PYFEM 1.0

User manual

Joris J.C. Remmers, Clemens V. Verhoosel and René de Borst

August 29, 2012

Contents

About the code

Installation

2.1 Windows OS (Windows XP and Windows 7)
2.2 Linux OS
2.3 Mac OS e

2.4 Additional software
Quick start

Solvers

4.1 Linear solver
4.2 Non-linear (Newton-Raphson) solver
4.3 Riks’ arc-length solver
4.4 Dissipated energy solvero
4.5 Explicit time integration solvero L.

Output modules
5.1 Mesh output writer
5.2 Graph output writer

Elements

6.1 Finite strain continuum
6.2 Kirchhoff non-linear beam
6.3 Small strain continuum
6.4 Linearspring e
6.5 Timoshenko non-linear beam
6.6 Non-linear truss.
6.7 Cohesive zone interface

7 Material models 20

7.1 Plane strain linear elastic model 20
7.2 Plane strain damage oL 21
7.3 Plane stress linear elastic 22
7.4 Power Law cohesive model 22
8 Version history 22

1 About the code

This is the user manual for PYFEM version 1.0. This python-based finite
element code accompanies the book:

"Non-Linear Finite Element Analysis of Solids and Structures’ by R. de Borst,
M.A. Crisfield, J.J.C. Remmers and C.V. Verhoosel John Wiley and Sons, 2012,
ISBN 978-0470666449

Second Edition

Non-linear Finite Element
Analysis of Solids

and Structures

René de Borst, Mike A. Crisfield,
Joris). C. Remmers and Clemens V. Verhoosel ‘_

The code is open source and intended for educational and scientific purposes
only. If you use PYFEM in your research, the developers would be grateful if
you could cite the book in your work. Comments and suggestions are welcome
at:

PyFEM-support@tue.nl

Disclaimer

The authors reserve all rights but do not guarantee that the code is free from
errors. Furthermore, the authors shall not be liable in any event caused by the
use of the program.

2 Installation
The code can be downloaded from the website that accompanies the book.

http://www.wiley.com/go/deborst

On this website, both the current version 1.0 as well as all previous major
releases of the code can be found. The code is packed as a zip file and can be
unzipped in a directory of choice.

This version of the PYFEM is written to work properly in combination with
python version 2.7. In addition, the code uses the modules numpy, scipy and
matplotlib. Installation guidelines are given for various operating systems.

2.1 Windows OS (Windows XP and Windows 7)

1. Since precompiled versions of numpy, scipy and matplotlib are available
in 32-bit versions only, it is advised to install the 32-bit version of python.
This code is available at:

http://www.python.org/getit

It is recommended to install the latest 32-bit version, which is 2.7.3.

2. Download and install numpy. This module is available at:
http://sourceforge.net/projects/numpy/files/NumPy

It is recommended to install the latest 32-bit version, which is 1.6.2.

3. Download and install scipy. This module is available at:
http://sourceforge.net/projects/scipy/files/scipy/

It is recommended to install the latest 32-bit version, which is 0.11.01b.

4. Download and install matplotlib. This module is available at:
http://sourceforge.net/projects/matplotlib/files/matplotlib/

It is recommended to install the latest 32-bit version, which is version
1.1.0.

5. Run the python file install.py in the root directory pyfem-1.0 by
double-clicking it. It creates the required executables and returns the
total path in which PYFEM is installed. This path must be added to the
environment variables PYTHONPATH and PATH.

Windows has a built-in dialog for changing environment variables. In the
case of Windows XP in the classical view:

e Click your machine (usually located on your Desktop and called My
Computer) and choose Properties there.

e Then, open the Advanced tab and click the Environment Variables
button.

In short, your path is:
My Computer->Properties->Advanced->Environment Variables

In this dialog, you can add or modify user and system variables. To
change system variables, you need non-restricted access to your machine
(i.e. Administrator rights).

The main program pyfem can be run from the command prompt. For
example, in order to run the file StressWave20x20.pro in the directory
examples\chO5, simply type:

pyfem StressWave20x20.pro

or by clicking any .pro file with the right mouse button and selecting the
batch file pyfem.bat to execute it with.

2.2 Linux OS

The python program and the modules numpy, scipy and matplotlib are in-
cluded in most common distributions of Linux and can be installed without any
problems. In many cases, different versions of python are offered. Please make
sure that python version 2.6 or 2.7 is installed (version 2.7 is preferred).

