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1.1
Introduction

Complexity measures have been proposed as measures for computational, statisti-
cal, or structural complex features in various contexts; for review, see [1]. A
complexity measure for patterns, for example, arising in chaotic systems, has
been proposed in [2]. It is a measure theoretic concept that applies to ensembles
of patterns. It is natural in the sense that it reflects the intuitive notion of a complex
pattern being neither completely random nor completely regular, but having some
structure instead. Complexity of hierarchical systems has been studied in [3]. The
complexity measure has the property of isolating the most diverse trees as the ones
with maximal complexity. Intuitively one would expect that the complexity of a
hierarchy is related to its diversification, that is, to the number of nonisomorphic
subtrees found at that level. The proposals given by Ceccatto and Huberman [3]
reproduce this expectation. Recently, information storage and transfer was analyzed
in [4,5]. A number of complexity measures that are based on various notions of
graph entropy have been proposed. Graph entropies are supposed to characterize
the structural information content of graphs; what is meant by “information”
depends on the context. For review, see [6]. In particular, such measures are
used in applications to chemical structures of molecule graphs whose vertices
represent atoms and edges represent chemical bonds [7]. Moreover, in connection
with molecule graphs, various “distance-related topological indices” are defined [8],
for which the connotation of “topology” and spirit of derivation is very different from
ours, although the wording may suggest an apparent overlap.
Our complexitymeasure is based on a proposal presented in [9].We do not restrict

our considerations to graphs that are trees and do not study branching properties of
trees. Our graphs can represent a generic network as a dynamical system with n
input and m output channels with directed or undirected edges. We restrict the
graphs to one type of nodes, one type of edges, and one type of connectivities of
nodes via these edges. There may be an arbitrary number of loops. The structural
complexity of a graph needs to be considered with an associated dynamics. Hence,
the result of our complexity measure will sensitively depend on the dynamics, of
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which the graph is just a rough abstraction that is supposed to indicate the mutual
interactions. In our applications, a whole dynamical system may be assigned to a
single node, and a path of regulation or transportation to an edge, where the edge
can be equipped with its own dynamics.
Given a graph and the associated dynamics, we determine the complexity

measure in two steps. The first one, called the vertex resolution, leads to a
proliferation of patterns assigned to this graph, and the second one leads to a
selection of only those patterns that are topologically inequivalent. This way we
“get rid” off the entropy, generated by symmetries of the initial graph and
generated patterns. Therefore, our approach is complementary to measures based
on entropies of graphs.
Both steps, the vertex resolution and the restriction to topologically inequivalent

contributions, are motivated by dynamical systems. Vertex resolutions “break up”
the vertices into parts in all allowed ways leading to rewiring of edges, or a fusion or
fission of interaction paths between the vertices; vertices represent nodes which in a
broad sense transform an input in kin channels to an output in kout channels,
regulating the flux of cargo, traffic, energy, fluid, or information. Their splitting may
create or destroy loops, an important basic motif in networks. Not all patterns,
resulting from this process of partitioning the edges assigned to a vertex, are
dynamically allowed, as we will see later.
The selection of topologically inequivalent graphs is motivated by the fact that

whole classes of dynamical systems are known to exist, whose space of attractors and
their associated functions are to a large extent determined by their topology, that is,
by fixing the mutual interaction. (Attractors are understood as stationary states that
can be fixed points, limit cycles, or chaotic attractors of the dynamics. Their relation
and interpretation in terms of a “function” is not always obvious, but sometimes
possible.) The conjecture then is that changing the topology changes the function or
functionality of these systems, so that the complexity measure gives a hint on the
functional flexibility of the dynamical systems, natural and artificial ones, repre-
sented by the considered graph.
In particular, the concept of functionality applies to networks in life science and in

