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Introduction

1.1 Special Features of Polymers

Why write a book especially on modeling of polymerization reactions? To answer
this question, it is best to compare the production of polymers with the produc-
tion of low-molecular-mass compounds and to see what is special for polymers.
For example, to produce acetic acid
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(1.1)

several processes can be followed. Rather old ones, already known to the ancient
Egyptians and Greeks, used the biotechnology way from grapes via ethanol to
vinegar. Or more modern techniques like the oxidation of acetaldehyde by oxygen
and Mn(OAc)2 as catalyst, the air oxidation of butane at high pressures or the
Monsanto process, the addition of carbon monoxide to methanol catalyzed by
rhodium complexes. Despite the variety of raw materials and processes, all end
with acetic acid with the structure shown earlier. The various processes only differ
in terms of raw material, conversion, yield, selectivity, concentration, and kind of
impurities; and the engineering task is to optimize these quantities, the product
being in all cases acetic acid with defined properties.

This is by far not the case with polymers. Let us have a look at a simple polymer
like polyethylene. It can be produced by several different mechanisms – by
radical polymerization to give low-density polyethylene (LDPE) with short- and
long-chain branches, or catalyzed by various transition metal catalysts from
chromium, titanium, and so on to high-density polyethylene (HDPE) or linear
low-density polyethylene (LLDPE) by opening the double bond of ethylene and
linking s monomers to chains of length s.
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However, even for such a simple polymer like polyethylene, there exists a wide
variety of grades that differ in properties like viscosity, crystallinity, transparency,
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gloss, and so on, which means that these grades have different molecular
structures; so polyethylene is not just polyethylene. One obvious difference
between two polyethylene molecules might be the number s of monomeric
units in the chain, the degree of polymerization. In contrast to biological macro-
molecules like enzymes, DNA, and RNA, which have well-defined structures
despite being polymers, synthetic macromolecules (and also many of the biopoly-
mers like cellulose, lignine, etc.) differ at least in length s, and consist of an ensem-
ble of chains with different chain lengths – they have a chain-length distribution.
There might be more structures differentiating polymer chains from each other,
and we come back to the kind of structural differences later in Section 1.2. These
molecular structures determine the properties which the polymer will show dur-
ing processing and in their final application. The molecular structure, however,
depends strongly on the chemistry, the kinetics, and the process conditions.

Therefore, the challenge for chemists and engineers in the development and
production of synthetic polymers is not only to optimize yield, conversion, and
so on but also to produce the right molecular structure to meet the desired appli-
cation and processing properties.

Here, suitable mathematical models linking reaction kinetics and process con-
ditions to the resulting structure will be of great help to overcome this challenge.
Especially if we consider that for polymers, in contrast to low-molecular-mass
compounds where we have distillation, extraction, crystallization, and other
purification methods, there does not exist any separation method – except on
an analytical scale – to separate polymers with the desired structure from “bad”
polymers. So, the polymerization process itself must yield the desired structure
at once.

There is another important difference between processes for polymers and
low molecular compounds. We have to consider that the chain length s might
be several hundreds or thousands or even higher. This means that the molecular
mass (which is given by s times molecular mass of the monomer unit) can be as
high as several 105 or even 107 g/mol, so we have to consider processes where
a low molecular compound, the monomer, with a low viscosity like water reacts
to products with much higher viscosity, which may be up to 105 Pa s. In the
latter processes, however, we convert low-molecular-mass compounds to other
low-molecular-mass chemicals, and viscosity will not change very much and
will be 10−3 − 10−2 Pa ⋅ s or even lower if we deal with processes in the liquid or
gaseous state.

This dramatic change in viscosity has several implications. So, mixing becomes
an issue. Poor mixing causes inhomogeneity with respect to concentration, and
also to temperature. We have to keep in mind that polymerization reactions are
usually rather exothermic reactions (see Table 1.1) with adiabatic temperature
rising up to several hundred or thousand K. High viscosity will impede heat
removal capacity tremendously and may cause hot spots in the reactor that may
lead to side reactions or even runaways.

