Contents

List of Contributors XV

	Foreword XIX Introduction $XXIX$			
Part I	Mechanisms of Elementary Reactions in Catalytic Processes 1 Lutz H. Gade			
1	Quantum Dynamics of Molecular Elementary Processes in Catalytic Transformations 5			
	Günter Klatt and Horst Köppel			
1.1	Introduction 5			
1.2	Structural and Energetic Aspects 6			
1.3	Quantum Dynamical Calculations 12			
1.3.1	Reaction Path Energy Profiles 12			
1.3.2	Wave Packet Propagation for Late-Transition-Metal Complexes 13			
1.3.3	Norm Decay and Lifetimes 15			
1.3.4	Quantum Dynamics of Ethylene Insertion in Chromium Complexes 18			
1.4	Summary and Outlook 21			
	Acknowledgments 21			
	References 21			
2	Activation of Small Molecules with Metal and Metal Oxide Clusters in			
	Inert Gas Matrixes 25			
	Hans-Jörg Himmel and Olaf Hübner			
2.1	Introduction 25			
2.2	The Matrix Isolation Technique – Advantages and Limitations 28			
2.2.1	Thermal Evaporation Versus Laser Ablation 29			
2.2.2	Metal or CsI Substrates for the Matrix 30			
2.3	Formation and Characterization of Metal Atom Dimers and Clusters 32			
2.4	Reactions of Atom Dimers or Clusters 35			

VI	Contents	
	2.5	Formation and Characterization of Metal Oxides 38
	2.6	Reactions Involving Metal Oxides 44
	2.7	Concluding Remarks 46
		Acknowledgments 47
		References 47
	3	Toward Single-Molecule Catalysis 53
		Arina Rybina, Marcel Wirtz, Dominik Brox, Roland Krämer, Gregor Jung, and
		Dirk-Peter Herten
	3.1	Introduction 53
	3.1.1	Single-Molecule Enzymology 54
	3.1.2	Single-Molecule Studies in Chemistry 55
	3.1.2.1	Single-Molecule Studies in Heterogeneous Catalysis 56
	3.1.2.2	Single-Molecule Chemistry in Homogeneous Catalysis 58
	3.2	Probes for Single-Molecule Chemistry 60
	3.2.1	Fluorescence Properties: Overall Considerations 61
	3.2.2	Fluorogenic Substrates 62
	3.2.3	Substrates for Reversible Reactions 62
	3.2.4	Substrates for Irreversible Reactions 63
	3.3	Approaching Single-Molecule Studies in Homogeneous
		Catalysis 64
	3.3.1	Fluorophore-Labeled Cu(II) Chelators and Substrates 64
	3.3.2	BODIPY Substrates for Probing Reactions of Double Bonds 71
	3.4	Discussion and Perspectives 75
		Acknowledgments 76
		References 76
	4	Intermediates and Elementary Reactions in Gold Catalysis 81
		A. Stephen K. Hashmi
	4.1	Introduction 81
	4.2	The Initial Step: π -Coordination of the Substrate 81
	4.3	The Nucleophilic Addition: Vinylgold and Alkylgold
		Intermediates 82
	4.4	The Reaction of the Organogold Intermediates with
		Electrophiles 87
	4.5	"Vinylidene" Gold(I) Intermediates 89
	4.5.1	Setting the Stage 89
	4.5.2	An Unexpected Regioselectivity Raises Questions 92
	4.5.3	The Mechanistic Hypothesis 95
	4.5.4	The Other Pathway 97
	4.5.5	Gold Allenylidenes as Analogs of Gold Vinylidenes? 99
	4.5.6	Dual Activation Catalysts 99
	4.6	Protons and Hydride in Gold Catalysis 101
	4.7	Future Perspectives 102
		References 102

5	Diastereoselectivity in Alkene Metathesis 107 Bernd F. Straub and Achim Häußermann				
5.1	Introduction 107				
5.2	Stereoselective Alkene Metathesis Catalysts 107				
5.3	Combining Catalytic Activity and Stereoselectivity in Ruthenium Carbenes: an Antagonism? 111				
5.4	Stereoselectivity in Ring-Opening Metathesis Polymerization (ROMP) 114				
5.5	Outlook 116				
5.6	Summary 117 References 117				
Part II	New Catalysts – New and Old Reactions 119 Peter Hofmann				
6	Oxidation Catalysis with High-Valent Nonheme Iron Complexes 123 Peter Comba				
6.1	Introduction 123				
6.2	Bispidine Ligands 124				
6.3	Oxidation of the Ferrous Precursors 125				
6.4	Spin States of the Ferryl Catalysts 128				
6.5	Redox Properties of the Ferryl Oxidants 130				
6.6	Reactivity of the Ferryl Compounds 132				
6.6.1	Olefine Oxidation 132				
6.6.2	Alkane Oxidation 134				
6.6.3	Sulfoxidation 137				
6.6.4	Water Oxidation 138				
6.6.5	Dioxygen as Oxidant 139				
6.7	Conclusion 140				
	Acknowledgment 141				
	References 141				
7	Single-Site Organochromium Catalysts for High Molecular Weight Polyolefins 147 Markus Enders				
7.1	Introduction 147				
7.2	Ligand Design 148				
7.3	Chromium Complexes of Non-Cp Ligands 149				
7.3.1	Neutral Tridentate Ligands 149				
7.3.2	Anionic Ligands 149				
7.4	Chromium Complexes Based on Cp 150				
7.4.1	Cp Systems with Covalently Bound Additional Donor Functions 151				
7.5	Polymerization Behavior of Donor-Functionalized Cp Chromium Complexes Developed in Heidelberg 151				

