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1.1 Polypharmacology

Currently, the main paradigm in drug discovery is the development of
target-specific inhibitors. This also implies molecules with high-fold potency
and selectivity toward one isoform. This mainstream view has its origins in
the so-called magic bullet as enunciated by Paul Ehrlich over 150 years ago.
Indeed, such concept was engraved in the mind of many health professionals
and researchers as the top achievement in drug discovery. However, as years
came by, this has proven to be a disappointment mainly because of the off-target
responses, which may involve toxicological concerns or side effects. For example,
considering the wide array of enzymatic systems, classes, and isoforms identified
in biology, it is no wonder that many target-specific agents had been developed
via trial-and-error approaches [1].

Recent statistics show that pharmaceutical industry is struggling as many
promising drugs fail during the early stages of drug development along with
the associated significant economic disadvantages [2]. This shows we have
reached an impasse: just between 1996 and 2001, a large number of drugs were
withdrawn from the market because of similar reasons [3]. Furthermore, even
selective drugs are not exempt of drug–drug interactions that also represent a
drawback, especially for chronic therapies. After reaching this point, we must
ask ourselves if this mainstream view needs refinement or a drastic change of
perspective. So if target-based drug discovery has not lived up to expectations,
what choices we have left? What if the so-called side effects are not “failures”
after all? In the right context, multitarget modulation is desired or perhaps
mandatory for successful therapies [4].

What exactly does polypharmacology mean? Strictly speaking, polypharma-
cology refers to molecules that are recognized by different molecular targets.
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The affinity shown toward the targets may vary, but as previously mentioned,
such compounds may be discarded fearing this promiscuity may trigger
off-target effects [5]. Thus, we are walking a fine line between positive and
negative connotations. For that matter polypharmacology usually associates
with positive outcomes. It involves the search of “master key compounds” to
tackle chronic diseases, for example, CNS disorders share multifactorial pro-
cesses that ultimately lead to degeneration, physiologically speaking. Therefore,
a single-target inhibition is of no use here as complex processes require integral
approaches [6].

Compound promiscuity is a concept closely related to polypharmacology. This
of course tells us about a molecule that interacts with many proteins or recep-
tors. Promiscuity is usually related to negative connotations, for example, it is
conceptualized as unwanted characteristic such as toxic effects due to off-target
interactions. In turn, compound promiscuity is related to the pan assay interfer-
ence compounds (PAINS). These molecules appear to be a jack-of-all-trades with
potent binding and activity, while the truth is they are a master of none. Baell and
Waters first warned about these “con artists” as they lure naïve chemists or biol-
ogists who waste valuable resources with a lost cause [7]. Of note, PAINS are not
always promiscuous. They can be flagged as active because they produce metal
chelation, chemical aggregation, redox activity, compound fluorescence, cysteine
oxidation, or other kinds of interference. Putting briefly these concepts together,
the pressing matter here is to understand and give the right context to “polyphar-
macology,” meaning that while related to “chemical promiscuity,” we cannot put
them on the same basket any longer.

Polypharmacy is one more concept related to polypharmacology. Polyphar-
macy “can mean the prescribing of either many drugs (appropriately) or too
many drugs (inappropriately). The term is usually used in the second of these
senses, and pejoratively. However, when talking about polypharmacy, it would
be wise to qualify it as appropriate or inappropriate” [8].

As of 2014 the number of articles citing “polypharmacology” as part of its title
and/or as a keyword has increased significantly, with almost 200 articles pub-
lished in the past three years only [9]. So a multitarget approach is gaining adepts
at steady pace. While this shows more promise in the grand scheme of drug
discovery, we must be careful and correctly asses the opportunities and chal-
lenges of this transition era. We should not instantly accept polypharmacology as
a panacea of sorts, but only time and advances in current knowledge will deter-
mine the success of such paradigm change; we must conserve an objective view
on the subject with realistic expectations.

Although the road ahead in polypharmacology drug discovery may seem
blurry or difficult to achieve, the development of polydrugs is currently possible.
As discussed in this chapter, the development and application of computational
methods and tools for in silico drug discovery should be a starting point and
compass to navigate the “chemical wilderness.” Computational approaches
include, but are not limited to, chemoinformatics, molecular similarity, docking,
molecular dynamics, virtual screening, and quantitative structure–activity
relationship (QSAR).