In addition, this high viscosity may affect the reaction kinetics itself, as in some
cases reaction rates become mass-transport limited. The high viscosity might
impede the diffusion of long chains or even of monomers. We come to this point
when considering radical polymerization.
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Table 1.1 Heat of polymerization of some example monomers [3, 4].

Monomer General formula −𝚫Hr,. (kJ/mol) −𝚫Tad (K)

Ethylene, propylene, styrene, vinyl
esters, acrylic acid and -esters, dienes

H2C=CHX 67–105 300–2000

Isobutene, α-methyl styrene,
methacrylic acid and esters

H2C=CXY 33–59 140–400

ϵ-Caprolactame, 2-pyrrolidone
(γ-butyrolactame)

0–17 0–70

Another aspect that is of practical importance, but is often underestimated,
is the high demand for purity of the involved chemicals. The concentration of
active species is often rather low; in radical polymerization, the concentration
of growing chains is 10−8 − 10−7 mol/l, the concentration of active species in
transition-metal-catalyzed polymerization is just one or two orders of magni-
tude higher. Moreover, in some cases (living polymerization and step-growth
polymerization, see Section 2.4.1), the resulting molecular mass is strongly
dependent on stoichiometry; here, small errors may prevent us from reaching
the desired values.

1.2 Structures in Polymers and Their Influence
on Processing and Application Properties

Polymers are used not because they have a certain structure, but because they
have certain properties in their final application or during processing. However,
the results of kinetic or process models are usually not these final properties but
information about the molecular structure of the macromolecules. In the fol-
lowing, we briefly discuss possible structural differences of polymers and some
consequences of their properties. This is by far not an exhaustive overview and is
greatly simplified. It shall more serve as an appetizer and motivator to use mod-
eling methods to design polymer structures.

1.2.1 Chain Length, Molecular Mass, Moments, and Mean Values

In Section 1.1 we have already pointed out that one important structural property
of a macromolecule is its degree of polymerization resp., its molar mass. Synthetic
macromolecules usually have a distribution of degrees of polymerization resp.
molar masses.

Definition 1 By Ps(t) we denote the concentration of chains of degree (chain
length) s of polymer P at time t. Therefore, this quantity is related to the num-
ber of molecules of a certain kind. (Figure 1.1a,c). The distribution Ps(t) is called
frequency or number distribution.

It can also be represented in terms of the molecular mass of the respective
chains (Figure 1.1b,d) and as differential (Figure 1.1a,b) or integral distribution
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Figure 1.1 Possible representations of distributions: (a) discrete, differential frequency, or
number distribution of degree of polymerization, (b) continuous differential frequency or
number distribution of molar mass, (c) discrete, cumulative distribution of degree of
polymerization, (d) continuous, cumulative distribution of molar mass.

(Figure 1.1c,d). Very often, however, one is interested in the mass of polymer
molecules. The mass of a chain consisting of s single molecules is given by the
weighted sum of these units. Let MP

M
denote the average molecular mass per

monomer unit (AMW) in all chains of type P. In the simplest case of homopoly-
mers, MP

M
is just the molar mass of the monomer. We remark, however, that in

complex systems, for example, copolymerization, MP
M

may be a time-dependent
function of polymer composition (see (2.287)). Then, the mass of a chain Ps is s ⋅
MP

M
. Therefore, the weight or mass distribution of mass of a polymer P is given by

W P
s (t) = Ps(t) ⋅ s ⋅ MP

M
(1.3)

We have to keep in mind that all these distributions are functions of a discrete
variable, as the degree of polymerization can only have integer values 1, 2,… , s.
For long chains (s ≪ 1), we could deal with them as continuous functions; how-
ever, this requires additional assumptions and in view of the fact that this prob-
lematic approach is not allowed for short oligomers, we will not discuss it here.