Contents						
7.5.1	Structural Features 151					
7.5.2	Catalyst Activation and Catalytic Activities 152					
7.5.3	Chain Termination and Molecular Weights 155					
7.6	En Route to Tunable Catalysts 157					
7.7	Conclusion 158					
	References 159					
8	Ligand Design and Mechanistic Studies for Ni-Catalyzed					
	Hydrocyanation and 2-Methyl-3-Butenenitrile Isomerization Based					
	upon Rh-Hydroformylation Research 161					
	Peter Hofmann and Michael E. Tauchert					
8.1	Introduction 161					
8.2	Recent Advances in Ni-Catalyzed Hydrocyanation and Isomerization					
	Reactions 164					
8.2.1	Hydrocyanation of Vinylarenes 165					
8.2.2	Hydrocyanation of 1,3-Dienes 165					
8.2.3	Hydrocyanation of <i>trans-</i> 3-Pentenenitrile 166					
8.2.4	Isomerization of 2-Methyl-3-Butenenitrile 167					
8.3	1 1 1					
	Reactions Employing the TTP-Ligand Family 168					
8.3.1	Genesis of the TTP-Ligand Family 168					
8.3.2	Ni-Catalyzed Isomerization and Hydrocyanation with TTP-Type					
	Phosphonite Ligands 170					
8.3.3	Ni-Catalyzed Hydrocyanation Involving TTP-Type Phosphine					
0.0.4	Ligands 171					
8.3.4	Applications and Mechanistic Studies of TTP-Type Phosphine					
	Ligands in Ni-Catalyzed 2M3BN Isomerization 174					
	Acknowledgments 179 References 179					
	References 1/9					
9	Strongly Electron Donating Tridentate N-Heterocyclic Biscarbene					
	Ligands for Rhodium and Iridium Catalysts 183					
	Doris Kunz and Eva Jürgens					
9.1	Introduction 183					
9.2	Ligand Systems 184					
9.3	Synthesis and Reactivity of the Complexes 186					
9.3.1	Synthesis of M(I) Complexes 186					
9.3.2	Synthesis of M(III) Complexes 190					
9.4	Catalytic Activities of the Rh Complexes 194					
9.5	Catalytic Activities of the Ir Complexes 200					
9.6	Discussion 202					
9.7	Summary, Conclusion, and Outlook 203					
	References 204					

VIII

10	NHCP Ligands for Catalysis 207			
	Peter Hofmann and Marcel Brill			
10.1	Introduction 207			
10.2	Recent Advances in Catalysis with NHCP Ligands 208			
10.2.1	Cross-Coupling Catalysis and Related Reactions 208			
10.2.2	Miscellaneous Reactions 214			
10.3	Recent Advances in Asymmetric Catalysis with Chiral NHCP Ligands 216			
10.4	Recent Advances in NHCP Chemistry Featuring Bulky,			
	Electron-Rich, Small-Bite-Angle Ligands 221			
10.4.1	Ligand Synthesis of N -Phosphino- and N -Phosphinomethyl NHCs 222			
10.4.2	N-Phosphino-NHC Transition-Metal Complexes 224			
10.4.3	N-Phosphinomethyl-NHC Ruthenium Alkylidene Complexes 227 References 229			
Part III	Catalysts in Synthesis 235 Günter Helmchen			
11	Ir-Catalyzed Asymmetric Allylic Substitution Reactions – Fundamentals and Applications in Natural Products Synthesis 239 Günter Helmchen			
11.1	Introduction 239			
11.2	Background on Reaction Mechanism 240			
11.3	Dibenzocyclooctatetraene (dbcot) as Ancillary Ligand 242			
11.4	Applications in Organic Synthesis 244			
11.4.1	Allylic Substitution in Combination with Ring Closing Metathesis 245			
11.4.2	Domino-Hydroformylation – Cyclization			
	(Hydroaminomethylation) 247			
11.4.3	The Allylic Substitution in Combination with the Suzuki-Miyaura			
	Reaction 248			
11.4.4	Reactions of Enines Derived from Allylic Substitution Products 250			
11.5	Conclusions 250			
	Acknowledgments 251			
	References 251			
12	Sequential Catalysis Involving Metal-Catalyzed Cycloisomerizations and Cyclizations 255 Thomas J. J. Müller			
12.1	Introduction 255			
12.2	Sequences Initiated by Cycloisomerizations 256			
12.2.1	Sequentially Pd-Catalyzed Sequences Initiated by			
	Cycloisomerizations 256			