This chapter is organized in six sections. After this introduction, general
aspects of multitarget versus target-specific drugs are discussed including the
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rationale, the “master key compound” concept, and the safety panels to address
the possible unwanted effects of drug multitargeting. The next part elaborates
on the relationship between polypharmacology and other major concepts in
drug discovery, including drug repurposing, combination of drugs, and in
vivo testing. The section after that describes briefly examples of applications
of polypharmacology and polypharmacy to the development of epi-drugs
and antiviral compounds, respectively. It follows a discussion on different
modern approaches to study systematically polypharmacological relationships
and design multitarget drugs. A special emphasis is made on the concept of
chemogenomics. The last part of the chapter presents summary conclusions.

1.2 Multitarget versus Target-Specific Drugs

As discussed before, the increasing awareness of the large complexity of systems
biology is shifting the paradigm in drug discovery from a single-target to a mul-
titarget approach [10]. Despite the fact that the latter approach is significantly
more complicated than the one-drug–one-target strategy (largely influenced by
a reductionist perspective of systems biology) [11], it may lead to drugs that are
more effective in the clinic. However, it has to be considered that multitarget
drug design, and polypharmacology in general, highly depends on the dose to
deliver an overall clinical benefit [12]. For instance, a drug may have a positive
effect at therapeutic doses because of the interaction with multitargets. How-
ever, the interaction of the same compound with antitargets at higher doses will
lead to undesirable side effects [12]. Thus, similar to the appropriate or inappro-
priate polypharmacy discussed by Aronson [8], polypharmacology can also lead
to desirable or undesirable (e.g., unwanted promiscuity) multitarget drug inter-
actions that will depend not only on the nature of the structures of the drugs and
targets but also on the compound concentrations. The “dual face” of multitarget
drugs is schematically illustrated in Figure 1.1.

1.2.1 “Master Key Compounds”

A “master key compound” (luckily “master key drug”) is a molecule that binds to
a given number of targets that produce a desirable clinical effect without hitting
(or with a minimum effect) off-targets that are related to undesirable secondary
effects [10]. In a simple analogy with a master key, a “master key molecule” should
have the ability to operate on a group/set of selected targets (doors) but not on
any “doors,” in particular those antitargets that lead to undesirable side effects.
Table 1.1 illustrates examples of master key drugs that are used in the market.

Polypharmacologic
drug

Therapeutic target

Nontherapeutic
target

Clinical
effect

Adverse
effect

Figure 1.1 The “dual face” of multitarget compounds and relationship with “master key
drugs.”
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The table summarizes the name, chemical structure, clinical use, and the associ-
ated molecular target receptors.

Kinase inhibitors are representative yet controversial examples of master key
compounds used in the clinic. Despite the fact there are differences in the kinase
domains, the binding site of ATP is highly conserved across all the kinases. Since
the ATP site is targeted by a large number of kinase inhibitors, there are selectiv-
ity issues, and there is a significant challenge to develop master key inhibitors of
kinases (Figure 1.2). Several efforts in the pharmaceutical industry and academia
have been dedicated to develop selective kinase inhibitors in order to reduce side
effects. However, it is also noteworthy that some extremely promiscuous kinase
inhibitors have shown good clinical performance, even when treating unrelated
tumors, for instance, dasatinib, which binds to at least 159 kinases [15]. This has
not been overlooked by the scientific community, which is already working on
the idea of designing multitarget protein kinase inhibitors [16, 17]. Currently,
there are two strategies to exploit polypharmacology against kinases, that is,
combination of selective compounds and design of “selectively nonselective,”
that is, master key kinase inhibitors (Figure 1.3) [10, 16]. The former refers to
the simultaneous administration of two selective compounds designed to inhibit
different kinases in order to achieve an enhanced phenotypic effect. The latter,
and the most difficult, consists in merging the inhibitory activity against two
or more kinases in one single compound with none (or only few) off-targets.
The key factor in either of the mentioned strategies is to identify the targets
that should be inhibited simultaneously to produce a selective phenotypic effect
against the tumor. Kinase inhibitors are discussed in detail in Section 2.4.2
of this book.

1.2.2 Safety Panels

Many of the adverse drug reactions (ADRs) are caused by unintentional interac-
tion of a drug with a nontherapeutic target to which is given the name “antitarget.”
The most frequently found antitargets are already well studied and characterized.
Examples of these receptors are shown in Table 1.2.