A third important representation of a distribution is induced by the measure-
ment of the molar mass distribution by gel permeation chromatography (GPC).
It has been shown [5] that the GPC data are proportional to a distribution

W P
log M(t) = Ps(t) ⋅ s2 ⋅

(
MP

M

)2
(1.4)

The meaning of this distribution is less intuitive than the mass distribution, but
it is apparent that the concentration of long chains is amplified by the factor s2.
In many modeling projects, it is crucial to analyze all three types of distributions.
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We also note that the numerical approximation of W P
log M can be much more

challenging than to obtain the basic frequency distribution.
In many cases, distributions are just characterized by some average values. For

that we introduce the statistical moments of type k and of distribution P at time t

𝜆P
k (t) =

∞∑
s=1

skPs(t) (1.5)

Remark 1 (moment notation) There are very different notations in use for
moments, often the Greek letter 𝜇 instead of 𝜆 is used. The summation bounds
are often omitted as well as the superscript, if there is only one distribution being
considered.

Remark 2 (moment meaning) The meaning of the zeroth moment 𝜆P
0 is the

total concentration of polymer chains Ps. The meaning of the first moment 𝜆P
1 is

the total concentration of all monomer units in all chains of polymer Ps.

Using the first moment 𝜆P
1 of a given polymer distribution Ps and the average

molecular mass per monomer unit MP
M

, the mass concentration mP of a polymer
species can be described by

mP = 𝜆P
1 MP

M
(1.6)

In some models, particularly in polycondensation, each single polymer chain may
carry or (miss) one additional piece of mass, a fragment, of molecular weight MP

F
.

Then the expression (1.6) has to be extended by a term that multiplies the total
number of polymer chains 𝜆P

0 with the mass of the fragment. Note that MP
F
< 0 is

possible and allowed here.

mP = 𝜆P
1 MP

M
+ 𝜆P

0 MP
F

(1.7)

Next, we use the statistical moments to define some important mean values. The
number average describes the average number of monomer units per chain. The
mass average leads to the average number of monomer units in a macromolecule
to which a randomly chosen monomer unit belongs.

NP
n (t) =

𝜆P
1 (t)

𝜆P
0 (t)

, number average chain length (1.8)

NP
𝑤(t) =

𝜆P
2 (t)

𝜆P
1 (t)

, weight average chain length (1.9)

Remark 3 We use the capital letter N to characterize the average values instead
of the often used notation Pn or P𝑤, as we have reserved the letter P to describe the
polymer.

Remark 4 We have to add the superscript P in these definitions, since in nearly
all situations of interest we have to distinguish different types of polymers. How-
ever, outside a model consideration and without a concrete polymer, we will use
just Nn,N𝑤,PDI.
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Often, people are more interested in the corresponding mass averages, only
extended by a factor given by the average molecular mass of a monomer unit:

MP
n(t) =

𝜆P
1 (t)

𝜆P
0 (t)

MP
M

[mass
mol

]
, number average molecular mass (1.10)

MP
𝑤(t) =

𝜆P
2 (t)

𝜆P
1 (t)

MP
M

[mass
mol

]
, weight average molecular mass (1.11)

The important width of the distribution is characterized by the polydispersity
index (PDI)

PDIP(t) =
𝜆P

2 (t)𝜆
P
0 (t)(

𝜆P
1 (t)

)2 =
NP

𝑤(t)
NP

n (t)
=

MP
𝑤(t)

MP
n(t)

(1.12)

Note that PDI can be correlated to the standard deviation 𝜎 usually used in
statistics to characterize the width of a distribution by

PDI =
(

𝜎

NP
n

)2

+ 1 (1.13)

1.2.2 Rheological Properties

Many of the mechanical and rheological properties of polymers come from the
fact that in contrast to small molecules, macromolecules do not exist as sepa-
rated molecules (except in highly diluted solutions), but are more or less “en-
tangled” (see Figure 1.2). These entanglements act as physical cross-links which
drastically hinder the mobility of polymer chains and consequently influence all
properties that are connected to chain mobility. Solid-state properties like ten-
sile strength and impact strength usually increase with NP

