Contents

1

List of Contributors XIII Preface XVII v

	Alexander Dömling and AlAnod D. AlQahtani	
1.1	Introduction 1	
1.2	Advances in Chemistry 2	
1.3	Total Syntheses 4	
1.4	Applications in Pharmaceutical and Agrochemical	
	Industry 4	
1.5	Materials 10	
1.6	Outlook 10	
	References 11	
2	Discovery of MCRs 13	
	Eelco Ruijter and Romano V.A. Orru	
2.1	General Introduction 13	
2.2	The Concept 14	
2.3	The Reaction Design Concept 15	
2.3.1	Single Reactant Replacement 17	
2.3.2	Modular Reaction Sequences 19	
2.3.3	Condition-Based Divergence 21	
2.3.4	Union of MCRs 23	
2.4	Multicomponent Reactions and Biocatalysis 23	
2.4.1	Multicomponent Reactions and (Dynamic) Enzymatic	
	Kinetic Resolution 26	
2.4.2	Multicomponent Reactions and Enzymatic Desymmetrization	29
2.5	Multicomponent Reactions in Green Pharmaceutical	
	Production 31	
2.6	Conclusions 36	
	Acknowledgments 36	
	References 36	

General Introduction to MCRs: Past, Present, and Future 1

VI Contents

3	Aryne-Based Multicomponent Reactions 39 Hiroto Yoshida
3.1	Introduction 39
3.2	
3.2	Multicomponent Reactions of Arynes via Electrophilic Coupling 41
3.2.1	Multicomponent Reactions under Neutral Conditions 42
3.2.1.1	Isocyanide-Based Multicomponent Reactions 42
3.2.1.2	Imine-Based Multicomponent Reactions 46
3.2.1.3	Amine-Based Multicomponent Reactions 47
3.2.1.4	Carbonyl Compound-Based Multicomponent Reactions 49
3.2.1.5	Ether-Based Multicomponent Reactions 50
3.2.1.6	Miscellaneous 53
3.2.2	Multicomponent Reactions under Basic Conditions 53
3.3	Transition Metal-Catalyzed Multicomponent Reactions of Arynes 60
3.3.1	Annulations 60
3.3.2	Cross-Coupling-Type Reactions 65
3.3.3	Mizoroki–Heck-Type Reactions 65
3.3.4	Insertion into σ -Bond 65
3.4	Concluding Remarks 69
	References 69
4	Ugi–Smiles and Passerini–Smiles Couplings 73 Laurent El Kaïm and Laurence Grimaud
4.1	Introduction 73
4.1.1	Carboxylic Acid Surrogates in Ugi Reactions 75
4.1.2	Smiles Rearrangements 76
4.2	Scope and Limitations 77
4.2.1	Phenols and Thiophenols 77
4.2.2	Six-Membered Ring Hydroxy Heteroaromatics and Related
	Mercaptans 84
4.2.3	Five-Membered Ring Hydroxy Heteroaromatic and Related
	Mercaptans 88
4.2.4	Related Couplings with Enol Derivatives 90
4.2.5	The Joullié–Smiles Coupling 90
4.2.6	The Passerini–Smiles Reaction 91
4.3	Ugi–Smiles Postcondensations 94
4.3.1	Postcondensations Involving Reduction of the Nitro Group 94
4.3.2	Transformations of Ugi–Smiles Thioamides 96
4.3.3	Postcondensations Involving Transition Metal-Catalyzed
	Processes 97
4.3.4	Reactivity of the Peptidyl Unit 101
4.3.5	Radical Reactions 103
4.3.6	Cycloaddition 103
4.4	Conclusions 105
	References 105

- 5 1,3-Dicarbonyls in Multicomponent Reactions 109
 - Xavier Bugaut, Thierry Constantieux, Yoann Coquerel, and Jean Rodriguez
- 5.1 Introduction 109
- 5.2 Achiral and Racemic MCRs 111
- 5.2.1 Involving One Pronucleophilic Reactive Site 111
- 5.2.2 Involving Two Reactive Sites 115
- 5.2.2.1 Two Nucleophilic Sites 115
- 5.2.2.2 One Pronucleophilic Site and One Electrophilic Site 120
- 5.2.3 Involving Three Reactive Sites 134
- 5.2.4 Involving Four Reactive Sites *139*
- 5.3 Enantioselective MCRs 142
- 5.3.1 Involving One Reactive Site 143
- 5.3.2 Involving Two Reactive Sites 146
- 5.3.3 Involving Three Reactive Sites 149
- 5.4 Conclusions and Outlook 150 References 151
- 6 Functionalization of Heterocycles by MCRs 159
 - Esther Vicente-García, Nicola Kielland, and Rodolfo Lavilla
- 6.1 Introduction 159
- 6.2 Mannich-Type Reactions and Related Processes 160
- 6.3 β-Dicarbonyl Chemistry 164
- 6.4 Hetero-Diels–Alder Cycloadditions and Related Processes 166
- 6.5 Metal-Mediated Processes 168
- 6.6 Isocyanide-Based Reactions 171
- 6.7 Dipole-Mediated Processes 175
- 6.8 Conclusions 176 Acknowledgments 178 References 178
- 7 Diazoacetate and Related Metal-Stabilized Carbene Species in MCRs 183
 - Dong Xing and Wenhao Hu
- 7.1 Introduction 183
- 7.2 MCRs via Carbonyl or Azomethine Ylide-Involved 1,3-Dipolar Cycloadditions *184*
- 7.2.1 Azomethine Ylide 184
- 7.2.2 Carbonyl Ylide 185
- 7.3 MCRs via Electrophilic Trapping of Protic Onium Ylides 187
- 7.3.1 Initial Development 187
- 7.3.2 Asymmetric Examples 190
- 7.3.2.1 Chiral Reagent Induction 190
- 7.3.2.2 Chiral Dirhodium(II) Catalysis 190
- 7.3.2.3 Enantioselective Synergistic Catalysis 190
- 7.3.3 MCRs Followed by Tandem Cyclizations 196

