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1.1
Introduction

Multicomponent reactions (MCRs) are generally defined as reactions in which
three or more starting materials react to form a product, where basically all or
most of the atoms contribute to the newly formed product [1]. Their usefulness
can be rationalized by multiple advantages of MCRs over traditional multistep
sequential assembly of target compounds. In MCRs, a molecule is assembled in
one convergent chemical step in one pot by simply mixing the corresponding
starting materials as opposed to traditional ways of synthesizing a target mole-
cule over multiple sequential steps. At the same time, considerably complex
molecules can be assembled by MCRs. This has considerable advantages as it
saves precious time and drastically reduces effort.

MCRs are mostly experimentally simple to perform, often without the need of
dry conditions and inert atmosphere. Molecules are assembled in a convergent
way and not in a linear approach using MCRs. Therefore, structure–activity
relationships (SARs) can be rapidly generated using MCRs, since all property-
determining moieties are introduced in one step instead of sequentially [2]. Last
but not least, MCRs provide a huge chemical diversity and currently more than
300 different scaffolds have been described in the chemical literature. For exam-
ple, more than 40 different ways to access differentially substituted piperazine
scaffolds using MCRs have been recently reviewed [3].

Although MCR chemistry is almost as old as organic chemistry and was
first described as early as 1851, it should be noted that early chemists did
not recognize the enormous engineering potential of MCRs. However, it took
another >100 years until Ivar Ugi in a strike of a genius discovered his four-
component condensation and also recognized the enormous potential of
MCRs in applied chemistry (Figure 1.1) [4].
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1.2
Advances in Chemistry

Many MCRs have been described in the past one and a half century and
recently not many fundamental advances in finding new MCRs have been
made [5–7]. A strategy to enhance the size and diversity of current MCR
chemical space is the concept of combining a MCR and a subsequent second-
ary reaction, also known as postcondensation or Ugi–deprotection–cyclization
(UDC) [2]. Herein, bifunctional orthogonally protected starting materials are
used and ring cyclizations can take place in a secondary step upon deprotec-
tion of the secondary functional groups. Many different scaffolds have been
recently described using this strategy. One example is shown in Figure 1.2.
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Figure 1.1 A three-component reaction toward the local anesthetic xylocaine and the first
combinatorial library of small molecules proposed by Ivar Ugi in the 1960.

2 1 General Introduction to MCRs: Past, Present, and Future



R
4

H N
R

5

H
2
N

C
O

O
H

R
1

+
R

2

C
H

O

+
R

3

N
C

N

N
H

N

R
1

O
R

2

O

R
3

N

N
H

N

O
O

O
O

F
F

N

O

N
H

O
N

H

O

N

O

O

C
l

N

H
N

O

O

H
N

O
O

O O

N
H

R
1

O

N
R

5

R
4

R
2

N

O

OR
3

N

R
1

O

O

H N
R

3
O N

R
5

R
4

R
2

N N H
O

H N

O

R
3

R
2

R
1

N N H
O

H N

O

O
M

e

O
M

e

M
e

O
O

C
C

l
F

N

O
H

N

R
3

N
O

R
4

N

O
H

N

N
H

O

O
E

t

H
N

R
5

N H

R
1

N

O

R
5

R
2

H N

O

R
3

R
4

Fi
g
ur
e
1.
2

D
is
co
ve
ry

of
th
e
U
gi
-5
C
-4
C
R
va
ria

tio
n
em

pl
oy
in
g
un

pr
ot
ec
te
d
α-
am

in
o
ac
id
s,
ox
o
co
m
po

ne
nt
s,
pr
im

ar
y
or

se
co
nd

ar
y
am

in
es
,a
nd

is
oc
ya
ni
de

s,
an

d
th
e
sy
nt
he

si
s
of

se
ve
ra
lh

et
er
oc
yc
lic

sc
af
fo
ld
s
us
in
g
or
th
og

on
al
ly
pr
ot
ec
te
d
bi
fu
nc
tio

na
ls
ta
rt
in
g
m
at
er
ia
ls
.G

en
er
al
iz
ed

sc
af
fo
ld
s

ar
e
sh
ow

n
in

co
lo
r,
an

d
sy
nt
he

si
ze
d
ex
am

pl
es

in
bl
ac
k
an

d
w
hi
te
.

1.2 Advances in Chemistry 3



It is based on a recently discovered variation of the Ugi reaction of α-amino
acids, oxo components, and isocyanides, now including primary and secondary
amines [8–10].