х	Contents	
	12.2.2	Sequentially Rh-Catalyzed Sequences Initiated by Cycloisomerizations 259
	12.3	Sequences Initiated by Ring-Closing Olefin Metathesis 262
	12.3.1	Ring-Closing Metathesis – Isomerization Sequences 263
	12.3.2	Ring-Closing Metathesis – Oxidation Sequences 267
	12.4	Sequences Initiated by Alkynylation and Carbopalladative
		Insertions 268
	12.5	Sequences Intercepted by Cyclizations 271
	12.6	Conclusion 276
		Acknowledgment 276
		Abbreviations 276
		References 277
	C-N-Coupling Reactions in Catalytic One-Pot Syntheses Using	
		Molecular Group 4 Catalysts 281
	10.1	Lutz H. Gade and Solveig A. Scholl
	13.1	Introduction 281
	13.2	Group 4 Metal Catalysts for the Hydroamination and
		Hydrohydrazination of C–C Multiple Bonds as well as Complex
	10.0	Reaction Sequences Based Thereon 281
	13.3	Case Histories 283
	13.3.1	Highly Active Titanium Catalysts for the Hydrohydrazination of Terminal Alkynes and Aminoguanylation of Carbodiimides 286
	13.3.2	A Zirconium-Catalyzed Non-Fischer-Type Pathway to Indoles 287 References 294
	Sequential Catalysis for the Stereoselective Synthesis of Complex Polyketides 299	
		Thomas Debnar and Dirk Menche
	14.1	Complex Polyketides 299
	14.2	Domino Nucleophilic Addition – Tsuji – Trost Reaction 301
	14.2.1	Concise Synthesis of Tetrahydropyrans by a Tandem
		oxa-Michael – Tsuji – Trost Reaction 301
	14.2.2	Concise Synthesis of Acetal-Protected 1,3-syn-Diols by a Tandem
		Hemiacetal/Tsuji – Trost Reaction 304
	14.2.3	General Concept and Further Applications for Diamine and
		Aminoalcohol Synthesis 306
	14.3	Sequential Diyne Cyclization and Regioselective Opening of
		Zirconacyclopentadienes 308
	14.4	Conclusion and Perspectives 311
		References 312

15	Modular Assembly of Chiral Catalysts with Polydentate			
	Stereodirecting Ligands 313			
	Lutz H. Gade			
15.1	Introduction 313			
15.2	A Modular Synthesis of C_3 - and C_1 -Chiral			
	1,1,1-Tris(oxazolyl)ethanes ("Trisox") 314			
15.2.1	C_3 -Chirality in Polymerization Catalysis with Rare-Earth			
	Complexes 316			
15.2.2	Trisox as a Bidentate Ligand: Chiral Trisoxazolines in Copper(II)			
	Lewis Acid Catalysis and Palladium-Catalyzed Asymmetric Allylic			
	Substitutions 318			
15.3	The Boxmi Pincer System: a Highly Efficient Modular Stereodirecting			
	Ligand for a Broad Range of Catalytic Reactions 322			
15.4	Bidentate N-Heterocyclic Carbene Ligands Incorporating Oxazoline			
	Units 327			
15.5	New Modular Di- and Tridentate Phospholane Ligands 332			
15.5.1	Cyclohydroaminations of γ-Allenyl Sulfonamides with Mono-, Bis-,			
	and Trisphospholane Gold(I) Catalysts 335			
	References 337			
Part IV	Structures and Mechanisms in Biological Systems 343			
	Andres Jäschke			
16	Beating and Employing X-Ray-Induced Radiation Damage in Structural			
	Studies of Hemoproteins 347			
	Ilme Schlichting			
16.1	Introduction 347			
16.2	Cytochrome P450 Enzymes 348			
16.2.1	The Reaction Cycle of P450 _{cam} at High Structural Resolution 348			
16.2.2	Chloroperoxidase Compound 350			
16.3	Photoelectrons – Friend and Foe 353			
16.4	X-ray Free-Electron Lasers 354			
	References 355			
17	The Catalytic Strategy of P-O Bond-Cleaving Enzymes: Comparing			
	EcoRV and Myosin 359			
	Farooq Ahmad Kiani and Stefan Fischer			
17.1	Introduction 359			
17.1.1				
	How Do Enzymes Achieve Catalysis? 359			
17.1.2				
17.1.2 17.1.3	Computational Investigation of Enzymatic Mechanisms 361			
	Computational Investigation of Enzymatic Mechanisms 361 Enzymes that Catalyze Reactions Involving Phosphate 362			
17.1.3 17.1.4	Computational Investigation of Enzymatic Mechanisms 361 Enzymes that Catalyze Reactions Involving Phosphate 362 Endonuclease Enzymes 363			
17.1.3	Computational Investigation of Enzymatic Mechanisms 361 Enzymes that Catalyze Reactions Involving Phosphate 362 Endonuclease Enzymes 363 NTPase Enzymes 363			
17.1.3 17.1.4 17.1.5	Computational Investigation of Enzymatic Mechanisms 361 Enzymes that Catalyze Reactions Involving Phosphate 362 Endonuclease Enzymes 363 NTPase Enzymes 363			