𝑤. In contrast to this, the
rate with which a crack propagates in a polymeric material is reduced for higher
molecular masses. So, in terms of mechanical properties, high molar masses are
desirable. However, the entanglement is also responsible for the extreme high
viscosity of polymer melts and concentrated polymer solutions. Viscosity 𝜂 is the

Test

chain

Entanglement

Figure 1.2 Schematic entanglement of bulk polymers.
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ratio of shear stress 𝜏 and shear rate �̇� , for example, the resistance of a liquid to
replacement. In “normal” liquids, according to Newton’s law 𝜏 = 𝜂�̇� , viscosity is
a constant. For polymer melts and highly concentrated solutions or other more
complex liquid systems like dispersions, suspensions, and so on, this simple rela-
tion is no longer valid, but 𝜂 becomes a function of �̇� . The mostly observed phe-
nomenon with polymer systems is the so-called shear-thinning behavior, where
viscosity decreases with shear rate, because by shearing more and more entan-
glements are released. This is sketched in Figure 1.3.

Here, the viscosity at low shear rates, the zero-shear viscosity, correlates with
NP

𝑤 very strongly; above a critical chain length NP
c from which on entanglement

occurs, the correlation 𝜂0 ∼ (NP
𝑤)3.4 holds for nearly all linear polymers. However,

not only the average values influence the shear viscosity but also the distribution
itself (Figure 1.4). Broader distributions usually show a stronger shear-thinning
behavior, which makes processing easier while maintaining a high molecular
mass for mechanical properties.

There are far more properties which depend on chain length, like glass transi-
tion temperatures Tg , melting point Tm of semi-crystalline polymers, viscoelastic
behavior, and others.

1.2.3 Constitutional Isomers

As in low molecular compounds, in macromolecules also all kinds of constitu-
tional isomers may occur.

R R R R RRH H H H

Syndioctactic triade

Isotactic triade Atactic triade

HH

(1.14)
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Figure 1.3 Shear viscosity curves for polyethylene with different weight average molar mass.
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Figure 1.4 Shear viscosity curves of polyethylene grades with different molar mass
distributions (normalized to same zero-shear viscosity).

If the monomer unit has an asymmetric carbon atom, the macromolecule
may show stereoisomerism. It may consist of isotactic sequences, where the
substituent R is always on one side of the plane, syndiotactic sequences where the
position of R alternates, or atactic sequences with no regularities. Stereospecific
polymers often result from transition-metal-catalyzed polymerization like
isotactic polypropylene with Ziegler catalysts. The degree of stereoregularity
has a strong effect on melting point, degree of crystallization, or glass transition
temperature, and so influences mechanical and optical properties. It is usually
characterized by the concentration of the respective triades or pentades.

1,4-cis

s
s

s H2C

CH2

s
1,2-1,4-trans (1.15)

Geometric isomers may occur, for example, during the polymerization of
dienes, when there are several possibilities to open a double bond as in the
polymerization of butadiene depending on the process and catalysts/initiators.
This results in 1,4-cis, 1,4-trans, or 1,2-polybutadienes with remarkably different
properties. Polybutadienes produced with Co- or Ni-catalysts show >95% 1,4-cis
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content with Tg ≈ −105 ∘C and are partly crystalline with Tm ≈ 2 − 3 ∘C, high
1,2-polybutadiene produced with Li-organyls shows 1,2-content of ≈ 90% and
has Tg ≈ −5 ∘C and Tm ≈ 155 ∘C. In emulsion polymerization, one may obtain
mixed structures with ≈ 10% 1,4-cis, ≈ 70% 1,4-trans, and ≈ 20% 1,2-structures
and Tg ≈ −80 ∘C. Consequently, they differ in their application properties as tire
rubbers in abrasion resistance, rolling resistance, road holding, and so on.