information science. Network motifs have been studied as characteristic building
blocks for complex networks [10]. They are local subgraphs or wiring patterns that
occur throughout the network significantly more often than in randomized net-
works. As a result, motifs shared by ecological food webs are specifically different
from those in genetic networks. More generally, it has been found in [10] that motifs
in networks of information processing are typically distinct from networks of energy
transporting. Information processing may refer to nets as diverse as those of gene
regulation, neurons, and electric circuits. The overall conclusion is that frequently
repeated motifs should represent certain functions.
At a first place, to make these concepts well defined, in particular the topological

equivalence of two graphs, we use the framework of LCE-graphs, in which LCE
stands for “linked cluster expansions” used in statistical physics. The appropriated
definitions are introduced in Section 1.2.1, followed by a definition of the vertex
resolution patterns of a graph in Section 1.2.2. Section 1.2.3 contains a short
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excursion to link invariants and Kauffman states, which are usually used for
calculating Jones polynomials as link invariants. The reason for this excursion is
a close correspondence between the decomposition of a link into Kauffman states
and our scheme of vertex resolutions. We are then ready to define a measure for
functional complexity in Section 1.2.4. In Section 1.3, we illustrate with examples
from dynamical systems a number of cases, in which the topology determines the
function. We start with a very simple system of phase oscillators in Section 1.3.1.
Next we indicate applications to transport networks of information (Section 1.3.2) or
of cargo (Section 1.3.3), to Boolean networks in Section 1.3.4, and to topological
quantum systems in Section 1.3.5. In Section 1.3.6, we sketch a dynamical system,
of which the steering dynamics on the highest level of its hierarchical organization is
stored in the topology of a knot. In Section 1.4, we draw the conclusions. Throughout
this contribution, we will use “lines” and “edges”, and “vertices” and “nodes”, in a
synonymous way, respectively.

1.2
A Measure for the Functional Complexity of Networks

1.2.1
Topological Equivalence of LCE-Graphs

As usual in the context of networks, our graphs consist of nodes and edges (or
vertices and lines), the edges may be directed or undirected; in principle, we can
formulate our notions of topological equivalence for graphs with two type of
connectivity: nodes are connected via edges, and edges are connected via a different
kind of nodes. Such a type of connectivity was naturally introduced in the context of
the graphical representation of a generalized high-temperature expansion in spin
glasses, if not only the spins interact via their couplings, but the couplings self-
interact with their own dynamics, see [11,12]. For simplicity, we focus here on
undirected graphs with only one type of connectivity, represented by graphs with
internal and external lines – internal lines to describe internal interactions and
external lines for input and output channels in the general context.
Let us now define in detail the notion of an LCE-graph and the topological

equivalence of two such graphs. The notions are obtained as special case of those
introduced in [11]. An LCE-graph is a structure

C ¼ ðLC;BC;EC;RL
CÞ ð1:1Þ

Here LC and BC are two mutually disjoint sets of internal lines of C and vertices of
C, respectively. EC are maps that assign the number of external lines to every vertex
v 2 BC.RL

C are incidence relations that map internal lines to their endpoint vertices.
Lines are treated as undirected; the generalization to directed ones is easily done.We
consider BC � BC as the set of unordered pairs of vertices ðv;wÞ with v;w 2 BC.
Then we have RL

C : LC ! BC � BC . We say v and w are the endpoint vertices of
l 2 LC ifRL

CðlÞ ¼ ðv;wÞ. A line with only one vertex attached is an external line. In a
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concrete realization, the incidence relations RL
C may be realized as a matrix

ðIL
Cði; jÞÞ, i; j 2 f1; . . . ; ng with

IL
C : BC � BC :! N0 ð1:2Þ

defined in the following way. Given a graph C with n vertices, m internal lines, L
external lines, and a labeling of vertices and internal lines. IL

Cði; jÞ is a symmetric
n� n matrix with IL

Cði; jÞ equal to the number of internal lines (i.e., a natural
number2 N0 including 0) connecting i and j for i 6¼ j, i; j 2 f1; . . . ; ng. As long as we
do not allow self-lines (i.e., lines starting and ending at the same vertex), the diagonal
elements IL

