 2.3 Logic Gates within Ternary Networks 13
- 2.3.1 Uniform Design Principles of All Two-Input Gates 13
- 2.3.2 OR Logic 14
- 2.3.3 AND Logic 15
- 2.3.4 NAND Logic 15
- 2.3.5 XOR Logic 15
- 2.4 Symmetry and Order Requirements for Constructing the Logic Gates 16
- 2.4.1 Symmetry and Order in Peptide-Based Catalytic Networks 16
- 2.4.2 How Symmetry and Order Affect the Replication of RNA Quasispecies 17
- 2.5 Taking the Steps toward More Complex Arithmetic 19
- 2.5.1 Arithmetic Units 19
- 2.5.2 Network Motifs 20

VI Contents

2.6	Experimental Logic Gates 21
2.6.1	OR Logic 21
2.6.2	NOT, NOR, and NOTIF Logic 21
2.6.3	Additional Logic Operations 23
2.7	Adaptive Networks 24
2.7.1	Chemical Triggering 24
2.7.2	Light Triggering 24
2.7.3	Light-Induced Logic Operations 25
2.8	Peptide-Based Switches and Gates for Molecular Electronics 28
2.9	Summary and Conclusion 29
2.9	Acknowledgments 30
	References 30
3	Biomolecular Electronics and Protein-Based Optical Computing 33
	Jordan A. Greco, Nicole L. Wagner, Matthew J. Ranaghan,
	Sanguthevar Rajasekaran, and Robert R. Birge
3.1	Introduction 33
3.2	Biomolecular and Semiconductor Electronics 34
3.2.1	Size and Speed 34
3.2.2	Architecture 36
3.2.3	Nanoscale Engineering 37
324	Stability 38
325	Reliability 38
2.2.5	Rectariorhodopsin as a Photonic and Holographic Material
5.5	for Bioelectronics 40
221	The Light Induced Photocycle 40
222	The Prenched Distocycle 40
2.1	Fourier Transform Holographic Associative Processors 42
).4) [Three Dimensional Optical Managing 45
).)) [1	Write Deed and Erree Oremetican 40
3.5.1	Write, Read, and Erase Operations 46
3.5.2	Efficient Algorithms for Data Processing 48
3.5.3	Multiplexing and Error Analysis 50
3.6	Genetic Engineering of Bacteriorhodopsin for Device
	Applications 51
3.7	Future Directions 53
	Acknowledgments 54
	References 54
4	Picelectronic Daviese Controlled by Enzyma Pased Information
+	Brocossing Systems 61
	Frocessing Systems 01
4 1	Eveny Ruiz
4.1 4.2	Introduction 01
4.2	Enzyme-Based Logic Systems Producing pH Changes
	as Output Signals 62

- Interfacing of the Enzyme Logic Systems with Electrodes Modified 4.3 with Signal-Responsive Polymers 64 4.4 Switchable Biofuel Cells Controlled by the Enzyme Logic Systems 68 4.5 Biomolecular Logic Systems Composed of Biocatalytic
- and Biorecognition Units and Their Integration with Biofuel Cells 70
- Processing of Injury Biomarkers by Enzyme Logic Systems Associated 4.6 with Switchable Electrodes 74
- 4.7 Summary and Outlook 77 Acknowledgments 78 References 78

5	Enzyme Logic Digital Biosensors for Biomedical Applications	81
	Evgeny Katz and Joseph Wang	
F 1	Later Acation 01	

- 5.1 Introduction 81
- 5.2 Enzyme-Based Logic Systems for Identification of Injury Conditions 82
- 5.3 Multiplexing of Injury Codes for the Parallel Operation of Enzyme Logic Gates 85
- 5.4 Scaling Up the Complexity of the Biocomputing Systems for Biomedical Applications – Mimicking Biochemical Pathways 89
- Application of Filter Systems for Improving Digitalization 5.5 of the Output Signals Generated by Enzyme Logic Systems for Injury Analysis 94
- 5.6 Conclusions and Perspectives 96 Acknowledgments 98 Appendix 98 References 99
- 6 Information Security Applications Based on Biomolecular Systems 103
 - Guinevere Strack, Heather R. Luckarift, Glenn R. Johnson, and Evgeny Katz
- 6.1 Introduction 103
- Molecular and Bio-molecular Keypad Locks 104 6.2
- 6.3 Antibody Encryption and Steganography 108
- Bio-barcode 113 6.4
- 6.5 Conclusion 114
 - Acknowledgments 114 References 114
- **Biocomputing: Explore Its Realization and Intelligent** 7 Logic Detection 117 Ming Zhou and Shaojun Dong
- 7.1 Introduction 117
- 7.2 DNA Biocomputing 119