CH CH CH

R

CH

R

Head–tail Head–head Tail–tail

R R R

CH2 CH2

H2C

Tail Head

CH2 CH2

(1.16)

Other structural isomers may occur with nonsymmetric monomers from the
orientation during the addition of the monomer to the active center. There is an
agreement that the carbon atom with the larger substituent is called the head of
the monomeric unit, and for asymmetric monomers there exist three possibilities
of orientation. Head–tail is the “normal” orientation, and irregularities like the
head–head or tail–tail addition usually influence properties like the degree of
crystallinity.

1.2.4 Architectural Isomers

Until now we have considered macromolecules to be linear molecules; but in
many cases, this is not true. There might exist a wide variety of different archi-
tectures with the same molar mass.

Comblike or graft polymers:

(1.17)

Starlike polymers:

(1.18)

Treelike polymers:

(1.19)
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(long-chain) Branched polymers

(1.20)

Figure 1.5 shows how the architecture may influence properties. The viscosity
of starlike polymers is lower than that of the linear polymer with the same molar
mass, because the coil radius of a starlike polymer is smaller than that of linear
molecules of the same molecular mass.

A special class of polymer architectures are cross-linked polymers. Polymer
chains in a network have at least two cross-linking points by which they are con-
nected to other chains of the network; so, a polymer network, in principle, con-
sists of just one molecule. Polymer networks may be built during the polymer-
ization process itself or may be formed starting from linear chains which then
will be cross-linked in a separate process (vulcanization). It is a special chal-
lenge to describe their structural properties, like the concentration of cross-links,
the chain length between cross-links, and so on. Depending on the degree of
cross-linking, polymer networks may be soft, elastic, and swellable (like superab-
sorbent polymers, rubber tires), or they may be hard and brittle (as in the case of
phenol-formaldehyde resins, Bakelite®, the earliest commercial synthetic resin)

(1.21)
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Figure 1.5 Schematic dependence of
melt viscosity on molar mass for
different architectures.
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1.2.5 Copolymers

Only a few commercial polymers consist of just one monomer; most of them are
copolymers of two or more monomers, M1,M2,… ,Mi. The obvious difference
between copolymers is their composition, that is, the fractions F1, F2,… , Fi of
the monomer i in the polymer. However, copolymers of the same overall com-
position may differ in the sequence of the different monomers along the chain.
Most common are so-called “statistical” copolymers where the monomer units
are randomly distributed along the chains. We see in Section 2.6 that they obey
certain statistics; for example, they can be treated as Markov chains of zeroth,
first, or second order. Strongly alternating copolymers can be obtained if neither
of the two monomers is able to form a homopolymer. Finally, block copolymers
may be formed by sequential addition of different monomers to living initiators
(see Chapter 2) or by coupling of separately formed homopolymers.

Statistical copolymers: −M1M1M2M1M2M2M1M2M1M1−
Alternating copolymers: −M2M1M2M1M2M1M2M1M2M1−
Block copolymers: −M1M1M1M1M1M2M2M2M2M2−

It is obvious that these different structures may cause tremendous differences
in the physical and application properties of copolymers. This is exemplified in
Figure 1.6 for the glass transition temperature of a block and a statistical copoly-
mer. Block copolymers show two glass transition temperatures, being those of the
two homopolymers. Statistical copolymers only show one glass transition tem-
perature that is somehow the average of the glass transition temperatures of the
homopolymers.

There are several characteristics by which the monomer sequence along the
chain can be described. As with the degree of polymerization, we also have to deal
with distributions, so there are characteristics describing average values like the
average sequence length of monomer M1 describing how many units M1 (on aver-
age) follow one after the other without being interrupted by another monomer.