Cði; iÞ may be reserved for storing the number of external lines attached
to vertex i. The matrix IL

C , representing the incidence relations, would be suited for
computer implementations of LCE-graphs as it allows computer-aided algorithmic
generation of graphs.
Now we can formulate in a purely algebraic way when are two LCE-graphs

topologically equivalent. Two LCE-graphs

Ci ¼ ðLi;Bi;Ei;RL
i Þ i ¼ 1; 2 ð1:3Þ

are called topologically equivalent if there are two invertible maps

f B : B1 ! B2

f L : L1 ! L2
ð1:4Þ

between the sets of vertices, and the set of internal lines of these graphs C1 and C2

such that

RL
2 � f L ¼ f B � RL

1 ð1:5Þ
and

E2 � f B ¼ E1 ð1:6Þ
Here � is understood as the composition of maps, and

f B : B1 � B1 ! B2 � B2

f Bðv;wÞ7!ðf BðvÞ; f BðwÞÞ
ð1:7Þ

For example, (1.5) means that the following compositions of maps are equivalent:
first assign viaRL

1 the endpoint vertices to a given internal line l1 of the first graph C1

and map them to the corresponding vertices in C2 via f B0 , or, alternatively, first map
the given internal line of the first graph C1 to the corresponding internal line l2 of the
second graph via f L, and then associate the endpoint vertices with this line there via
RL

2 . Both orders are equivalent if graphs are topologically equivalent. Equation (1.6)
states the equivalence of assigning the external lines either to the vertex of the first
graph or to the corresponding vertex of the second graph. Figure 1.1 shows four
graphs, of which three (a), (b), and (c) are topologically inequivalent, but two (c) and
(d) are equivalent. Below we will define admissible vertex resolutions. The graphs (c)
and (d), “fragmentized” into two pieces, would not be admissible as contribution to a
connected two-point correlation function.
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1.2.2
Vertex Resolution Patterns

Apart from operations like adding or removing vertices, or lines, with or without the
attached structures, one operation is of interest in this context that is the resolution
of vertices. Let C be an LCE-graph, v 2 BC a vertex with n lines ending upon it, and let
P 2 PðLvÞ be any partition of the set of lines Lv ending on v. PðLvÞ is the set of all
partitions of lines ending on v. (A partition is a disjoint union of subsets P of lines
ending on v such that it gives Lv.). We remove the vertex v and draw for every subset
P 2 P of lines a new vertex vðPÞ, so that all lines l 2 P enter the vertex vðPÞ rather
than v before its removal. This procedure is called a vertex resolution of v. For
example, see Figure 1.2 showing three partitions of the original set of four lines,
where we left out partitions into vertices with single lines attached. Also we left out
permutations from two other possible pairings of lines, which should be taken into
account when the lines are labeled. Note that this resolution procedure amounts to a
rewiring of lines. It then depends on the dynamical constraints whether the
resulting (resolution pattern of a) graph C is allowed or not. For example, the graph
may become disconnected and fragmentize into several pieces as a result of the
resolution procedure. Such a resolution is forbidden if the considered graphs must
be connected. More generally, a vertex resolution is called admissible if it satisfies all
constraints from the dynamics or from the choice of observables.
A remark may be in order on what has led us to introduce the concept of vertex

resolutions. In the original formal context of so-called dynamical linked cluster
expansions [11], the graphs (c) and (d) of Figure 1.1, which now fragmentize into
independent parts, could remain connected if one allows self-interactions of spin

(a) (b) (c) (d)

Figure 1.1 Topologically (in) equivalent graphs: (c) and (d) are equivalent, whereas (a), (b), and
(c) are not.