VIII Contents

7.4 7.5 7.6	MCRs via Electrophilic Trapping of Zwitterionic Intermediates 198 MCRs via Metal Carbene Migratory Insertion 199 Summary and Outlook 203 References 204
8	Metal-Catalyzed Multicomponent Synthesis of Heterocycles 207 Fabio Lorenzini, Jevgenijs Tjutrins, Jeffrey S. Quesnel, and Bruce A. Arndtsen
8.1	Introduction 207
8.2	Multicomponent Cross-Coupling and Carbonylation Reactions 208
8.2.1	Cyclization with Alkyne- or Alkene-Containing Nucleophiles 208
8.2.2	Cyclization via Palladium–Allyl Complexes 210
8.2.3	Fused-Ring Heterocycles for <i>ortho</i> -Substituted Arene Building Blocks 211
8.2.4	Multicomponent Cyclocarbonylations 214
8.2.5	Cyclization of Cross-Coupling Reaction Products 216
8.2.6	C–H Functionalization in Multicomponent Reactions 218
8.3	Metallacycles in Multicomponent Reactions 221
8.4	Multicomponent Reactions via 1,3-Dipolar Cycloaddition 223
8.5	Concluding Remarks 227
	References 227
9	Macrocycles from Multicomponent Reactions 231 Ludger A. Wessjohann, Ricardo A.W. Neves Filho, Alfredo R. Puentes, and Micjel C. Morejon
9.1	Introduction 231
9.2	IMCR-Based Macrocyclizations of Single Bifunctional Building Blocks 237
9.3	Multiple MCR-Based Macrocyclizations of Bifunctional Building Blocks 245
9.4	IMCR-Based Macrocyclizations of Trifunctionalized Building Blocks (MiB-3D) 256
9.5	Sequential IMCR-Based Macrocyclizations of Multiple Bifunctional Building Blocks 259
9.6	Final Remarks and Future Perspectives 261
	References 261
10	Multicomponent Reactions under Oxidative Conditions 265 Andrea Basso, Lisa Moni, and Renata Riva
10.1	Introduction 265
10.1	Multicomponent Reactions Involving <i>In Situ</i> Oxidation of One
10.2	Substrate 266
10.2.1	Isocyanide-Based Multicomponent Reactions 266
10.2.1.1	Passerini Reactions 266
10.2.1.1	Ugi Reactions with <i>In Situ</i> Oxidation of Alcohols 271
10.2.1.3	Ugi Reaction with <i>In Situ</i> Oxidation of Secondary Amines 273

Contents IX

- 10.2.1.4 Ugi-Smiles Reaction with In Situ Oxidation of Secondary Amines 275 10.2.1.5 Ugi-Type Reactions by In Situ Oxidation of Tertiary Amines 277 Synthesis of Other Derivatives 279 10.2.1.6 10.2.2 Other Multicomponent Reactions 280 Multicomponent Reactions Involving Oxidation of a Reaction 10.3 Intermediate 284 10.3.1 Reactions without Transition Metal-Mediated Oxidation 285 Reactions Mediated by Transition Metal Catalysis 292 10.3.2 Multicomponent Reactions Involving Oxidants as Lewis Acids 295 10.4 10.5 Conclusions 297 References 297 11 Allenes in Multicomponent Synthesis of Heterocycles 301 Hans-Ulrich Reissig and Reinhold Zimmer
- 11.1 Introduction 301
- 11.2 Reactions with 1,2-Propadiene and Unactivated Allenes 302
- 11.2.1 Palladium-Catalyzed Multicomponent Reactions 302
- 11.2.2 Copper-, Nickel-, and Rhodium-Promoted Multicomponent Reactions *310*
- 11.2.3 Multicomponent Reactions without Transition Metals 314
- 11.3 Reactions with Acceptor-Substituted Allenes 316
- 11.3.1 Catalyzed Multicomponent Reactions 316
- 11.3.2 Uncatalyzed Multicomponent Reactions 318
- 11.4 Reactions with Donor-Substituted Allenes 323
- 11.5 Conclusions 329 List of Abbreviations 329 References 329
- 12 Alkynes in Multicomponent Synthesis of Heterocycles 333 Thomas J.J. Müller and Konstantin Deilhof
- 12.1 Introduction 333
- 12.2 σ -Nucleophilic Reactivity of Alkynes 335
- 12.2.1 Acetylide Additions to Electrophiles 335
- 12.2.1.1 Alkyne–Aldehyde–Amine Condensation A³-Coupling 335
- 12.2.1.2 Alkyne–(Hetero)Aryl Halide (Sonogashira) Coupling as Key Reaction 337
- 12.2.2 Conversion of Terminal Alkynes into Electrophiles as Key Reactions 341
- 12.3 π -Nucleophilic Reactivity of Alkynes 345
- 12.4 Alkynes as Electrophilic Partners 351
- 12.5 Alkynes in Cycloadditions 356
- 12.5.1 Alkynes as Dipolarophiles 356
- 12.5.2 Alkynes in Cu(I)-Catalyzed 1,3-Dipolar Azide–Alkyne Cycloaddition 358

