Contents

Preface *xiii* A Personal Foreword *xv*

Part I Introduction 1

1 Polypharmacology in Drug Discovery 3

Oscar Méndez-Lucio, J. Jesús Naveja, Hugo Vite-Caritino, Fernando D. Prieto-Martínez, and José L. Medina-Franco ۱v

- 1.1 Polypharmacology 3
- 1.2 Multitarget versus Target-Specific Drugs 5
- 1.2.1 "Master Key Compounds" 5
- 1.2.2 Safety Panels 8
- 1.3 Polypharmacology and Related Concepts in Drug Discovery 11
- 1.3.1 Drug Repurposing 11
- 1.3.2 Combination of Drugs 12
- 1.3.3 In Vivo Testing 12
- 1.4 Polypharmacology (and Polypharmacy): Case Studies 13
- 1.4.1 Polypharmacology in Epigenetics 13
- 1.4.2 Charting the Epigenetic Relevant Chemical Space 14
- 1.4.3 Polypharmacy for the Treatment of HIV Infections 15
- 1.5 Computational Strategies to Explore Polypharmacology 15
- 1.5.1 Chemogenomics: Intersection of Chemical and Biological Spaces 16
- 1.5.2 Structure–Multiple Activity Relationships 17
- 1.5.3 Proteochemometric Modeling 19
- 1.5.4 Target Fishing 19
- 1.5.5 Data Mining of Side Effects and Interactions for Drug Repurposing 20
- 1.5.6 Systems Pharmacology 21
- 1.5.7 Polypharmacology Fingerprints 21
- 1.6 Summary Conclusions 21 Acknowledgments 22 References 22

Part II Selectivity of Marketed Drugs 31

- 2 Kinase Inhibitors 33
 - Peng Wu, Michael Givskov, and Thomas E. Nielsen
- 2.1 Overview 33
- 2.2 Kinase Profiling 38
- 2.3 Definition and Quantification of Selectivity Levels 40
- 2.4 Selectivity of Approved Kinase Inhibitors 43
- 2.4.1 Non-covalent Type I and Type II SMKIs 45
- 2.4.2 Allosteric SMKIs 47
- 2.4.3 Lipid Kinase Inhibitor 48
- 2.4.4 Covalent Inhibitors 48
- 2.5 Conclusion and Perspective 48 Acknowledgment 49 References 49

3 Repositioning of Drug – New Indications for Marketed

Drugs 55

Ren Kong and Stephen T. Wong

- 3.1 Introduction 55
- 3.2 New Uses from Adverse Effects 57
- 3.2.1 Dapoxetine for Premature Ejaculation 57
- 3.2.2 Sildenafil for Erectile Dysfunction 58
- 3.3 New Uses Based on Known Mechanism of Action 58
- 3.3.1 Duloxetine for Stress Urinary Incontinence (SUI) 58
- 3.3.2 Thalidomide for Erythema Nodosum Leprosum (ENL) and Multiple Myeloma 59
- 3.4 New Uses from Genome, Network, and Signal Pathway Analysis 59
- 3.4.1 Identification of Sunitinib and Dasatinib for Breast Cancer Brain Metastasis 59
- 3.5 New Uses Based on New Target Identification (Off-Target Effects) 62
- 3.5.1 Antidepressant Drug, Amoxapine, for Alleviating Cancer Drug Toxicity of Irinotecan 62
- 3.6 Computational and Systematic Drug Repositioning 64
- 3.6.1 Methods Based on Knowledge of Side Effects 64
- 3.6.2 Methods Based on Transcriptomics Data (Transcriptional Profile) 65
- 3.6.3 Methods Based on Genome-Wide Association Study (GWAS) 66
- 3.6.4 Methods Based on Network and Pathways Analysis 66
- 3.6.5 Methods Based on Off-Target Effects 67
- 3.7 Perspective 68 Acknowledgment 73 References 73