(a) (b) (c) (d)

Figure 1.2 Three possible resolution patterns (b), (c), and (d) of the graph in (a).
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couplings, represented by lines. These graphs would then contribute to a connected
two-point function, for example. But also in connection with linked cluster expan-
sions, one is naturally led to consider resolutions as shown in Figure 1.3 when
calculating symmetry factors of an internal symmetry like color or flavor symmetry.
For example, assuming an underlying O(N)-symmetry of the system, one of N
“colors” (“flavors”, “features”, or “bits”) may propagate along each line. In calculat-
ing the internal symmetry factor, one looks for all possible paths along which feature
1, say, out of N, can propagate from the input channel through the graph to yield
feature 1 in the output channel, while a closed loop may carry any one of the N
features, and only one feature can propagate along a line at the same time. As shown
in Figure 1.3, feature 1 can propagate along the upper line, say l1, along with N
possible features for the loop of the remaining lines, l2 and l3, or it can propagate
along l1; l2; l3, or l1; l3; l2, or it could choose the intermediate line l2, or the lower line
l3 first, yielding 3� ðN þ 2Þ possibilities altogether.
Consider the special case of vertices of degree 4 in a closed graph without external

lines, and interpret the vertices as crossings of two lines, resulting from a two-
dimensional projection of under- or overcrossings in links (for the definition of
“link,” see Section 1.2.3) in three dimensions. In this case, our vertex resolutions
contain a decomposition of two-dimensional link diagrams into a sum over Kauff-
man states as we show in the following section.

1.2.3
Kauffman States for Link Invariants

Let us briefly recall some basic facts about knots and links. A “knot” as defined by
mathematicians is a submanifold of R3 that is diffeomorphic to S1, the circle. An
example for a two-dimensional projection of a trefoil is shown in Figure 1.4. The over- or
undercrossings of the “rope” in three dimensions are indicated with continuous or
broken lines, respectively. A “link” is a submanifold of R3 that is diffeomorphic to a
disjoint union of circles. The circles are components of the link. A link with two
components is the Hopf link, as shown in Figure 1.5. For classifying knots or links, a
numberof link invariantshavebeenproposedsuchas the Jonespolynomial.Kauffman’s
approach to Jones polynomials made it a simple construction [13]. The first step is to
define the Kauffman bracket of a link L, hLi, which is then used to construct the Jones
polynomial. TheKauffmanbracket is a functionof three variables,A,B, and d. Choosing
B ¼ A�1, d ¼ �ðA2 þ A�2Þ, the Kauffman bracket will be invariant under Reidemeis-
ter moves. Now, rather than summing over the crossings of the link L, the Kauffman

Figure 1.3 Propagation of a “color” labeled as 1 along different paths in three resolution
patterns.
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bracket sums over states s, which we here will call Kauffman states. Such a state of L
assigns to each crossing c ofL anumbersc that is eitherAorB, so that a link ofN vertices
has 2N possible states. Given a state s of a link L, we orient each crossing c such that the
overcrossing line points upward to the right and the broken line upward to the left as on
the left-handsidesofFigures 1.6 and1.7.Assigning the variableA to this crossingmeans
to avoid it according to Figure 1.6, and assigning the variable B implies an avoiding
according to Figure 1.7. This way all crossings are avoided and the resulting diagram
consists of a finite set of circles, embedded in the plane, as indicated in Figure 1.8 for

Figure 1.4 Trefoil knot.

Figure 1.5 Hopf link.

A

Figure 1.6 First possibility of avoiding the crossing. In this case, the variable A is assigned to the
crossing.
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the Hopf link. The Kauffman bracket is then defined by a sum over all Kauffman states
according to

hLi ¼
X

s

djjsjj
Y

crossings c

sc ð1:8Þ

where jjsjj denotes thenumber of circles of the states. (For theHopf link, theKauffman
bracket is then given by hLi ¼ d2A2 þ dABþ dABþ d2B2). Now it should be obvious
why we have made this excursion to link invariants in connection with our resolution
patterns. For the special case that our graphs have no external lines, and the vertices of
the links have all degree 4 corresponding to two crossing lines, our decomposition into
patterns contains the decomposition into Kauffman states as a subset of all partitions.
The kind of summation reminds to a sum over states of a partition function, and the
relation canbemadeprecise in both cases, see [10,14]. In Section 1.3.6, wewill indicate a
possible application of these link diagrams as generating functions of dynamical
processes that arise from different Kauffman states of these links.