Run de python file install.py in the root directory pyfem-1.0. In a terminal,
one can type:

python install.py

This script returns the total path in which PYFEM is installed. This path
must be added to the environment variables PYTHONPATH and PATH. When using
a bash shell, the following lines have to be added to the file .bashrc in your
root directory:

export PYTHONPATH=<pyfemdir>
alias pyfem="python <pyfemdir>/PyFEM.py"

When using csh or tesh add the following lines to .cshrc or .tcshre:

setenv PYTHONPATH <pyfemdir>
alias pyfem "python <pyfemdir>/PyFEM.py"

It goes without saying that in the case of multiple PYTHONPATH settings, the
path to PYFEM should be added to existing paths. For example, in the case
of a bash shell, this will look like:

export PYTHONPATH=<pyfemdir>:$PYTHONPATH

The main program pyfem can be run from the command prompt. For example,
in order to run the file StressWave20x20.pro in the directory examples/ch05,

simply type:

pyfem StressWave20x20.pro

2.3

1.

Mac OS

The most recent versions of Apple Mac-OS ship with their own version of
python. However, it is strongly recommended to install the official python
2.7 at:

http://www.python.org/getit

The latest version is 2.7.3.

Download and install the latest version of numpy. This module is available
at:

http://sourceforge.net/projects/numpy/files/NumPy

It is recommended to install the latest version, which is 1.6.2.

Download and install scipy. This module is available at:
http://sourceforge.net/projects/scipy/files/scipy/

It is recommended to install the latest version, which is 0.11.01b.

. Download and install matplotlib. This module is available at:

http://sourceforge.net/projects/matplotlib/files/matplotlib/

It is recommended to install the latest version, which is version 1.1.0.

When all programs and packages mentioned above are installed, open
a terminal and run the python file install.py in the root directory
pyfem-1.0, by typing:

python install.py

BB K KAl D D> DR Tmel |FOmE)
=l B odbstadas FEec

Figure 1: Screen shot of the results of the simulation StressWave20x20.pro
shown in PARAVIEW.

This script returns the total path in which PYFEM is installed. This path
must be added to the environment variables PYTHONPATH and PATH. The
following lines have to be added to the file .bashrc in your root directory:

export PYTHONPATH="your_pyfem_path"
alias pyfem ="python your_pyfem_path/PyFEM.py"

2.4 Additional software

PYFEM can store the solution of a simulation in the vtk-format, which can
be viewed with the program PARAVIEW. This program is available for free for
academic use from the following website !

http://www.paraview.org

The results are stored as a single .pvd file, which refers to a number of .vtu
files. By opening the .pvd file in PARAVIEW one can see the deformed mesh
and stress contours, as shown in Figure 1. A more detailed description how to
create these output files is given in paragraph 5.1.

3 Quick start

In order to test whether everything is installed properly, the following two sim-
ulations can be run.

1Please read the terms on their website in case of non-academic use.

Simple example

In the directory examples/ch02 the script PatchTest.py can be executed from
a terminal (or DOS-shell) by typing:

python PatchTest.py

In Windows, this script can also be executed by double-clicking the icon.

PyFEM example

The full finite element code PYFEM can be run by typing pyfem in the terminal.
In directory examples/ch04 for example, the input file ShallowTrussRiks.pro
is processed by typing:

pyfem ShallowTrussRiks.pro

Here, ShallowTrussRiks.pro is the input file, which by definition ends with
.pro. When it is opened in a text editor, it looks as follows:

input = "ShallowTrussRiks.dat";

TrussElem

{

};

SpringElem
{

+;

solver =

{
s
outputModules = ["graph"];

graph =
{

};

The dots indicate lines that have been omitted in this example. The first argu-
ment in the .pro-file specifies the input file, which contains the positions of the
nodes, the element connectivity and the boundary conditions. The structure of
this file, which normally has the extension .dat, is as follows:

1 0.0 0.0 ;
2 -10.0 0.0 ;
3 10.0 0.0 ;
4 0.0 0.5 ;
</Nodes>
<Elements>

1 ’TrussElem’ 2 4 ;
2 ’TrussElem’ 3 4
3 ’SpringElem’ 1 4 ;

)

</Elements>
<NodeConstraints>
ul1] = 0.0;
ul2] = 0.0;
ul3] = 0.0;
v[1] = 0.0;
v[2] = 0.0;
v[3] = 0.0;
</NodeConstraints>
<ExternalForces>
v[4] = -100.0 ;
</ExternalForces>

The nodes are defined between the labels <Nodes> and </Nodes>. The first
number indicates the node identification number. The remaining numbers de-
note the coordinates in z-, y-, and in the case of a three dimensional simulation,
the z-direction. For example, node 2 has the x and y coordinates (—10,0).