VIII Contents

7.3 7.4	Aptamer Biocomputing 121 Enzyme Biocomputing 124
/.5	References 129
8	Some Experiments and Models in Molecular Computing
	Milan N. Stojanovic and Darko Stefanovic
81	Introduction 133
82	From Gates to Programmable Automata 133
8.3	From Random Walker to Molecular Robotics 139
8.4	Conclusions 142
011	Acknowledgments 143
	References 143
9	Biomolecular Finite Automata 145
	Tamar Ratner, Sivan Shoshani, Ron Piran, and Ehud Keinan
9.1	Introduction 145
9.2	Biomolecular Finite Automata 146
9.2.1	Theoretical Models of a Molecular Turing Machine 146
9.2.2	The First Realization of an Autonomous DNA-Based
	Finite Automaton 150
9.2.3	Three-Symbol-Three-State DNA-Based Automata 155
9.2.4	Molecular Cryptosystem for Images by DNA Computing 157
9.2.5	Molecular Computing Device for Medical Diagnosis and Treatment <i>In Vitro</i> 159
9.2.6	DNA-Based Automaton with Bacterial Phenotype Output 161
9.2.7	Molecular Computing with Plant Cell Phenotype 163
9.3	Biomolecular Finite Transducer 167
9.4	Applications in Developmental Biology 172
9.5	Outlook 176
	References 178
10	In Vivo Information Processing Using RNA Interference 181
	Yaakov Benenson
10.1	Introduction 181
10.1.1	Regulatory Pathways as Computations 181
10.1.2	A Computation Versus a Computer 182
10.1.3	Prior Work on Synthetic Biomolecular Computing Circuits 182
10.2	RNA Interference-Based Logic 183
10.2.1	General Considerations 183
10.2.2	Logic Circuit Blueprint 184
10.2.3	Experimental Confirmation of the Computational Core 188
10.3	Building the Sensory Module 189
10.3.1	Direct Control of siRNA by mRNA Inputs 191

Contents IX

- Complex Transcriptional Regulation Using RNAi-Based Circuits 194 10.3.2 104 Outlook 195 References 197 11 **Biomolecular Computing Systems** 199 Harish Chandran, Sudhanshu Garg, Nikhil Gopalkrishnan, and John H. Reif 11.1 Introduction 199 11.1.1 Organization of the Chapter 199 11.2 DNA as a Tool for Molecular Programming 200
- DNA Structure 200 11.2.1
- Review of DNA Reactions 200 11.2.2
- 11.3 Birth of DNA Computing: Adleman's Experiment and Extensions 203
- 11.3.1 NP-Complete Problems 203
- 11.3.2 Hamiltonian Path Problem via DNA Computing 204
- 11.3.3 Other Models of DNA Computing 204
- Shortcomings and Nonscalability of Schemes Using DNA 11.3.4 Computation to Solve NP-Complete Problems 204
- Computation Using DNA Tiles 205 11.4
- TAM: an Abstract Model of Self-Assembly 205 11.4.1
- 11.4.2 Algorithmic Assembly via DNA Tiling Lattices 206
- 11.4.2.1 Source of Errors 206
- 11.4.3 Algorithmic Error Correction Schemes for Tilings 207
- Experimental Advances in Purely Hybridization-Based 11.5 Computation 209
- Experimental Advances in Enzyme-Based DNA Computing 212 11.6
- Biochemical DNA Reaction Networks 217 11.7
- 11.8 Conclusion: Challenges in DNA-Based Biomolecular Computation 218
- Scalability of Biomolecular Computations 218 11.8.1
- Ease of Design and Programmability of Biomolecular 11.8.2 Computations 220
- In Vivo Biomolecular Computations 11.8.3 220
- 11.8.4 Conclusions 220
 - Acknowledgments 221 References 221
- 12 Enumeration Approach to the Analysis of Interacting Nucleic Acid Strands 225 Satoshi Kobayashi and Takaya Kawakami
- Introduction 225 12.1
- Definitions and Notations for Set and Multiset 226 12.2
- 12.3 Chemical Equilibrium and Hybridization Reaction System 227
- 12.4 Symmetric Enumeration Method 230