1.2.4
Definition of the Complexity Measure

We are now prepared to define a measure for the functional complexity of networks.
It is defined as

FCM :¼
P0

i2ð1;...;NÞ PAiðCÞP
all admissible patterns jPAjðCÞ; ð1:9Þ

that is, it counts the total number of topologically inequivalent admissible resolution
patterns PAi of the graph C of that network (here defined for an LCE-graph),

B

Figure 1.7 Second possibility of avoiding the crossing, here labeled as B.

α

β γ
δ

(b)(a) (c) (d)

Figure 1.8 Kauffman states of the Hopf link.
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normalized over all admissible patterns. The prime stands for the restriction to
topologically inequivalent and admissible patterns. A resolution pattern is obtained by
allowing any rvð0 � rv � nvÞ resolutions of vertices, nv denoting the total number of
vertices of C. It is admissible if it is compatible with the constraints imposed by the
dynamics. Two resolution patterns are topologically equivalent if there exist two
invertiblemaps (1.4) between their associated graphsC1 andC2 that satisfy (1.5)–(1.7).
Examples for dynamical constraints are as follows:

� After the resolution of vertices, the resulting graph should stay connected.
� Vertices should have an even number of lines attached. This constraint may

reflect an underlying symmetry of the dynamics, which forbids an odd number of
attached lines.

� There areno lines that start andendat the samevertex (i.e., no self-linesor tadpoles).
� Conservation laws should be respected at each vertex.
� Rewiring of edges should avoid geometric frustration. It may happen that the

vertex resolution leads to the creation of loops such as in the first resolution
pattern of Figure 1.3. If the edges are not directed but represent repressing
interactions, a loop with an odd number of such edges will lead to geometric
frustration [15]. In case of directed edges, representing repressing interactions, an
even number of such edges in a loop leads to geometric frustration. If the network
shall be designed in a way to avoid geometric frustration, such resolution patterns
would be excluded.

In our definition of the complexity measure, we count all admissible resolution
patterns of graphs with equal weight. In general, it may happen that certain
topologically inequivalent patterns are admitted, but dynamically strongly sup-
pressed in some small parameters like a coupling constant. For such cases, the
measure should be generalized accordingly.
The scaling of this measure with the number N of (unresolved) vertices is

bounded by kNmax if kmax denotes the maximal degree of vertices in the network.
The actual scaling, however, can be quite different from this exponential prolifera-
tion of patterns due to the dynamical constraints.
Our conjecture is that the restriction to topologically inequivalent resolution

patterns projects on inequivalent functionalities. We shall give examples in the
following sections.

1.3
Applications

The definitions in the previous sections with graphs induced by linked cluster
expansions mainly served to illustrate that the notions of topologically inequivalent
resolution patterns of graphs (which are themselves graphs) can be well defined and
tested in a computer-aided way by analyzing their matrix representations. From now
on, we consider any interpretation of such graphs for which the concept of vertex
resolution is meaningful.
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1.3.1
Creation of a Loop

Let us start with a very simple example in which it is only the topology that
determines the attractor of the dynamics, here a synchronized state of a system of
interacting phase oscillators. Consider an open chain of coupled phase oscillators,
assigned to the nodes of the chain, which are coupled to their nearest neighbors
apart from those at the boundaries which have only a neighbor on one side.
Depending on the choice of parameters, the oscillators can then oscillate
either completely independently of each other or in full synchrony with a fixed
phase difference between them. Now let us choose the parameters such that the
oscillators are in an incoherent state for open boundary conditions along the
chain. As we have shown in [16], the mere closure of the open chain to a closed
loop is then sufficient to induce synchronization of the whole set without any
other change of parameters. The switch to a synchronized state induced by a
change in the topology holds for a whole range of parameters, for which the chain
of oscillators is dephased.
More generally, loops, whether undirected, or directed as feedback loops or

feedforward loops, play an important role as a basic motif in network dynamics.