Figure 1.6 Typical glass transition
temperature behavior of statistical and
block copolymers.
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There are several methods to take into account the distribution properties. One
possibility is to use the sequence length distribution, which gives the fraction of
sequences with 1, 2, 3,… , s units Mi. Another possibility to look at the distribu-
tion is to characterize a copolymer according to the fraction of triads or pentads
around the central unit Mi (see Figure 1.7), that is, what are the direct neighbors
of Mi or even the next but one neighbor.

We come to these characteristics in more detail in Section 2.6. Furthermore,
naturally also for copolymers, there may exist architectural isomers, as described
in Section 1.2.4. Here, the main and side chains may all consist of statistical
copolymers, or the main and side chains may consist of different polymers, or
any other possibility as shown here

M1M2M1M2M1M1M2M1M1M2M2M1M1M2M1M2M1M1

M1M2M1M2M1M1M2M1M1M2M2M1M1M2M1M2M1M1

M2 M2

M2M2

M2

M2

M2

M2

M2

M2M2

M2

M2 M2

M2M1

M2

M1

M2

M2

M1

M2M1

M2

M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1M1

M2 M2

M2M2

M2

M2

M2

M2

M2

M2M2

M2 (1.22)

Therefore, the introduction of more than one monomer increases the num-
ber of possibilities for the structure of macromolecules dramatically. A simple

M1 – M1 – M1

M2 – M1 – M2

M2 – M1 – M1

M1 – M1 – M1 – M1 – M1

M2 – M1 – M1 – M1 – M1

M1 – M2 – M1 – M1 – M1

M2 – M2 – M1 – M1 – M1

M1 – M2 – M1 – M2 – M1

M2 – M1 – M1 – M1 – M2

M2 – M1 – M1 – M2 – M1

M2 – M2 – M1 – M1 – M2

M2 – M2 – M1 – M2 – M1

M2 – M2 – M1 – M2 – M2

Figure 1.7 M1-centered triads and pentads.
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example will demonstrate this. Imagine a copolymer consisting of equal moles
of two monomers, for example, styrene (S) and methyl methacrylate (MMA),
and the distribution of degrees of polymerization of this polymer has a number
average of s = 1000. Now let us ask how many macromolecules with this aver-
age chain length 1000 and the average composition of 500 styrene and 500 MMA
units may exist. This is equivalent to the question of how many possibilities do
exist to put k coins into n places (irrespective of the sequence). From combina-
torial analysis, we know that this number is(

n
k

)
= n!

(n − k)!k!(
1000
500

)
= 1000 ⋅ 999 ⋅ · · · ⋅ 501

500!
= 2.70 × 10299 (1.23)

For our example and in view of symmetry, this yields 1.35 × 10299 possibil-
ities. The molar mass of such a chain (MS = 104, MMMA = 100 g/mol) then is
102,000 g/mol, and we get the absolute mass of one chain as 1.7 × 10−19g by divid-
ing the molar mass by NA. Thus, if we had the task of synthesizing one molecule
for all of the possibilities, we end up with the production of 2.3 × 10274 t. The
mass of our galaxy is assumed to be in the range of 1040 t. So, it is rather unlikely
that we ever have produced two identical molecules of this kind. Moreover, here
we just have considered one kind of isomerism, that is, the positioning of the
monomer. The other types of isomerism mentioned will amplify the possibilities
of how a macromolecule with a definite chain length (=molar mass) and a certain
composition may look like in all detail.

This shows that especially for synthetic polymers, it is difficult to look at indi-
vidual molecules. We should better characterize them by some averaged quanti-
ties; some of them have been introduced in this chapter, and they – and additional
ones – are described in detail when appropriate. Nevertheless, there might be
cases where we will have a look at individual species (see Section 5.5).