Animal toxicity models are not practical to predict the adverse effects caused by
antitargets in humans due to differences between species. For instance, human
ion channels differ greatly from their rodent orthologs. Therefore, the Interna-
tional Conference on Harmonization (ICH) guideline S7A for security studies
recommend performing antitarget screening tests. These tests are ligand binding
assays using enzymatic methods to obtain data and provide suggestions concern-
ing potential adverse effects of the molecule under study. Antitarget screening
tests also protect the early volunteers in clinical studies from developing ADRs
as it is estimated that the toxicity in the preclinical stage causes that 30% of the
compounds do not advance to the clinical stage.
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Figure 1.3 Examples of the use of polypharmacology against kinases. Compounds AZD6244
and MK-2206 have been used in combination to inhibit the MAPK and PI3K pathways to
obtain an enhanced phenotypic effect. Compound PP121 inhibits both PI3K and mammalian
target of rapamycin (mTOR) simultaneously. This dual inhibition has been proposed to be
more potent than inhibiting either target individually. The rationale behind this idea is that
mTOR activates a negative feedback loop that inhibits PI3K. The inhibition of mTOR alone
results in the blockage of the negative feedback loop and in a hyperactivation of PI3K [18].

Table 1.2 Major antitarget receptors.

Antitarget
receptor

Hit rate Adverse drug
reaction

Human ether-a-go-go related
gene (hERG) channel

— Arrhythmia

Serotonin 5-HT2B 14 Valvulopathy, pulmonary hypertension
Serotonin 5-HT2A 11 Cognitive impairment, hallucination
α1A Adrenergic 10 Arrhythmia, orthostatic hypotension
Dopamine D2 9 Confusion, emesis, orthostatic hypotension
Histamine H1 6 Weight gain, sedation, somnolence
α2A Adrenergic 6 Hypotension, sedation
Dopamine D1 5 Dyskinesia, tremor
M1–5 muscarinic 5 Multiple cardiovascular and metabolic adverse

effects, cognitive impairment
μ-Opioid 3 Sedation, respiratory depression, abuse potential
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1.3 Polypharmacology and Related Concepts in Drug
Discovery

The interaction of a compound with multitargets is at the core of several major
concepts in current drug discovery [10]. Herein we further elaborate on these
relationships.

1.3.1 Drug Repurposing

In general terms, drug repurposing or repositioning is the identification of a new
clinical use for compounds that have already proven to be useful to treat a defined
medical condition. It can extend only to the conceptual approach or involve the
whole process, until the new indication is approved by the respective institutions.
Notably, drug repurposing is not by itself a strategy, since it may be a result of
different strategies and methods; it can be serendipitous, semi-systematic, or fully
systematic, by means of high-throughput screening or in silico approaches [19].
The subjacent principles of drug repurposing imply that drugs might have activity
against more than one therapeutic target, that is, polypharmacology.

Nonetheless, there are many distinct definitions of drug repurposing, and
there are efforts focused on further condensing the different proposals. Recently,
Langedijk et al. performed a systematic review of the literature in order to
unify the otherwise diverse and sometimes discordant definitions of “drug
repurposing/repositioning/redirecting/reprofiling/rediscovery” and concluded
that the main features of these definitions are regarding [20]:

a) General concept: strategy, process, and approach
b) Action performed: identifying, using, or developing
c) Innovative use: for a different disease, patient population, dosage, or route of

administration
d) The product itself: an existing or abandoned pharmaceutical active ingredient,

patent, medicinal product, and so on

In particular, systematic or rational drug repurposing is of current general
interest due to the marked advantages of drug repurposing versus de novo drug
discovery in terms of time, costs, and patients’ safety [21]. More specifically,
computational approaches have proven to be cost effective and are viable
options under several circumstances, such as finding therapeutic agents against
neglected [22–24] or rare diseases [25]. In several recent studies potential
alternative activities are being uncovered, and further investigation is underway
to see if these compounds can be approved for clinical use for the alternative
indication. For example, olsalazine, a drug approved for the treatment of inflam-
matory bowel disease, was recently identified as a novel hypomethylating agent
using a chemoinformatics-based virtual screening approach [26]. Concisely, it
is being investigated as a potential epigenetic drug. Following up this successful
proof of concept, additional computational studies have been conducted with
the aim of repurposing approved drugs as potential epi-drugs [19]. A thorough
discussion on drug repurposing is presented on Chapter 4 of this book.
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1.3.2 Combination of Drugs