1.3.2
Networks of Information

Recently, a discrete-time Gaussian model was analyzed with respect to its
capability of storing information on individual nodes, given the network structure
and the weights of the edges [4,5]. The authors show that directed feedback or
directed cycles and feedforward loop motifs dominantly contribute to the capa-
bility of information storage. For example, in this model, feedforward loops let
information pass to another node along paths of different lengths, so that the
information arrives at different instants of time. This effectively amounts to an
intermediate storage of this information at another place within the network. (The
active information storage is calculated in terms of certain entropies.) Moreover,
the longer such loops, the longer the memory which in principle can be
incorporated in such networks.
If our decomposition of nodes in the context of neural networks leads to resolution

patterns of graphs that yield a number of loops with a variety of loop lengths, such a
network architecture isflexible in itsmemory capacity anddepth. In contrast to loops, a
full decomposition of the network graph into trees of different roots would reflect the
possibility of a fully parallel transport of information over time.

1.3.3
Transport Networks of Cargo

For transport networks of cargo, the edges correspond to roads or tracks, and the
logistics of transport is much determined by the traffic regulations at the crossings.
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A large value for the complexity measure here would reflect many ways of
partitioning the road network for optimizing the speed of transport, the avoidance
of traffic jams, the amount of transported cargo, but also a time-ordered supply to
have the cargo at the right time at the right place. Different partitions, corresponding
to different vertex resolutions, would stand for different strategies to satisfy the
logistic requirements. Here we do not only think of macroscopic traffic networks
and traffic regulations in cities; onemay think of smart energy grids with an efficient
design for the transport of power based on renewable energy. On the one hand, one
would like to make the network robust against a global electric power outage, so that
some redundancy in the number of cables seems to be required. On the other hand,
one should avoid Braess’ paradox [17] that is well known to occur in traffic systems.
It is also known for power networks that the addition of a single route may induce an
outage rather than improving the robustness. Such considerations would lead to
constraints on the admissible partitions of the road network. In more formal terms,
the design should avoid geometric frustration (“frustration” in a similar sense as it is
used in spin systems (see [15]), since frustration amounts to conflicting regulations
at crossing points of loops. Calculating then our complexity measure for such a
traffic network of a given fixed size would not be conclusive on its own, but its
scaling with the system size together with a dynamical process of traffic (energy
transport) would be conclusive for the network’s transport capacity.
Much more fancy transport networks than the artificial ones on the macroscopic

scale can be found in natural networks on the mesoscale, realized in the
cytoskeleton of eukaryotic cells. The cytoskeleton provides structure and organi-
zation of cells, but also drives their change of shape and movement and trans-
forms applied stress, transmitting or resisting it [18]. Within the cytoskeleton,
there are three networks: actin filaments together with crosslinkers on the
smallest scale, intermediate filaments, and microtubules on the largest scale.
Microtubules play a key role in particular for intracellular transport. It is a focus of
current research what exactly regulates this traffic, and how traffic jams or
malfunctions are avoided in a healthy organism. In contrast to the static networks
on the macroscopic scale (often also equipped with static traffic regulations), the
networks on the nano- and microscales have a highly dynamic structure. “Roads”
and crosslinkers are regularly created and destroyed as in our purely formal vertex
“fission” and “fusion” events, in which connections to other edges can be lost or
are newly created. Yet we are far off from establishing a direct connection between
the functional complexity of this complex viscoelastic material in the cell and our
complexity measure that would only indicate the number of inequivalent arrange-
ments of traffic lines. In any case, here the topological aspect is certainly not
sufficient to capture the very rich, sophisticated functional behavior of the
cytoskeleton, since the very material properties of the involved networks matter
as well as metric features related to the range of forces, the very size of the cargo,
tracks and crosslinkers, and the very timing of the processes.
Therefore, in regard to an optimal design of a flexible topology of transport

networks, one should take into account the nature of thematerial that is transported,
whether it is cargo, energy flux, fluid, single information bits, or signals for
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regulation. This leads us to the next class of networks for which the topology decides
about certain functions which the network can perform.