The element connectivity is given after the tag <Elements>. The first num-
ber indicates the element ID number. The string refers to the name of the
element model this element belongs to. The remaining numbers are the nodes
that are used to construct the element. In this example, the first element is of
the type ’TrussElem’ and is supported by nodes 2 and 4.

The boundary conditions and applied loads are specified next. The node
constraints are given after the label <NodeConstraints>. In this example
the displacement components u and v of nodes 1,2 and 3 have a prescribed
value of 0.0. The external forces are specified in a similar manner in the field
<ExternalForces>. Here, a unit external force with magnitude -100.0 is added
to node number 4 in the direction that corresponds to the v’ displacement.
Hence, this force is acting in the negative y-direction.

The parameters of the finite element model are specified in the .pro file,
in the fields TrussElem and SpringElem, which refer to the labels used in the

element connectivity description.

TrussElem =

{
type = "Truss";
E = beb;
Area = 1.0;

};

SpringElem =

{
type = "Spring";
k = 100.0;

T;

The elements denoted by the label TrussElem are of the type >Truss’. This
model requires two additional parameters, the Young’s modulus of the material
E and the area of the cross-section Area. The label SpringElem denote elements
of the type ’Spring’. Here, one additional parameter is required: the spring
stiffness k. A detailed overview of the element types and the corresponding
parameters can be found in Section 6 of this manual.

The parameters of the solver are defined next:

solver

{
type = ’RiksSolver’;

fixedStep = true;
maxLam 10.0;

};

The solver is of the type RikSolver’. The two additional parameters specify
that the magnitude of the path-parameter is constant (fixedStep = true) and
that the simulation is stopped when the load parameter A\ reaches a value of
10.0. A detailed overview of available solver types and their parameters is given
in Section 4.

Finally, the results of the simulation can be stored and visualised in several
ways. To this end, a chain of output modules can be specified. In this example,
the results are stored in a load-displacement curve in the module GraphWriter.

outputModules = ["graph"];

graph =

{
type = "GraphWriter";
onScreen = true;

columns = ["disp" , "load"];

disp =

{
type = "state";
node = 4;
dof = v’
factor = -1.0;

i

load =

{
type = "fint";
node = 4;
dof = ’v’

5

In this example, two colums are stored: ’disp’, the displacement (’state’) of
node 4 in the vertical direction and ’load’, the corresponding internal force.
The parameter onScreen = true is used to show the load-displacement curve
on the screen during the simulation. By default, the results will be stored in a file
called ShallowTrussRiks.out. A description of all available output modules
can be found in Section 5.

4 Solvers

In this section, a concise overview of the solvers that are available in PYFEM is
given.

4.1 Linear solver

The linear solver is discussed in detail in Section 2.6 of the book.

10

Name: LinearSolver
Source: pyfem/solver/LinearSolver.py
Mandatory parameters:

None

Optional parameters:

None

Examples:
ch02: PatchTest4.pro
ch02: PatchTest8.pro

4.2 Non-linear (Newton-Raphson) solver

The Newton-Raphson solver can be used to solve non-linear systems with a
monotonously increasing external load or prescribed displacement. The exact
procedure is discussed in detail in Sections 2.4 and 2.5 of the book.

Name: NonlinearSolver
Source: pyfem/solver/NonlinearSolver.py
Mandatory parameters:
None
Optional parameters:

maxLam The maximum load parameter A\ for which the ‘ sim-
ulation will be terminated.

maxCycle The number of load cycles (loading steps) after which
the simulation will be terminated.

tol The precision that is used to determine whether a
solution is converged. The default value is set to
1073,
Examples:
ch03: cantilever8.pro
ch06: ContDamExample.pro

4.3 Riks’ arc-length solver

Riks’ arc-length method allows to solve problems in which the load parameter
is not monotonously increasing. The solver is discussed in detail in Section 4.2
of the book. The source code is explained in detail in Section 4.3.