Combinations of drugs are clinically relevant for treating a variety of chronic
medical conditions, such as infectious, metabolic, malignant, or neurological
diseases [8]. A clear example is the highly active antiretroviral therapy (HAART)
used for the treatment of patients infected with the human immunodeficiency
virus (HIV) [27]. Combinations of drugs could be used to prevent or attack
resistance to single agents and to improve the clinical effect of the treatment.
However, this approach often end with polypharmacy (the intake of five or
more drugs), a well-described clinical condition that can lead to increased risks
and adverse effects from medications, especially in the elderly or patients with
multiple chronic diseases [28, 29].

In the scientific literature, it is generally conceived that the development of
polypharmacological agents is the next logical step once it is known that a sin-
gle chemical compound may affect multiple biological targets (e.g., adverse or
off-target effects) and that combinations of drugs that act on different targets
might have additive or synergic effects against a disease. Polypharmacology is
believed to be a promising feature of drugs that could replace combined drug
therapies [30] and thus avoid polypharmacy.

Nonetheless, there is another point of view in which drug combinations
are included within polypharmacology approaches following the multitarget
paradigm while still recognizing the advantages of multitarget single agents
[31]. A third approach was developed recently by Gujral et al. after this group
identified kinases involved in cellular migration that are specific for cell type.
To accomplish this, they tested polypharmacological kinase inhibitors. Their
proposal is to exploit polypharmacology of chemical probes to aid in the rational
design of more potent and specific drug combinations [32]. This last approach
is supported by the finding that combination therapies acting synergistically
are also more specific in their pharmacological actions when administrated
in combination than as single agents [33]. Hence, combination of drugs and
polypharmacology does not necessarily imply more severe adverse effects when
there is a synergic effect, provided that selectivity is increased in these cases.

Finally, the combination of drugs may be used for preventing adverse effects
or severe risks of certain drugs used in monotherapy. For example, Zhao et al.
discovered that coadministration of exenatide substantially reduces the myocar-
dial infarction risk found in diabetic patients treated with rosiglitazone alone.
Both exenatide and rosiglitazone are indicated for the treatment of diabetes mel-
litus type 2 and they act on different targets [34]. A more detailed discussion of
combination of drugs is fully addressed on Chapter 3 of this book.

1.3.3 In Vivo Testing

Several drugs have been identified following an in vivo screening or natural prod-
uct mixtures or mixtures of individual compounds. In vivo testing is a drug dis-
covery approach that distances itself from the “classical” one-target screening.
It has been recognized that in vivo screening offers the advantage of an early
demonstration that compounds may show activity in disease-relevant models
before proceeding with further development. Moreover, despite the limitations
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and costs of in vivo testing, it allows the rapid selection of molecules that exert
their biological effect through the interaction with multiple targets (present in
an in vivo system). Therefore, this methodology represents an approach to iden-
tify “master key compounds” discussed earlier. In vivo testing of mixture-based
combinatorial libraries has been used as an effective drug discovery approach to
rapidly screen hundreds or thousands of compounds efficiently [35]. Moreover, in
vivo testing of mixture-based combinatorial libraries has enabled to expand the
exploration of the chemical space beyond the one populated by currently mar-
keted drugs [10].

1.4 Polypharmacology (and Polypharmacy):
Case Studies

In this section, we discuss briefly selected applications of polypharmacology and
polypharmacy for the treatment of diseases associated with epigenetic alterations
and antiviral infections caused by HIV, respectively. Both types of diseases are
different in nature, but both are very complex and represent major challenges to
design effective therapeutic treatments.