X Contents

12.4.1	Enumeration Graph 230
12.4.2	Path Mappings 231
12.4.3	Enumeration Scheme 232
12.4.4	An Example of Enumeration Scheme – Folding
	of an RNA Molecule 233
12.4.5	Convex Programming Problem for Computing Equilibrium 235
12.5	Applying SEM to Nucleic Acid Strands Interaction 236
12.5.1	Target Secondary Structures 237
12.5.2	Introducing Basic Notations 237
12.5.3	Definition of Enumeration Graph Structure 239
12.5.4	Associated Weight Functions 241
12.5.5	Symmetric Properties 242
12.5.6	Complexity Issues 242
12.6	Conclusions 243
	References 244
12	Postwistion Enguance in Longuage Consection
15	Restriction Enzymes in Language Generation
	Tour Hasmid Computing 245
121	Iom rieuu Introduction 245
13.1	Wet Splicing Systems 246
13.2	Dry Splicing Systems 240
13.3	Div Splicing Systems 249
13.4	Unforeseen Developments 252
13.5	Computing with Plasmids 253
13.6	Fluid Memory 254
13.7	Examples of Aqueous Computations 255
13.8	Final Comments about Computing with Biomolecules 260
	References 261
14	Development of Bacteria-Based Cellular Computing Circuits
17	for Sensing and Control in Biological Systems 265
	Michaela A TerAvest Zhonojian Li and Largus T Angenent
14 1	Introduction 265
14.2	Cellular Computing Circuits 267
14.2.1	Genetic Toolbox 267
14.2.1.1	Engineered Gene Regulation 267
14.2.1.2	Quorum Sensing 269
14.2.2	Implementations 269
14.2.2.1	Oscillators 269
14.2.2.2	Switches 270
14.2.2.3	AND Logic Gates 270
14.2.2.4	Edge Detector 271
14.2.2.5	Complex Logic Functions with Multiple Strains 272

14.2.3 Transition to In Silico Rational Design 273

14.2.4	Transition from Enzyme Computing to Bacteria-Based
	Biocomputing 274
14.3	Conclusion 276
	Acknowledgments 277
	References 277
15	The Logic of Decision Making in Environmental Bacteria 279 Rafael Silva-Rocha, Javier Tamames, and Víctor de Lorenzo
15 1	Introduction 279
15.2	Building Models for Biological Networks 281
15.2	Formulation and Simulation of Regulatory Networks 283
15.3.1	Stochastic Versus Deterministic Models 284
15.3.2	Graphical Models 285
15.4	Boolean Analysis of Regulatory Networks 285
15.4.1	Translating Biological Networks into Logic Circuits 286
15.4.2	Integration of Regulatory and Metabolic Logic in the Same
13.1.2	Boolean Circuit 287
15 4 3	From Digital Networks to Workable Models 288
15.5	Boolean Description of m-xylene Biodegradation by <i>P nutida</i>
19.5	mt-2: the TOL logicome 289
15.5.1	Narrative Description of the TOL Regulatory Circuit 291
15.5.2	Deconstruction of the Ps–Pr Regulatory Node into Three
	Autonomous Logic Units 292
15.5.3	Formalization of Regulatory Events at the Upper and Lower TOL
	Operons 294
15.5.4	3MB Is the Endogenous Signal Carrier through the Domains
	of the TOL Network 296
15.5.5	The TOL Logicome 296
15.6	Conclusion and Outlook 298
	Acknowledgments 299
	References 299
16	Qualitative and Quantitative Aspects of a Model for Processes Inspired
	by the Functioning of the Living Cell 303
	Andrzej Ehrenfeucht, Jetty Kleijn, Maciej Koutny, and Grzegorz Rozenberg
16.1	Introduction 303
16.2	Reactions 304
16.3	Reaction Systems 305
16.4	Examples 307
16.5	Reaction Systems with Measurements 310
16.6	Generalized Reactions 312
16.7	A Generic Quantitative Model 315

16.8 Approximations of Gene Expression Systems 316

XII Contents

16.9	Simulating Approximations by Reaction Systems 318
16.10	Discussion 319
	Acknowledgments 321
	References 321
17	Computational Methods for Quantitative Submodel Comparison 323
171	Anarzej Mizera, Elena Czeizier, and Ion Petre
17.1	Methoda for Model Decomposition 224
17.2	Knockdown Mutante 324
17.2.1	Flementary Elux Modes 225
17.2.2	Control Based Decomposition 325
17.2.5	Methods for Submodel Comparison 327
1721	Mathematically Controlled Model Comparison 327
17.3.1	An Extension of the Methematically Controlled Comparison 228
17.3.2	Local Submodel Comparison 220
17.3.3	A Quantitative Measure for the Coodness of Model Fit Against
17.3.4	Experimental Data 329
17.3.5	Quantitative Refinement 330
17.3.6	Parameter-Independent Submodel Comparison 331
17.3.7	Model Comparison for Pathway Identification 332
17.4	Case Study 332
17.4.1	A Biochemical Model for the Heat Shock Response 332
17.4.2	Control-Based Decomposition 334
17.4.3	The Knockdown Mutants 335
17.4.4	Local Comparison of the Knockdown Mutants 336
17.4.5	Parameter-Independent Comparison of the Mutant Behavior 337
17.4.6	Pathway Identification for the Phosphorylation-Driven Control
	of the Heat Shock Response 341
17.5	Discussion 342
	Acknowledgments 343
	References 343
18	Conclusions and Perspectives 347
	Evgeny Katz
	References 349
	Index 351