11

Name:

Source:

RiksSolver

pyfem/solver/RiksSolver.py

Mandatory parameters:

None

Optional parameters:

maxFactor

fixedStep

opt

tol

maxLam

Examples:
ch04:
ch09:
ch09:
ch09:
ch09:
ch09:

The maximum for which the path-parameter may
increase with respect to the magnitude of the path-
parameter in the first step.

If set to true a constant step size is used. This
is identical to maxFactor=1. The default value is
false.

Optimal number of iterations, see Section 4.5 of the
book for further details.

The precision that is used to determine whether a
solution is converged. The default value is set to
1073,

The maximum load parameter A\ for which the ‘ sim-
ulation will be terminated.

ShallowTrussRiks.pro
FrameKirchhoff.pro
FrameTimoshenko.pro
KirchhoffEuler 01.pro
KirchhoffEuler_1.pro

KirchhoffEuler.pro

4.4 Dissipated energy solver

This is the dissipated energy based arc-length solver as described in Section 4.2,

page 123 of the book.

12

Name: DissipatedEnergySolver
Source: pyfem/solver/DissipatedEnergySolver.py
Mandatory parameters:

switchEnergymount of dissipated energy in a single step for
which the solution technique will switch from force
controlled to energy dissipation controlled.

Optional parameters:

maxCycle Number of cycles after which the simulation will be
terminated.

maxdTau Maximum amount of energy that may be dissipated
in a single step.

tol The precision that is used to determine whether a
solution is converged. The default value is set to
1073.

maxLam The maximum load parameter A for which the ‘ sim-

ulation will be terminated.
Examples:

chi13: PeelTest.pro

4.5 Explicit time integration solver

The explicit time integration solver is discussed in detail in Section 5.2 of the
book. The source code is explained in detail in Section 5.3 of the book.

13

Name: ExplicitSolver
Source: pyfem/solver/ExplicitSolver.py
Mandatory parameters:

dtime Magnitude of time step

lam Load factor A\ as a function of time. This can be
written as a string. For example, ’4.0*sin(3.0%*t’
represents a sinusoidal load, with period 3.0 and am-
plitude 4.0.

Optional parameters:

maxCycle Number of cycles after which the simulation will be
terminated.

maxTime Time after which the simulation will be terminated.
Examples:

chO05: StressWave20x20.pro

5 Output modules

5.1 Mesh output writer

The mesh output writer saves all data during a simulation to the disk. The data
is organised as follows: during a simulation, a single output file filename.pvd
will be created which refers to the output of single steps, which are stored in the
file filename-xx.vtu, where xx indicates the step number. This data can be
visualised by opening the file filename.pvd in the external program PARAVIEW.

14

Name: MeshWriter
Source: pyfem/io/MeshWriter.py
Mandatory parameters:
None
Optional parameters:

prefix The prefix of the output filename that will be used.
By default, the prefix of the input filename is used.

interval The interval (number of cycles) for which output is
stored. By default, every step is stored.

elementgroWphen specified, only the elements in this group will
be stored. By default, all elements will be stored.

Examples:
ch03: cantilever8.pro
ch05: StressWave20x20.pro
ch06: ContDamExample.pro
ch13: PeelTest.pro

5.2 Graph output writer

The output is stored in a multi column file by this writer. The first two columns
can be shown on the screen as a curve during the simuluation.

15

Name: GraphWriter
Source: pyfem/io/GraphWriter.py
Mandatory parameters:

columns Array of strings indicating the column that will be
stored. For each column, the type of data, and if
needed, the node, degree of freedom and scaling fac-
tor needs to be specified.

type Type of data. This can be either state, velo, fint,
stress, etc.

node Node ID.

dof Degree of freedom. This is most likely *u’ or ’v’

Optional parameters:

factor The scaling factor for the output. The default value
is 1.0.

onScreen When set to true the first two columns will be shown
on the screen. The default value is false.

Examples:
ch04: ShallowTrussRiks.pro
ch06: ContDamExample.pro
ch09: FrameKirchhoff.pro
ch09: FrameTimoshenko.pro
ch09: KirchhoffEuler 01.pro
ch09: KirchhoffEuler_1.pro
ch09: KirchhoffEuler.pro
chi13: PeelTest.pro

6 Elements
In this section, a list of elements available in PYFEM is given.

6.1 Finite strain continuum

The finite strain continuum element is discussed in detail in Section 3.6 of the
book. In the code, the two dimensional version is implemented. It can be used
as a 3,4,6,8 and 9 node element.