1.4.1 Polypharmacology in Epigenetics

For diseases with a complex metabolic substrate, such as diabetes, cancer, and
autoimmune and neurodegenerative disorders, it becomes increasingly evident
that aiming to a single pharmacological target would not be an appropriate
strategy. It has been shown to a variable extent for each of the aforementioned
diseases that epigenetics (inheritable traits that are not encoded within the
genome, e.g., DNA methylation and histone modifications) plays an important
role in the establishment and maintenance of the disease [36]. Epigenetic
mechanisms are extremely complex, and not yet totally understood, which
makes quite difficult to design therapies directed against them. However,
epigenetic drugs are appearing in the clinical scenario, mostly for the treatment
of malignant or premalignant states, with favorable results [37, 38]. More-
over, there is a current trend for shifting toward epi-polypharmacology drugs
against either more than one epigenetic target or combined epigenetic and
other targets [4]. Notably, many different epigenetic biological targets share a
reduced number of cofactors (e.g., Zn+2, NAD+, SAM), and thus it is feasible
to guide the design of cofactor inhibitors with polypharmacologic properties
[39]. Another approach is the design of hybrid molecules. This strategy has
led to the development of pan-demethylase inhibitors by synthesis of hybrid
molecules containing inhibitors of histone demethylases LSD1 and JmjC, thus
generating compounds that increase H3K4 and H3K9 methylation levels and
produce apoptosis selectively to cancer cell lines, with little effect on noncancer
cells [40]. In other cases, compounds that are likely to inhibit concise epigenetic
targets show polypharmacology against other epigenetic targets. This was the
case of the AMI-5 analogs synthesized by Mai et al. [41]. AMI-5 was described
previously as a small molecule inhibitor of protein arginine and histone lysine
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methyltransferases, whereas some of its analogs were able to target multiple
epigenetic targets, including protein and histone methyl- and acetyltransferases.

1.4.2 Charting the Epigenetic Relevant Chemical Space

As discussed in the preceding section, epigenetics involves a series of complex
phenomena involving different enzymes that work as readers, erasers, and writ-
ers. Toward the design of compounds directed to multiple epigenetic targets,
we have initiated a first assessment of the epigenetic relevant chemical space
(ERCS) focused on DNA methyltransferase (DNMT) inhibitors [42]. To further
illustrate this point, Figure 1.4 shows a visual representation of the chemical
space obtained by principal component analysis (PCA) of six physicochemical
properties of data sets of molecules tested as inhibitors of bromodomains
(BRDs), histone deacetylases (HDACs), and DNMTs. As reference, generally
recognized as safe (GRAS) molecules were included. The physicochemical prop-
erties computed were number of acceptors/donors of hydrogen bonds, number
of rotatable bonds, molecular weight, octanol/water partition coefficient, and
topological surface area. According to this visualization, different compound

6
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0 5 10

PC1

P
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15

DNMTs
HDACs
GRAS
BRDs

Figure 1.4 Visual representation of the chemical space of inhibitors of histone deacetylases
(HDACs), bromodomains (BRDs), DNA methyltransferases (DNMTs), and generally recognized
as safe (GRAS) compounds. The principal component analysis was done with six
pharmaceutically relevant physicochemical properties. The first two principal components
(PCs) are represented in the figure.
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data sets populate similar regions in the chemical space since they share similar
physicochemical characteristics. From this preliminary analysis, convergence in
the chemical space of ERCS can be expected.

It is expected that the mapping and interpretation of chemical space improves
the current knowledge on epigenetics. For example, by assessing the properties
of epi-compounds, it may be possible to develop empirical rules to catalog new
molecules as epi-modulators and, overall, identify the structural characteristics
needed to achieve optimal multiple epi-inhibition [43].

1.4.3 Polypharmacy for the Treatment of HIV Infections

Acquired immune deficiency syndrome (AIDS) is still a major health problem.
In 2014 there were 36.9 million people living with HIV. The drugs available
today for the treatment of HIV can be classified into several classes: reverse
transcriptase inhibitors nucleoside reverse transcriptase inhibitors (nucleotide)
(NRTIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs), HIV
protease inhibitors, integrase inhibitors, a fusion inhibitor (to prevent the fusion
of the viral envelope with the host cell membrane), and a CCR5 inhibitor (to
block the interaction of the virus with one of its receptors at the host cell) [44].
The rapid emergence of resistant strains requires the coadministration of several
drugs with different mechanisms of action and hitting different molecular
targets. HIV-infected individuals are subject to HAART, where two or more
drugs are administered in various combinations and administration schedules.
Current treatments require the combination of at least two or three active drugs
from at least two different classes. Despite the fact that this polypharmacy
approach is able to reduce the viral loads in patients, reducing the incidence
of opportunistic infections and deaths in AIDS patients, there are concerns of
serious side effects and the eventual fail of a given treatment schedule due to
the emergence of resistance. Resistance is primarily due to the development
of mutations in RT, integrase, and HIV protease. Moreover, Edelman et al.
discusses that indeed polypharmacy is the next therapeutic challenge in HIV
[29]. Combination of drugs for the treatment of viral infections is discussed in
detail in Section 3.5.3 of this book.