1.3 Some Analytical Methods for Model Validation

The main purpose of the models we are dealing with is to link information
about the structure of the macromolecules and the process for producing these
molecules. The mathematical tools are important, but at least as important for
a successful modeling project is to have analytical tools at hand which give us
the structural information about the polymer. This experimental information
is important for two reasons. In the beginning of a project, it will help us find
a proper estimate of the model parameters – rate coefficients, distribution
coefficients, and so on. In the validation phase, experimental data are used to
proof the quality of the model. Table 1.2 gives some hints for possible analytical
methods, but it is not exhaustive; and, in many cases, the suitable method
depends on the system under investigation.
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Table 1.2 Methods for determining macromolecular structures.

Model output Measurement method Class Remarks

Mn Vapor pressure osmometry A <20 kg/mol
Mn Membrane osmometry A 100–1000 kg/mol
Mn Cryoscopy, ebullioscopy A <10 kg/mol
Mn End group analysis

(spectroscopy, titration)
E <30 kg/mol

M
𝑤

Static light scattering A >10 kg/mol, gives radius of
gyration

M
𝑤

Dynamic light scattering A >10 kg/mol, gives
hydrodynamic radius

M
𝑤

Small-angle X-ray scattering,
SAXS

A >10 kg/mol

M
𝑤

Small-angle neutron
scattering, SANS

A >10 kg/mol

M
𝜂

Solution viscosimetry R >10 kg/mol
Molar mass distribution Gel permeation

chromatography, size
exclusion chromatography

A (R) Depending on detector

Molar mass distribution Analytical ultracentrifuge,
sedimentation velocity,
sedimentation equilibrium

A Diffusion and
sedimentation coefficient

Molar mass distribution Field flow fractionation A (R) Depending on detector
Molar mass distribution MALDI-TOF A
Molar mass distribution Dynamic mechanical analysis

(DMA)
R

Chemical composition Spectroscopic methods,
elementary analysis

A Depending on system

Sequence lengths, triades,
pentades in copolymers

Spectroscopic methods A Depending on system

Bivariate distribution in
copolymers

2D chromatography
(HPLC+SEC)

A, R

Tacticity 1H, 13C-NMR, FT-IR A
Degree of short chain
branching

NMR, FT-IR A

Degree of long-chain
branching

Solid-state-NMR,
FT-rheology, SEC with triple
detector (RI, LS, viscosimetry)

A

Cross-linking density Swelling R Model gives chemical,
analytics often chemical +
physical cross-linking

Cross-linking density Elasticity modulus, shear
modulus, DMA

R Model gives chemical,
analytics often chemical +
physical cross-linking
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When looking at the various methods, we can classify the measurement meth-
ods into three classes (see Table 1.2):

1) Absolute methods (A) give the property without any assumptions about the
chemical or physical structure of the molecule. Typical absolute methods are,
for example, those measuring colligative properties (vapor pressure osmome-
try, membrane osmometry).

2) Equivalent (E) methods need some assumptions about the chemical structure
of the molecule like for example end group titration.

3) Relative methods (R), in all cases, need calibration as they depend on the
chemical structure of the solute and its interaction with the solvent, like
viscosimetry.

1.4 Description of Polymer Properties

Table 1.2 shows many properties of polymers in addition to the chain length s
we already have used in our basic Definition 1 - that is, composition, sequence
lengths, tacticity, branching frequency and lengths, and so on. In principle, we
can (try to) describe a polymer chain in terms of many or even all of those prop-
erties, but very often we will end up at only one or two characteristics of interest.
Nevertheless, we think that readers should know a few more abstract basics of
the modeling approaches described in this book.

In this section we very briefly do the following:

• Sketch the basic description of the stochastic process behind a polymerization,
• Introduce the concept of the chemical master equation (CME) that principally

governs all chemical reactions, even if this fact is not always recognized,
• Show that the CME can be reduced to a simpler reaction kinetics equation

(RKE),
• Show how to reduce the number of described polymer properties,
• Describe the difference between deterministic and stochastic simulation.

Let us assume for a moment that we would be able to analyze the polymer
chains of a real reactor in all detail and at any time. We could pick an arbitrary
number of chains (e.g., 1 mole = 6.023 ⋅ 1023 molecules) and view them with all
their structures, for example, the branches as in Figure 1.8 or the inner composi-
tion as in Figure 1.9.