1.3
Total Syntheses

While the Bucherer–Bergs and the related Strecker synthesis are well-
established methods for the one-pot synthesis of natural and unnatural amino
acids, the complex antibiotic penicillin was synthesized 50 years ago in a highly
convergent approach by Ivar Ugi by using two MCRs, the Asinger reaction and
his own reaction (Figure 1.3) [11]. Other recent natural product targets using
MCR as a key step in their synthesis are also shown in Figure 1.3. Although early
example of the advantageous use of MCR in the conscious total synthesis of
complex natural products leads the way, its use has been neglected for decades
and only recently realized by a few organic chemists [12–17].

1.4
Applications in Pharmaceutical and Agrochemical Industry

Two decades ago, MCR chemistry was almost generally neglected in pharmaceu-
tical and agro industry. The knowledge of these reactions was often low and it
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Figure 1.3 (a) The union of the Asinger-4CR and the Ugi-4CR allows for the convergent and
fast assembly of 6-aminopenicillanic acid natural product. (b) Recent synthetic targets of MCR
natural product chemistry.
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was generally believed that MCR scaffolds are associated with useless drug-like
properties (absorption, distribution, metabolism, excretion, and toxicity
(ADMET)). Now MCR technology is widely recognized for its impact on drug
discovery projects and is strongly endorsed by industry as well as academia [18].
An increasing number of clinical and marketed drugs were discovered and
assembled by MCR since then (Figure 1.4). Examples include nifedipine
(Hantzsch-3CR), praziquantel, or ZetiaTM. Two oxytocin receptor antagonists
for the treatment of preterm birth and premature ejaculation, epelsiban and ato-
siban, are currently undergoing human clinical trials. They are both assembled
by the classical Ugi MCR [19–21]. Interestingly, they show superior activity for
the oxytocin receptor and selectivity toward the related vasopressin receptors
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Figure 1.4 Examples of marketed drugs or drugs under (pre)clinical development and incor-
porating MCR chemistry.
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than the peptide-based compounds currently used clinically. Perhaps against the
intuition of many medicinal chemists, the Ugi diketopiperazines are orally bio-
available, while the currently used peptide derivatives are i.v. only and must be
stabilized by the introduction of terminal protecting groups and unnatural
amino acids. An example of a MCR-based plant protecting antifungal includes
mandipropamide [22]. These examples show that pharmaceutical and agro-
chemical compounds with preferred ADMET properties and superior activities
can be engineered based on MCR chemistry.

The very high compound numbers per scaffold based on MCR may be
regarded as friend or foe. On the one hand, it can be fortunate to have a MCR
product as a medicinal chemistry starting point, since a fast and efficient SAR
elaboration can be accomplished; on the other hand, the known chemical
space based on MCRs is incredibly large and can neither be screened nor
exhaustively synthesized with reasonable efforts. The currently preferred path

Figure 1.5 MCR-based computational meth-
ods can help to effectively query the very
large chemical MCR space. Clockwise: genera-
tion of a pharmacophore model based on a

3D structure, screening of the pharmacophore
model against a very large MCR 3D compound
database (AnchorQuery), synthesis, and refine-
ment of hits.
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to medicinal chemistry starting points in industry, the high-throughput
screening (HTS), however, is an expensive process with rather low efficiency
yielding hits often only in low double-digit or single-digit percentage. Modern
postgenomic targets often yield zero hits. The initial hits are often ineffective
to elaborate due to their complex multistep synthesis. Thus, neither the
screening even of a very small fraction of the chemical space accessible by the
classical Ugi-4CR and other scaffolds, nor the synthesis is possible. Recent
advances in computational chemical space enumeration and screening, how-
ever, allow for an alternative process to efficiently foster a very large chemical
space. The free web-, anchor-, and pharmacophore-based server AnchorQueryTM

(anchorquery.ccbb.pitt.edu/), for example, allows for the screening of a very
large virtual MCR library with over a billion members (Figure 1.5) [23]. Anchor-
Query builds on the role deeply buried amino acid side chains or other anchors
play in protein–protein interactions. Proposed virtual screening hits can be
instantaneously synthesized and tested using convergent MCR chemistry. The
software was instrumental to the discovery of multiple potent and selective
MCR-based antagonists of the protein–protein interaction between p53 and
MDM2 [24–26]. Thus, computational approaches to screen MCR libraries will
likely play a more and more important role in the early drug discovery process
in the future.

More and more high-resolution structural information on MCR molecules
bound to biological receptors is available (Figure 1.6) [18]. With the advent of

Figure 1.6 Examples of cocrystal structures
of MCR molecules bound to biological
receptors. Clockwise left: Povarov-3CR
molecule bound to kinesin-5 (PDB ID
3L9H) [27], Ugi-3CR molecule bound to

FVIIa (PDB ID 2BZ6) [28], Ugi-4CR molecule
bound to MDM2 (PDB ID 4MDN) [26], and
Gewald-3CR molecule targeting motor
protein KSP (PDB ID 2UYM) [29].
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structure-based design and fragment-based approaches in drug discovery, access
to binding information of MCR molecules to their receptors is becoming crucial.
Once the binding mode of a MCR molecule is defined, hit-to-lead transitions
become more facile and time to market can be shortened and attrition rate in
later clinical trials can be potentially reduced.