1.5 Computational Strategies to Explore
Polypharmacology

Since the chemical and biological spaces are huge, the relationship between the
two spaces is highly complex. Therefore, in order to describe, understand, and
ideally predict the relationship between the two spaces, efficient computer-based
methods are necessary. In response to such need, chemogenomics has emerged
as a multidisciplinary research field. A number of rich reviews have been pub-
lished on chemogenomics [45, 46]. In this section, we discuss recent develop-
ments on chemogenomics followed by representative and specific computational
chemogenomics methods.
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1.5.1 Chemogenomics: Intersection of Chemical and Biological Spaces

The concept of polypharmacology is at the interface of the chemical and bio-
logical spaces. Both the chemical and biological spaces are intuitive concepts
because of its analogy with the cosmic universe [47, 48]. There are several def-
initions of chemical space. For instance, Virshup et al. define chemical space as
“an M-dimensional Cartesian space in which compounds are located by a set of
M physicochemical and/or chemoinformatic descriptors” [49]. The concept of
chemical space has a broad application in drug discovery that can be classified
into two major groups: (i) classification of bioactive compounds depending on
their therapeutic target or associated pharmaceutical effect and (ii) compound
library design and selection. By analogy, biological space can be understood as the
set of all possible targets. Some of them, however, are associated with desirable
chemical effects, while other are related to off-targets leading to adverse effects,
“orphan targets” (for which not compounds/drug have been identified yet), and
targets to be identified.

Chemogenomics is a multidisciplinary research field that aims to identify
the possible associations of all possible ligands for all possible targets [50]. To
achieve this goal a number of in vitro and in silico approaches are employed
[45]. In other words, chemogenomics aims to find the association between the
chemical and target spaces or to characterize the intersection between chemical
and biological spaces. The concept of chemogenomics is schematically illus-
trated in Figure 1.5. As discussed in detail elsewhere, chemogenomics is highly

Chemogenomics

Target space

Druggable Off-targets Orphan Unexplored

Approved
drugs

Synthetic
libraries

Natural
products

Focused
libraries

C
h
e
m

ic
a
l 
s
p
a
c
e

Food
chemicals

Virtual
compounds

Figure 1.5 Schematic representation of a chemogenomics matrix; the rows represent all
possible compounds and the columns represent all possible molecular targets.
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Table 1.3 Representative chemogenomics data sets to explore polypharmacology.

Data set Summary contents References

ChEMBL Contains more than 13 million activity data points
corresponding to 1,463,270 compounds against
10,774 targets

[51, 52]

PubChem BioAssay Contains more than 130 million activity outcomes
covering more than 5000 protein targets

[53]

Binding Database Contains more than 1 million binding data for
7302 protein targets and 495,498 small molecules

[54]

MOAD Collection of 25,771 high-resolution crystal
structures, 9141 of them with activity data

[55, 56]

PDBbind Binding data for 14,260 biomolecular complexes
contained in the PDB. Noteworthy, 11,987
correspond to protein–ligand interactions

[57]

EpiDBase Focused to epigenetic targets. It contains 11,422
activity data corresponding to 5784 ligands against
220 epigenetic targets

[58]

CMAP More than 7000 gene expression profiles of 1309
compounds in different cell lines

[59]

LINCS L1000 Gene expression signatures of 22,412 unique
perturbations (compounds and knockdowns)
applied to 56 different cellular contexts including
human primary cell lines and cancer cell lines

[60]

associated with concepts such as polypharmacology itself, drug repurposing,
in vivo high-throughput screening, pharmaceutical profiling, virtual screening,
target fishing, and structure–multiple activity relationships (SmARs) (vide infra).

Chemogenomics data sets are major resources to conduct systematic studies
to find associations between compound–target interactions. Table 1.3 summa-
rizes examples of chemogenomics data sets [51–60]. One of the current limi-
tations of these data sets is that they are still rather incomplete. For instance,
in order to analyze drug–target interaction networks, the effect of the lack of
data completeness has been analyzed, which has been called the “Achilles heel”
of drug–target networks [61]. However, such databases are rich sources of infor-
mation to describe ligand–target interactions and to uncover new target–ligand
relationships. Other major areas of improvement of chemogenomics data sets are
the so-called “five I’s”: data may be incomplete, inaccurate, imprecise, incompati-
ble, and/or irreproducible as recently described by Fourches et al. [46] Authors of
that work proposed a general workflow to conduct chemical and biological data
curation [46]. Figure 1.6 illustrates in a schematic manner examples of computa-
tional approaches employed to explore chemogenomics relationships [62–64].