1.3.4
Boolean Networks of Gene Regulation

Boolean networks provide a prominent example for systems in which it is the
topology that determines to a large extent the dynamical attractors, and the attractors
can be identified with certain functions. Boolean modeling of gene regulatory
networks was very successful for the segment polarity gene network [19], dealing
with genes involved in the embryonic pattern formation in the fruit fly Drosophila
melanogaster. As it was shown in [19], it is the topology of the regulatory network that
essentially determines the dynamics and the overall function, and it is much less the
kinetic details of this system which matter. To expose more clearly the connection
between function and topology (connectivity), the original graph of the segment
polarity network is expanded toward the inclusion of so-called complementary and
composite “pseudonodes,” in particular to represent more clearly the logical
functions and to account for the two possible signs of interaction ((þ) for activating
and (�) for repressing interaction). This extension toward further vertices is
different from our resolution patterns, but in a similar spirit to reflect further
details of the dynamics in the graphical representation.
Another prominent example for a successful description of a genetic system in

terms of Boolean functions is provided by the yeast cell cycle [20]. Again it is the
topology in which the regulatory functions are arranged that determine the
dynamic attractors and their basins of attraction, whose size reflects the robust-
ness against perturbations. In case of the modeling of the yeast cell cycle, one is in
the lucky situation, as the intimate relation is obvious not only between Boolean
functions and topology but also between biological function and topology, since
the attractors can be interpreted in biological terms, such as an attractor corre-
sponding to the G1 state, that is the biological stationary state of the cell cycle, here
of yeast. In this system, it is possible to observe how the biologically realized cell-
cycle sequence of protein states is an attractive trajectory in the Boolean dynamics
with a global range of attraction [20].
It is particularly this kind of systems behind our idea that inequivalent topologies

go along with different functionalities.

1.3.5
Topological Quantum Systems

Next we come to an extreme case of a class of systems, in which the functions
exclusively depend on the topology. These are quantum systems in which the
quantummechanical amplitude of a particular process depends only on the topology
of this process. This means, if the paths, which particles trace out in space-time, are
topologically equivalent, they will be equally likely. Theories that describe such
topological quantum systems are called topological quantum field theories [21]. In
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these systems, the amplitude for a particular process is a knot invariant of the space-
time paths followed by the particles during this process. Out of a two-particle, two-
hole system, one can construct a two-state quantum system or a single quantum bit.
This suggests the possibility to use topological quantum systems as quantum
computers. Different types of braids (structures formed by intertwining three or
more paths) correspond to different quantum computation, so that there is a direct
relation between the topology and the function (of performing a calculation).
Different realizations of such quantum systems are currently explored. Computa-
tions performed in this way would be much more robust against noise of various
origin, since they only depend on the topology, but not on other details of the space-
time paths.

1.3.6
Steering Dynamics Stored in Knots and Links

Let us finally sketch a toy model for a dynamical system with a hierarchical
organization. On the highest level, the steering level, we store the instructions
and initializations for dynamical processes taking place on a lower level. These
instructions are stored along closed strings which are knotted. To be definite, let
us consider the Hopf link of Figure 1.5. Next we let a nanomachine walk along the
knotted link, that is along the different pieces of the path, labeled as a, b, c, and d