X Contents

12.5.3	Alkynes as Dienophiles in MCRs 366
12.6	Alkynes as Reaction Partners in Organometallic MCRs 370
12.7	Conclusions 374
	List of Abbreviations 374
	Acknowledgment 375
	References 375
13	Anhydride-Based Multicomponent Reactions 379
	Kevin S. Martin, Jared T. Shaw, and Ashkaan Younai
13.1	Introduction 379
13.2	Quinolones and Related Heterocycles from Homophthalic
	and Isatoic Anhydrides 380
13.2.1	Introduction: Reactivity of Homophthalic and Isatoic
	Anhydrides 380
13.2.2	Imine–Anhydride Reactions of Homophthalic Anhydride 380
13.2.3	MCRs Employing Homophthalic Anhydride 382
13.2.4	Imine–Anhydride Reactions of Isatoic Anhydride 383
13.3	α,β-Unsaturated Cyclic Anhydrides: MCRs Involving Conjugate
	Addition and Cycloaddition Reactions 385
13.3.1	Maleic Anhydride MCRs 385
13.3.2	MCRs of Itaconic Anhydrides 388
13.3.3	Diels–Alder Reactions 390
13.4	MCRs of Cyclic Anhydrides in Annulation Reactions and
	Related Processes 392
13.4.1	MCR-Based Annulations: Succinic and Phthalic Anhydrides 393
13.5	MCRs of Acyclic Anhydrides 395
13.6	Conclusions 398
	References 399
14	Free-Radical Multicomponent Processes 401
	Virginie Liautard and Yannick Landais
14.1	Introduction 401
14.2	MCRs Involving Addition Across Olefin C=C Bonds 402
14.2.1	Addition of Aryl Radicals to Olefins 402
14.2.2	MCRs Using Sulfonyl Derivatives as Terminal Trap 404
14.2.3	Carboallylation of Electron-Poor Olefins 406
14.2.4	Carbohydroxylation, Sulfenylation, and Phosphorylation
	of Olefins 407
14.2.5	Radical Addition to Olefins Using Photoredox Catalysis 410
14.2.6	MCRs Based on Radical–Polar Crossover Processes 414
14.3	Free-Radical Carbonylation 419
14.3.1	Alkyl Halide Carbonylation 419
14.3.2	Metal-Mediated Atom-Transfer Radical Carbonylation 420
14.3.3	Alkane Carbonylation 421
1434	Miscellaneous Carbonylation Reactions 423

14.3.4Miscellaneous Carbonylation Reactions 423

Contents XI

- 14.4 Free-Radical Oxygenation 424
- 14.5 MCRs Involving Addition Across π -C=N Bonds 427
- 14.5.1 Free-Radical Strecker Process 427
- 14.5.2 Free-Radical Mannich-Type Processes 429
- 14.6 Miscellaneous Free-Radical Multicomponent Reactions 432
- 14.7 Conclusions 434
 - References 435
- 15 Chiral Phosphoric Acid-Catalyzed Asymmetric Multicomponent Reactions 439 Xiang Wu and Liu-Zhu Gong
- 15.1 Introduction 439
- 15.2 Mannich Reaction *439*
- 15.3 Ugi-Type Reaction 442
- 15.4 Biginelli Reaction 444
- 15.5 Aza-Diels–Alder Reaction 446
- 15.6 1,3-Dipolar Cycloaddition 454
- 15.7 Hantzsch Dihydropyridine Synthesis 458
- 15.8 The Combination of Metal and Chiral Phosphoric Acid for Multicomponent Reaction 459
- 15.9 Other Phosphoric Acid-Catalyzed Multicomponent Reactions 465
- 15.10 Summary 467
 - References 467

Index 471