1.5.2 Structure–Multiple Activity Relationships

Drug discovery based on one-molecule–one-target approach gave rise to
biological assays where, typically, one compound is associated with one mea-
sure of activity. In order to establish the corresponding structure–activity
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relationships, several methods have been developed including qualitative and
quantitative approaches. Outstating examples are QSAR [65]. A second more
recent approach is the activity landscape modeling (ALM) aimed to identify
the relationship between structure similarity (given a set of molecular rep-
resentation) and activity similarity [66, 67]. Over the last few years, QSAR,
ALM, and other computational approaches are being adapted and developed to
identify and predict SmARs that emerge when compound data sets are screened
across a range of molecular targets [68, 69]. For instance, our research group
has reported the SmAR of benchmark data sets screened across multitargets
of therapeutic interests and bioassay data obtained from PubChem [68, 69]. In
both case studies, structure–activity similarity (SAS) maps, which systematically
relate structure similarity with potency difference for each pair of compounds,
were adapted to represent multiple activity similarities [67]. Thus, the idea of
measuring activity similarity can be applied not only to SAS maps but to basically
any other activity landscape model.

1.5.3 Proteochemometric Modeling

Proteochemometric (PCM) modeling can be conceptualized as an extension of
QSAR modeling that exploits chemogenomics data by performing a quantitative
evaluation of ligand and target structural similarities. As a result, this technique
allows the simultaneous navigation, inter- and extrapolation in both chemical
space (i.e., ligands) and biological space (i.e., protein target) [70, 71]. By the
explicit combination of target and ligand information in a single model, PCM is
capable to analyze and predict SmARs of a set of compounds [70, 71]. It has been
shown that PCM is better suited for the prediction of SmARs than other methods
such as fragment-based models [72] and multitarget QSAR using support vector
machines (SVMs) [73]. This technique has been successfully applied to study the
SmARs of different target families such as G-protein coupled receptors (GPCRs)
[62], cytochrome P450 isoforms [74], and serine proteases [75], among others
[76–79]. This method is also well suited for the study of kinase selectivity profiles
and has been applied to a large number of data sets [72, 80–83]. In general,
predictive models that include ligand and target information represent a step
forward for the analysis of multitarget inhibitors as they usually achieve better
performance compared with single-target methods. All details of PCM modeling
requirements and more applications have been reviewed recently [70, 71].

1.5.4 Target Fishing

The goal of the approach commonly called as “target fishing” is to uncover
biomacromolecules or molecular targets that are able to bind to a given lig-
and (or drug). Many techniques, including computational approaches, can
be adapted to carry out the inverse process of traditional virtual screening
(Figure 1.5). In other words, the biological target space is interrogated to identify
potential targets for (typically) a small molecule.

A typical computational technique employed in target fishing is molecular
docking, giving rise to the “inverse docking” strategy [84]. In this technique,
introduced by Chen and Zhi [85], a given small molecule is docked across
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a database of 3D macromolecular targets. An alternative computational
approach used in target fishing is data mining. Other approach is to measure
the molecular similarity between the compound of interest and a data set of
known ligands of molecular targets (for instance, the structure of co-crystal
ligands). These methods and other approaches have been recently reviewed
in a rich paper by Cereto-Massagué et al. [86]. Of note, this review includes
comprehensive lists of molecular databases and web resources useful for in silico
target fishing.

As in traditional virtual screening, the chemical compounds can have basi-
cally any origin such as novel chemical synthesis, commercial libraries, or natural
products, to name a few examples. Natural products are, perhaps, one of the
most studied molecules using this approach [87]. Importantly, in the context of
polypharmacology, approved drugs or compounds in clinical trials can also be
subjects of target fishing. In fact, prediction of molecular targets has become an
active area of research in drug repurposing [86]. Target fishing of approved drugs
can have one or more goals depending on the specific study:

a) To identify the molecular targets of a drug for which the mechanism of action
is uncertain.

b) For those drugs with known action mechanism to identify additional molecu-
lar targets that produces a beneficial clinical effect, in other words to explore
in a systematic manner polypharmacology

c) Uncover off-targets in a systematic manner. This can lead to the prediction of
secondary effects.