XII	Contents	
	17.3	Conclusions 369
	17.4	Methods 373
		References 373
	18	Selective Hybrid Catalysts Based on Nucleic Acids 377 Andres Jäschke
	18.1	Introduction 377
	18.2	Hybrid Catalysis 378
	18.3	DNA-Based Hybrid Catalysis 378
	18.4	Organometallic Chemistry with Nucleic Acids 380
	18.5	Combinatorial Selections of Catalysts from Nucleic Acid Libraries 381
	18.6	Site-Specific Internal Functionalization of Nucleic Acids with Transition-Metal Ligands and Other Moieties 382
	18.7	Metallation of DNA – Ligand Conjugates 385
	18.8	Site-Specific Terminal Functionalization of Nucleic Acids with Substrates 385
	18.9	Allylic Aminations by DNA-Based Hybrid Catalysts 387
	18.10	Summary and Outlook 389 References 390
	Part V	Studies of Immobilized Catalysts – Introduction 393 Oliver Trapp and Johannes Troendlin
	V.1	Introduction 393
	V.2	Covalent Immobilization of Catalysts 394
	V.3	Support Materials 395
	V.4	Examples of Immobilized Catalyst Systems 397
	19	Dendrimers as Platforms for Stereoselective Catalysis 407 Lutz H. Gade
	19.1	Introduction 407
	19.2	Fixation of Chiral Catalysts on Dendrimers and Hyperbranched
		Polymers 407
	19.3	Case Histories 408
	19.3.1	"Dendritic Effects" Observed for Immobilized Pyrphos-Based
		Hydrogenation Catalysts 409
	19.3.2	BINAP-Copper(I) Hydrosilylation with Functionalized PPI and
		PAMAM Dendrimers as well as Hyperbranched Polymers 414
	19.3.3	"Catalysis in a Tea Bag" with Dendrimer-Immobilized Bis- and
		Trisoxazoline Copper Catalysts 416
	19.4	Conclusion and Outlook 419
		References 420

20	Solid Phases as Protective Environments for Biomimetic			
	Catalysts 423			
	Katja Heinze			
20.1	Introduction 423			
20.2	Site Isolation Experienced by Matrix-Bound Transition-Metal			
	Complexes 424			
20.3	•			
	Models 428			
20.4	Elementary Reaction Steps Performed by Solid-Phase Supported			
	Complexes 437			
20.5	Immobilized Functional Active Site Models 437			
20.6	Final Remarks 446			
	Abbreviations 447			
	References 448			
21	High-Throughput Screening of Catalysts and Reactions 453			
	Oliver Trapp			
21.1	Introduction 453			
21.2	Technical Requirements for On-Column Reaction			
	Chromatography 457			
21.2.1	Experimental Setups of On-Column Reaction Chromatography 457			
21.2.2	Preparation of Capillary Reactors 459			
21.2.3	High-Throughput Approach 459			
21.3	Determination of Kinetic Data 460			
21.3.1	Classical Reaction Kinetics for On-Column Reaction			
	Chromatographic Experiments with Reaction and Consecutive			
	Separation 460			
21.3.2	Evaluation of Conversion Profiles Obtained by On-Column Reaction			
	Chromatography 460			
21.4	Determination of Activation Parameters 464			
21.5	On-Column Reaction Chromatography for the Investigation of			
	Catalytic Reactions 465			
21.5.1	Hydrogenations over Noble Metal Nanoparticles 465			
21.5.2	Ring-Closing Metathesis 468			
21.5.3	Gosteli – Claisen Rearrangement 469			
21.5.4	Combinatorial High-Throughput Screening: Catalyst by the			
	Meter 473			
21.6	Outlook 476			
	References 476			

Index 479