16

Name: FiniteStrainContinuum
Source: pyfem/materials/FiniteStrainContinuum.py
Mandatory parameters:

material The material model that is used in this element, see
Section 7 for more details.

Optional parameters:

None

Examples:
ch03: cantilever8.pro
ch05: StressWave20x20.pro

6.2 Kirchhoff non-linear beam

The Kirchhoff beam element is discussed in Section 9.2.
Name: KirchhoffBeam
Source: pyfem/elements/KirchhoffBeam.py

Mandatory parameters:

E Young’s modulus
A Cross-section of the truss
I Moment of inertia

Optional parameters:
None
Examples:

ch09: FrameKirchhoff.pro

6.3 Small strain continuum

The small strain continuum element is discussed in detail in Section 2.6 of the
book. In the code, the two dimensional version is implemented. It can be used
as a 3,4,6,8 and 9 node element.

17

Name: SmallStrainContinuum

Source: pyfem/materials/SmallStrainContinuum.py
Mandatory parameters:

material Material Model, see Section 7

Optional parameters:

None

Examples:
ch02: PatchTest4.pro
ch02: PatchTest8.pro
ch06: ContDamExample.pro
ch13: PeelTest.pro

6.4 Linear spring

The linear spring is used in the Shallow Truss examples in the first chapters of
the book.

Name: Spring
Source: pyfem/elements/Spring.py
Mandatory parameters:
k Spring stiffness
Optional parameters:
None
Examples:

ch04: ShallowTrussRiks.pro

6.5 Timoshenko non-linear beam

The Timoshenko beam element is discussed in Section 9.2 of the book.

18

Name: TimoshenkoBeam

Source: pyfem/elements/TimoshenkoBeam.py
Mandatory parameters:

Young’s modulus

Cross-section of the truss

Moment of intertia

Q H = m

Shear modulus

Optional parameters:
None

Examples:

ch09: FrameTimoshenko.pro

6.6 Non-linear truss
The non-linear truss element is discussed in Sections 3.1 and 3.2 of the book.
Name: Truss
Source: pyfem/elements/Truss.py
Mandatory parameters:
E Young’s modulus
A Cross-section of the truss
Optional parameters:
None
Examples:

ch04: ShallowTrussRiks.pro

6.7 Cohesive zone interface

The Cohesive zone interface element is discussed in Section 13.2 of the book.

19

Name: Interface

Source: pyfem/materials/Interface.py
Mandatory parameters:

material Material Model, see Section 7
Optional parameters:

intmethod Integration method, this can be either Gauss,
Newton-Cotes or Lobatto. The default is
Newton-Cotes

intorder Integration order. The level of over- or underinte-
gration is specified here as an integer (e.g. +2 or -1).
Default value is 0.

Examples:
ch13: TractionOscillation.pro
chi13: PeelTest.pro

7 Material models

In this section, the input parameters for the different material models that are
available in PYFEM are given.

7.1 Plane strain linear elastic model

A plane strain, linear elastic constitutive relation as presented on page 109-110
of the book.

20

Name: PlaneStrain
Source: pyfem/materials/PlaneStrain.py
Mandatory parameters:

E Young’s modulus

nu Poisson’s ratio

Optional parameters:

None

Examples:
ch02: PatchTest4.pro
ch02: PatchTest8.pro
ch05: StressWave20x20.pro
ch13: TractionOscillation.pro
ch13: PeelTest.pro

7.2 Plane strain damage

See Section 6.2 in the book for a detailed description.

Name: PlaneStrainDamage
Source: pyfem/materials/PlaneStrainDamage.py

Mandatory parameters:

E Young’s modulus

nu Poisson’s ratio

kappa0 Equivalent strain at which damage intiates.
kappac Equivalent strain at which damage is 1.0.

Optional parameters:
None
Examples:

chO6: ContDamExample.pro

21

7.3 Plane stress linear elastic
Name: PlaneStrain
Source: pyfem/materials/PlaneStrain.py
Mandatory parameters:
E Young’s modulus
nu Poisson’s ratio
Optional parameters:
None

Examples:

7.4 Power Law cohesive model
Name: PowerLawModel
Source: pyfem/materials/PowerLawModel.py
Mandatory parameters:
Tult Ultimate traction
Ge Fracture toughness
Optional parameters:
None
Examples:

ch13: PeelTest.pro

8 Version history

1.0 August 29, 2012 e First major release.

22