4 Discovery Technologies for Drug Repurposing 79

Naiem T. Issa, Stephen W. Byers, and Sivanesan Dakshanamurthy

- 4.1 Introduction 79
- 4.2 Biological Drug Screening Methods 79

- 4.2.1 Phenotypic Screening 79
- 4.2.1.1 Animal-Based Screening 80
- 4.2.1.2 Cell-Based Screening 80
- 4.2.2 Target-Based Screening 81
- 4.3 In silico Tools for Drug Repurposing 82
- 4.3.1 Docking 82
- 4.3.2 Chemoinformatics 83
- 4.3.3 Protein Binding Site 84
- 4.3.4 Combining Drug-Centric with Protein-Centric Approaches 86
- 4.3.5 Network Pharmacology 86
- 4.3.6 Mining of Big Data 88
- 4.4 Conclusion 89
 - References 90

Part III Unselective Drugs in Drug Discovery 101

5 Personalized Medicine 103

Christian Noe and Volker Baumann

- 5.1 Roots of Personalized Medicine *103*
- 5.2 The Return of the Active Pharmaceutical Ingredients (APIs) 104
- 5.3 Systems Pharmacology 105
- 5.4 The Patient in the Focus of Research *107*
- 5.5 Personalized Therapy 107
- 5.6 Gene Therapy 108
- 5.7 Regenerative Medicine *110*
- 5.8 Individualized Medicines 110
- 5.9 Stratified Medicines 112
- 5.10 Drug Selectivity *113*
- 5.11 Smart Innovation 114
- 5.12 Electronic Health 115
- 5.13 Doctor and Patient 115
- 5.14 The Competent Patient 116
- 5.15 Conclusion 117

References 117

- 6 Drug Discovery Strategies for the Generation of Multitarget Ligands against Neglected Tropical Diseases 135 Annachiara Gandini, Federica Prati, Elisa Uliassi, and Maria L. Bolognesi
- 6.1 Introduction *135*
- 6.2 Drug Discovery for NTDs: The Past, the Present, and the Future *136*
- 6.3 Search for New Anti-Trypanosomatid MTDL Hits: A Phenotypic Approach *138*
- 6.4 Search for New Anti-Trypanosomatid MTDL Hits: A Target-Based Approach *141*
- 6.5 Search for New Anti-Trypanosomatid MTDL Hits: A Drug Targeting Approach 146

viii	Contents

- 6.6 Search for New Anti-Trypanosomatid MTDL Hits: A Combined Target/Targeting Approach 149
- 6.7 Conclusions 151 References 152

7 Designing Approaches to Multitarget Drugs 161

Luca Costantino and Daniela Barlocco

- 7.1 Introduction 161
- 7.2 Target-Based Approaches for Multitarget Drug Design 163
- 7.2.1 Designing Approaches for Structurally Related Targets 163
- 7.2.1.1 Fragment-Based Approach 163
- 7.2.2 Designing Approaches for Structurally Unrelated Targets 166
- 7.2.2.1 Crystallography/SAR 166
- 7.2.2.2 Molecular Docking/Pharmacophore Matching 167
- 7.3 Ligand-Based Approaches for Multitarget Drug Design 170
- 7.3.1 Designing Approaches for Structurally Related Targets 170
- 7.3.1.1 Fragment-Based Approach 170
- 7.3.1.2 Machine Learning 171
- 7.3.1.3 SAR around a Lead 173
- 7.3.1.4 Pharmacophore-Based Approach 176
- 7.3.2 Designing-In Approaches for Structurally Unrelated Targets 180
- 7.3.2.1 Fragment-Based Approach 180
- 7.3.2.2 Pharmacophore-Based Approach 180
- 7.3.2.3 SAR around a Lead 181
- 7.3.2.4 Mining Literature Data 183
- 7.4 Designing Approaches Based on Phenotypic Assays 186
- 7.5 Conclusions 189 References 191
- 8 The Linker Approach: Drug Conjugates 207