in Figure 1.8. During its walk, the machine translates the instructions into
operations A, B, C, and D, acting upon the dynamics on the underlying level.
These operations need not commute. The function of the resulting dynamics on
the underlying level will likely reflect the order A, B, C, and D of the non-
commuting operations, corresponding to the order in which the instructions were
read off. Now we offer the nanomachine two options at each crossing to avoid the
over- or undercrossing of another string, the two options just corresponding to
Figures 1.6 and 1.7. In this case, the instructions along the Hopf link would be
read off either in pairings of two pieces to one cycle each, a with b for the first
cycle and c with d for the second cycle (Figure 1.8a), or, alternatively, a with d for
the first and b with c for the second cycle (Figure 1.8d), or to a single cycle in the
order a, d, c, and b (Figure 1.8b), or to another single cycle in the order of a, b, c,
and d (Figure 1.8c), up to cyclic permutations. For noncommuting operations, the
versatility of the dynamical performance of the whole system would then be
determined by (the Kauffman states of) the Hopf link, associated with the
steering level.
A desirable feature of such an organization in general would be that the

dynamics on the steering level depends mainly on the topology, since this
guarantees a highly robust performance, while less robustness is required for
the lower levels in view of the maintenance of the system as a whole. Of course,
one may wonder what steers the superimposed dynamics that determines the
decisions of the nanomachines at the crossings while they are reading out the
instructions along the path. This may be some feedback from the overall
performance after the instructions are carried out.

1.3 Applications j13



1.4
Conclusions

As we have seen, along with the versatile interpretation of graphs that represent
dynamical processes on and of networks, our manipulation of graphs in terms of
fusion and fission of nodes and edges has different applications, ranging from
transport networks of cargo, energy, or flux to those of transport of information and
to regulatory gene networks, described by Boolean functions. After all one may
wonder why we distinguish at all between graphs of these networks and their
possible resolution patterns if it is mainly the latter which may be directly related to
certain functions. The answer is best provided by the answer to an analogous
question: Why do we consider links like the Hopf link rather than the associated
Kauffman states? The graphs classify the dynamical system, and the resolution
patterns correspond to concrete and particular realizations. In the toy model of the
last section, it would be the link invariant that would characterize a whole class of
dynamical systems by their steering dynamics. In general, we expect a close relation
between function (performance) and topology in regulatory systems, which are not
sensitive to kinetic details or metric measures such as the size and distance of the
involved objects.
Characterizing a complex performance of a dynamical system by a single

number such as our complexity measure is certainly not conclusive if we
know this number just for a single system size. However, the scaling of this
measure with the system size can be revealing. As we have indicated in Section
1.2.4, the scaling need not be exponential in the number of vertices, but can be
rather nontrivial due to the presence of dynamical constraints that should be
satisfied by the admissible vertex resolutions. Since the measure sensitively
depends on the very choice of the dynamics, there are no universal scaling
laws; results in concrete applications, however, will be useful for deciding the
storage capacity of a network, the robustness of large regulatory systems, or the
feasibility of a calculation. In our original application of counting the (topologi-
cally inequivalent) resolution patterns of vertices, occurring in a generalized
linked cluster expansion for spin glass systems [10,11], this number was a
measure for the computational complexity of the problem, so that a computer-
aided algorithmic generation of graphs was needed to go to higher orders in the
expansion. For a neural network, this number may give a hint on the storage
capacity in terms of the abundance of special loop motifs. In nonrandom Boolean
networks, it would be interesting to see whether the number reflects a non-
exponential scaling with the system size if all dynamic constraints are taken into
account that apply to genetic systems, and if the sequential, nonrandom order of
regulations is respected in the Boolean modeling. Here it is most interesting to
understand why not all in principle allowed combinations (“resolution patterns”)
are realized in nature, since the observed number of stable attractors (supposed to
represent the stable cell states) is relatively low as compared to the huge number
that would be possible without additional constraints.
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In summary, it is not all kind of dynamical systems to which we would apply this
measure, but those in which the topology of the network has the main influence on
the stationary states of the system.
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