Examples of the application of target fishing using natural products as query
compounds have been reviewed by Medina-Franco [87]. Several recent examples
toward target fishing for drug repurposing have also been published [88–90].

1.5.5 Data Mining of Side Effects and Interactions for Drug
Repurposing

Drug repurposing through data mining has two principal premises: (i) there is
vast information (e.g., clinical, phenotypical, and experimental) regarding the
drugs that are intended to be repurposed, and (ii) the obtained information is
sufficient to fit a statistical model to predict whether a compound would be active
against another target or disease. Text similarity is a particularly developed tool
in these settings.

Through text similarity searching, the scientific literature can be mined, in
order to link, often indirectly, drugs and diseases by association of terms [91]. A
clear example is data mining of adverse effects; this approach assumes that drugs
with similar adverse (also called off-target) effects may be active against similar
diseases. Within this pipeline, Campillos et al. developed a model for drug
repurposing with efficiency rates higher than 50% [92]. Notably, comprehensive
online databases have been developed to address the problem of disperse
information about drugs; these resources are a result of scientific literature
mining and contain complete references about different compounds [93, 94].
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1.5.6 Systems Pharmacology

Systems pharmacology has arisen as an emerging trend strongly connected to
polypharmacology. The main similarity between these two lies in their funda-
mentals: both try to overcome the simplicity of the old-fashioned “one drug,
one target” paradigm. Polypharmacology has often the connotation of “one drug,
more than one target,” implying both the possibility of drug repurposing and
the feasibility of multitarget treatments with a sole drug, as we have explored
throughout this chapter. However, systems pharmacology is a wider concept than
polypharmacology, described by the phrase “one treatment, one network.” There-
fore, the focus of systems pharmacology implies the rational design of therapies
accounting for the overall cellular and physiological complexity, aiming for bio-
logical networks rather than isolated targets [95]. The two main strategies emerg-
ing from systems pharmacology are (i) those based on simulations in interaction
networks validated in the scientific literature [96, 97] and (ii) approaches exploit-
ing high-throughput data such as expression or genetic microarrays [98–100].
Both approaches aim to find a differential function of pathways in pathologic
processes compared to healthy states and drugs that can reverse the pathogenic
features. Therefore, the objective is to develop treatments that avoid the studied
pathological phenotypes [97, 100].

1.5.7 Polypharmacology Fingerprints

As part of the computational strategies to explore and eventually predict
polypharmacology, Pérez-Nueno et al. have developed a computational
polypharmacology fingerprint based on the Gaussian ensemble screening
approach developed before by the same authors [101]. The newly developed
fingerprint was designed to encode information related to promiscuity. In that
work, the fingerprint was built using about 800 established drug targets from a
public database of known drugs. In a benchmark study, the proposed fingerprint
was able to predict up to 90% of the experimentally known polypharmacology
associations (with no missing data). Finally, in the work the authors demon-
strated that the proposed fingerprints represent a new approach to suggest
molecular targets for preclinical compounds and clinical drug candidates. As
the authors described in the excellent paper, the polypharmacology fingerprint
represent an important addition to other in silico tools based on different types
of descriptors that are intended to relate quantitatively biomolecular targets
(e.g., protein receptors) to each other (either by computing similarity between
the ligands or between the targets) [101].

1.6 Summary Conclusions

To better understand and potentially predict polypharmacology, it is necessary
to explore the intersection between the chemical and biological spaces. One
approach to explore such intersection is through the emerging research field
of chemogenomics. To date, there are chemogenomics data sets available to
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conduct drug repurposing, several in the public domain. A major challenge
while working with these chemogenomic resources is that the data may be
incomplete. Also, the need to conduct curation of the chemical and biological
information has been recently emphasized. A broad range of novel computa-
tional strategies are being developed and implemented to mine, understand,
and predict polypharmacology. For instance, PCM modeling and multitarget
activity landscapes enable the simultaneous analysis of chemical and biological
relationships. Using structure- or ligand-based approaches, target fishing aims
to identify potential targets for a given ligand. Data mining of side effects and
systems pharmacology are further examples of novel approaches employed in
polypharmacology, which is a promising avenue in emerging and complex drug
discovery strategy such as the development of epi-drugs.
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