Daniel Merk and Manfred Schubert-Zsilavecz

- 8.1 Introduction 207
- 8.1.1 Targeted Delivery 209
- 8.2 Drug Conjugates 209
- 8.2.1 Small Molecule Drug Conjugates 209
- 8.2.1.1 Chances and Challenges 209
- 8.2.1.2 Examples 210
- 8.2.2 Antibody–Drug Conjugates/Protein–Drug Conjugates 217
- 8.2.2.1 Chances and Challenges 218
- 8.2.2.2 Examples 219
- 8.2.3 Polymer–Drug Conjugates 223
- 8.2.3.1 Chances and Challenges 223
- 8.2.3.2 Examples 226
- 8.3 Linker Chemistry 229
- 8.3.1 Demands on a Linker or How to Link Drugs 229
- 8.3.2 Linker Types 231
- 8.4 Conclusion and Future Perspective 233 References 236

9 Merged Multiple Ligands 247

Hongming Chen, Udo Bauer, and Ola Engkvist

- 9.1 Introduction 247
- 9.2 Computational Methods Utilized in Designing MMLs 248
- 9.2.1 Bioactivity Data Sources 248
- 9.2.2 Utilizing Known Polypharmacology to Identify MMLs 248
- 9.2.3 Applying QSAR Models to Identifying and Optimizing MMLs 249
- 9.2.4 MMLs Developed Based on Fragments 250
- 9.2.5 Utilizing Protein Crystal Structures in Identifying MMLs 250
- 9.3 Examples of Medicinal Chemistry Efforts of Designing MMLs in Drug Discovery Projects 251
- 9.3.1 MMLs in Oncology 251
- 9.3.2 MML Targeting for Neurodegenerative Disease 255
- 9.3.2.1 MMLs for the Treatment of Alzheimer's Disease 256
- 9.3.2.2 MML for the Treatment of Parkinson's Disease 257
- 9.3.3 MML for the Treatment of Depression 261
- 9.3.4 MMLs for the Treatment of Cardiovascular Diseases 262
- 9.3.5 MML for the Treatment of Diabetes and Related Metabolic Diseases 264
- 9.3.6 MML for the Treatment of Inflammation and Pain 267
- 9.4 Conclusions and Future Outlook 269 References 269
- **10 Pharmacophore Generation for Multiple Ligands** 275 Norbert Handler
- 10.1 Introduction 275
- 10.2 Ligand-Based Pharmacophore Modeling 276
- 10.3 Structure-Based Pharmacophore Modeling 278
- 10.4 Pharmacophore-Based Virtual Screening 279
- 10.5 Pharmacophore-Based *De Novo* Design 280
- 10.6 Limitations for Pharmacophore Modeling 282
- 10.7 Practical Strategy for Pharmacophore-Based Discovery of Multiple Ligands 283
- 10.8 Linked Fluoroquinolone–Flavonoid Hybrids as Potent Antibiotics against Drug-Resistant Microorganisms 285
- 10.9 *N*-Phenylquinazolin-4-Amine Hybrids as Dual Inhibitors of VEGFR-2 and HDAC 286
- 10.10 Dual Inhibitors of Phospholipase A2 and Human Leukotriene A4 Hydrolase as Anti-Inflammatory Drugs 287
- 10.11 Dual Antagonists of the Bradykinin B_1 and B_2 Receptors Based on a Postulated Common Pharmacophore from Existing Non-Peptide Antagonists 290
- 10.12 Dual-Acting Peptidomimetics with Opioid Agonist–Neurokinin-1 Antagonist Effect 292
- 10.13 Novel Dual-Acting Compounds Targeting the Adenosine A_{2A} Receptor and Adenosine Transporter for Neuroprotection 292
- 10.14Aminobenzimidazoles as Dual-Acting Butyrylcholinesterase Inhibitors
and $h CB_2 R$ Ligands to Combat Neurodegenerative Disorders295