Other worthwhile applications of MCRs in medicinal chemistry are in route
scouting for shorter, convergent, and cheaper syntheses. An excellent showcase
is the synthesis of the recently approved HCV protease inhibitor telaprevir [30].
The complex compound is industrially produced using a lengthy, highly linear
strategy relying on standard peptide chemistry exceeding 20 synthetic steps.
Orru and coworkers were able to reduce the complexity of the synthesis of telap-
revir by almost half using a biotransformation and two multicomponent
reactions as the key steps. Another example is the convergent synthesis of the
schistosomiasis drug praziquantel using key Ugi and Pictet–Spengler reactions
(Figure 1.7) [31]. Clearly, more synthetic targets are out there, which can be

N

N
N
H

O
H
N

O

O

N

H
N

O

H
N

O

O

N

N
N
H

O
H
N

O

COOH

N N
H

CN
H
N

O

O

NC

AcOH

OHCHN CHOOHCHN

(a)

(b)

OH

Telaprevir

NH2
NC

CH2O

H2N
OMe

OMe

COOH

NH

O
N O

OMe

OMe

N

N

O

O

Praziquantel

Figure 1.7 Use of MCR chemistry for the easy and cheap synthesis and process improvement
of marketed drugs. (a) Telaprevir structure and MCR retrosynthesis. (b) Three-step praziquantel
synthesis involving Ugi and Pictet–Spengler reactions.

8 1 General Introduction to MCRs: Past, Present, and Future



Figure 1.8 Examples of the use of MCRs in
material chemistry. (a) Sequence-specific poly-
mer synthesis as exemplified for Passerini
reaction-derived acrylic acid monomers.
(b) PNA synthesis using the sequential Ugi
reaction. (c) Sepharose solid support-bound

Ugi products for the affinity purification of
therapeutic Fab fragments. Docking of the
best Ugi ligand (blue sticks) into human Fab
fragment. (d) GBB-3CR-derived fluorescent
pharmacophores.
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potentially accessed in a more convergent and cheaper way using MCR chemis-
try, thus potentially benefitting the patient.

1.5
Materials

Another application of MCR chemistry far from being leveraged to its full
extent is in materials science (Figure 1.8). Precise engineering of macro-
molecular architectures is of utmost importance for designing future materi-
als. Like no other technology, MCRs can help to meet this goal. Recently, the
synthesis of sequence-defined macromolecules without the utilization of any
protecting group using a Passerini-3CR has been described [32]. Another
sequence-specific polymer synthesis with biological applications comprises
the peptide nucleic acid (PNA), which is metabolically stable and can recog-
nize DNA and RNA polymers and which can be accomplished by the Ugi-
4CR [33]. Yet another application of MCRs in materials science might under-
score the potential opportunities to uncover. Ugi molecule-modified station-
ary phases have been recently introduced to efficiently separate
immunoglobulins (Igs) [34]. Currently, more than 300 monoclonal antibodies
(mAbs) are moving toward the market. However, the efficient and high-yield-
ing cleaning of the raw fermentation brew is still a holy grail in technical
antibody processing. Thus, it is estimated that approximately half of the fer-
mentation yield of mAbs is lost during purification. Ugi-modified stationary
phases have been found in this context to be far superior to purification pro-
tocols based on natural Ig-binding proteins, which are expensive to produce,
labile, unstable, and exhibit lot-to-lot variability.

Fluorescent pharmacophores were discovered by the Groebke–Blackburn–
Bienaymè MCR (GBB-3CR) with potential applications as specific imaging
probes using a droplet array technique on glass slides [35]. Another group
described the discovery of BODIPY dyes for the in vivo imaging of phagocytotic
macrophages and assembled by MCRs [36].

1.6
Outlook

From the many applied chemistry examples published in the recent literature,
it is obvious that MCR chemistry has a bright future. The use of MCRs in
property-driven chemistry has just been scratched at the surface. In which
areas will be the next applications of MCR chemistry? Will it be in functional
materials, imaging, molecular computing, artificial life, “omics” (lipidomics),
theragnostics, functional magnetic resonance imaging, or in different upcom-
ing fields? Clearly, the imagination of molecular engineers (sic chemists) will
determine future directions or as in the saying “Only the sky is the limit.”
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