x Contents

10.15	Dual Acetylcholinesterase Inhibitors–Histamine H3 Receptor	
	Antagonists for Treating Alzheimer's Disease 297	
10.16	Identification of Potential Dual Agonists of FXR and TGR5 Using	
	E-Pharmacophore-Based Virtual Screening 299	
10.17	Arylboronic Acids as Dual-Acting FAAH and TRPV1 Ligands 301	
10.18	Dual Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and	
	Mitogen-Activated Protein Kinase 2 (MAP4K2) 304	
10.19	Conclusion and Outlook 307	
	References 307	
11	Cellular Assays 313	
	Ye Fang	
11.1	Introduction 313	
11.2	Cell-Based Molecular Assays 314	
11.2.1	Ligand Binding Assays 314	
11.2.2	Chemoproteomic-Based Assays 315	
11.2.3	Signaling Assays 317	
11.2.4	Automated Patch Clamping 318	
11.2.5	Protein–Protein Interaction Assays 319	
11.2.6	Protein Trafficking Assays 319	
11.2.7	Chemogenomic-Based Assays 320	
11.3	Cell Phenotypic Assays 321	
11.3.1	Reporter Gene Assays 322	
11.3.2	High Content Imaging Assays 323	
11.3.3	Label-Free Cell Phenotypic Assays 324	
11.4	Summary 326	
11.5	Current and Future Perspectives 326	
	References 327	

Part IV Therapeutic Areas for Designed Multiple Ligands 335

12	Developing Serotonergic Antidepressants Acting on More		
	Than the Serotonin Transporter	337	
	Gerard J. Marek		

- 12.1 5-HT Transporter-Based Multiple Ligands for Depression 337
- 12.2 Beyond SSRIs: Strategies to Improve upon SSRI Antidepressant Activity 338
- 12.3 Roster of Serotonergic Targets for Drug Developed Outside of the Serotonin Transporter (SERT) 339
- 12.4 Previously Approved Antidepressants with Multiple Serotonergic Molecular Targets 340
- 12.5 Tested and Failed/Technically Difficult Dual-Acting Serotonergic Compounds 347
- 12.6 Technical Challenges to Developing New Chemical Entities with Multiple Mechanisms of Action 348

- 12.7 Clinical Experiments with SSRIs and 5-HT_{1A} Agonists/Antagonists 350
- 12.8 Clinical Experiments with SSRIs and Drugs Possessing 5-HT_{2A} Receptor Blockade 353
- 12.9 Non-SERT Serotonergic Targets Mired in Phase 2/3 355
- 12.10 Conclusions and Outlook 356 List of Abbreviations 357 References 357
- 13 Multiple Ligands Targeting the Angiotensin System for Hypertension 369 Aqustin Casimiro-Garcia
- 13.1 Recent Advances in the Structural Basis for AT₁ Receptor Ligand Binding *370*
- 13.2 Design of Dual AT₁ and Endothelin A Receptor Antagonists 372
- 13.3 Design of Dual AT₁ Receptor Antagonist/PPARγ Partial Agonists 377
- 13.4 Design of Dual AT₁ Receptor Blocker/NO-Releasing Agents 382
- 13.5 Design of Dual AT₁ Receptor Blocker/Antioxidant Activity Agents 384
- 13.6 Design of AT₁ Receptor Antagonists with Additional Activity in Other Pathways 387
- 13.7 Summary 388 References 389
- 14 Multiple Peroxisome Proliferator-Activated Receptor-Based Ligands 397

Dmytro Kukhtar, Miquel Mulero, Raul Beltrán-Debón, Cristina Valls, Gerard Pujadas, and Santiago Garcia-Vallve

- 14.1 Introduction 397
- 14.2 Dual and Pan PPAR Agonists 404
- 14.3 Other Multiple Ligands that Act through PPARs 415
- 14.3.1 Angiotensin II Receptor Blockers/PPARγ Agonists 415
- 14.3.2 COX Inhibitors/PPARy Agonists 421
- 14.3.3 Protein Tyrosine Phosphatase 1B Inhibitors/PPAR Agonists 423
- 14.3.4 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors/PPAR Agonists *423*
- 14.4 Conclusions 424 Acknowledgments 424 List of Abbreviations 424 References 424

15 Antibiotics *433*

Jean-Philippe Surivet and Philippe Panchaud

- 15.1 Design of Single-Pharmacophore Molecules Acting on Multiple Targets 434
- 15.1.1 Dual Inhibitors of Bacterial DNA Gyrase and Topoisomerase IV 434

- 15.1.1.1 Dual Inhibitors Targeting the Binding Site of Fluoroquinolones 435
- 15.1.1.2 (Non-fluoroquinolone) Dual Inhibitors of DNA Topoisomerases 439
- 15.1.1.3 Designed Multitarget-Directed Ligands Addressing the ATP-Binding Pocket 445
- 15.1.2 Multitarget Inhibitors of Peptidoglycan Biosynthesis 451
- 15.1.3 Multitarget Inhibitors of Type II Fatty Acid Synthases 454
- 15.2 Design of Hybrid Molecules: Dual Pharmacophores Acting on Multiple Targets 456
- 15.2.1 Cephalosporin-Based Hybrid Molecules 457
- 15.2.2 Fluoroquinolone–Oxazolidinone Hybrid Drugs 459
- 15.2.3 Fluoroquinolone–Aminouracil Hybrid Drugs 461
- 15.2.4 Fluoroquinolizine–Rifamycin Hybrid Drugs 462
- 15.2.5 Hybrid Molecules: Limitations and Perspectives 463
- 15.3 Emerging Antibacterial Drugs Allowing Multitarget-Directed Ligand Design 464
- 15.4 Conclusion 465 References 466

16 Multiple Ligands in Neurodegenerative Diseases 477 Julien Lalut, Christophe Rochais, and Patrick Dallemagne

- 16.1 Introduction 477
- 16.2 Molecular Bases of ALZHEIMER's Disease 478
- 16.2.1 Amyloid Plaques 478
- 16.2.1.1 The Origin of Aβ Peptide Formation 478
- 16.2.1.2 Amyloid Plaque Aggregation 480
- 16.2.2 The Amyloid Cascade Hypothesis 480
- 16.2.3 Neurofibrillary Tangles 481
- 16.2.4 Oxidative Stress, Neuroinflammation, and Metal Toxicity 481
- 16.3 MTDLs Developed for the Treatment of Alzheimer's Disease 483
- 16.3.1 MTDLs Based on Acetylcholinesterase Inhibition 483
- 16.3.1.1 Multi-site AChE Inhibitors and Antioxidants 485
- 16.3.1.2 Multi-site AChE Inhibitors and Metal Chelators 485
- 16.3.1.3 Multi-site AChE and MAO Inhibitors 486
- 16.3.2 Multi-site AChE Inhibitors and Serotonin 5-HT₄ Receptor Agonist 486
- 16.3.2.1 Multi-site AChE and M2 Muscarinic Receptor Inhibitors 491
- 16.3.2.2 AChE Inhibitors with a Complex Pharmacological Profile 492
- 16.3.3 MTDLs Targeting Other Activities Relevant for the Treatment of AD 496
- 16.3.3.1 MTDLs Modulating γ-Secretase and PPARγ 496
- 16.3.3.2 MTDL BACE1 Inhibitors/Metal Chelators 497
- 16.3.3.3 MTDLs Inhibiting Muscarinic and σ1 Receptors 498
- 16.4 Parkinson's Disease 501
- 16.5 Conclusion 502
 - References 503

Index 509