How could we describe the information of these two pictures? For the topology,
we could characterize the chain having a total chain length s and a number of
branches with an individual (or average) length. We could also count different
monomer types or analyze the exact position of the branching points. For the
composition, we could consider the total sequence of all monomer units. In such a
copolymer with branches and more properties of interest, the information would
increase.

However, all this characterizes just one single molecule, since not only the chain
lengths are distributed in a polymer but also the other properties of interest.
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Figure 1.8 Schematic topology
of a branched macromolecule
with backbone chain, branches,
and branches on branches. The
overall chain length of the
molecule is given by the total
number of monomers in all
branches.

M1–M2–M1–M2–M3–M2–M1–M1–M1–M2–M3–M2–M1–M2

M1–M2–M3–M2–M3–M2–M1–M2–M1–M1–M3–M2–M2–M2

M3–M1–M3–M3–M3–M1–M3–M2–M1–M2–M3–M2–M1–M2

Figure 1.9 Schematic monomer distribution in an example terpolymer chain.

In order to get a usable description of our mole of chains, we have to sort them
with respect to certain criteria.

For example, we can count only for the number of branches and put all chains
with identical branching numbers into one “box.” Depending on the reaction sys-
tem, we will end up with a few boxes only (if branching is not frequent) or many
of them. In each box, we will have chains of very different lengths again and we
can also put them into smaller “sub-boxes.” Thus, we obtain numbers as n(s, j)
denoting the number of chains in a sub-box having j branches and chain length s.
We can also revert to the sort process and start with boxes for the chain length.
This seems to be more practical, since we expect many different chain lengths,
and thus many boxes on the first level of sorting. We could also refine the sorting
by using sub-sub-boxes for the lengths of the branches – or we better save them
by not taking care of branches at all and put all chains with the same lengths into
one box.

Nevertheless, whatever we use as sorting criterion, when we run our reaction
again under exactly the same conditions (mixture, temperature, pressure, etc.)
and perform our sorting again, we will note that the second experiment leads
to different content, that is, numbers of chains, in our boxes. And the next
attempt will be different again, and so on. After thousands of experiments, we
will get a feeling of how the contents of the boxes are distributed in average
and what kind of variations we can expect. We will learn that the probability
that our process leads to exactly n chains with length s and j branches is not 1,
but given by a distribution, too. This distribution must not be mixed up with
the distribution describing the basic properties, for example, the chain-length
or molecular-weight distribution. The chain-length distribution summarizes
molecules of type Ps. In addition, for each single s we will have different values
for different experiments or stochastic realizations, respectively.

We will illustrate this important and general structure with a very simple
example.
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1.4.1 Chemical Master Equations

Assume that we are interested in the number nA(t) of a single type of molecules
A having very low initial number n0 in a small reactor, for example, an initia-
tor which reacts in the following reaction R to a product which is no longer of
interest to us.

R ∶ A
k
−−→ ∅ (1.24)

Basically, the reaction (1.24) has to be understood as a stochastic process: In a
certain time interval, the reaction may happen – or it may not. This holds for
all further time intervals and therefore – due to the randomness of the reac-
tion – after a while we will find still n0 molecules (depending on the value of
k this might be not probable, but possible), or zero molecules or (most probably)
something in between. Thus, if the system is initialized with n0 molecules we can
only discuss the probability that there are nA(t) = x molecules present at time t.

This is pictured in Figure 1.10. We consider a system with a number of initial
molecules. After regular time intervals we count again and thus know whether
the reaction took place meanwhile. Starting with seven molecules, after each time
interval (reaction happened (indicated by an arrow) or did not happen (indicated
by a line with bullet end)) we get a new status of the total number. If we repeat the
experiment, we may end up with a different state reached through a different path.

If we repeat this very often, we will expect to get a distribution of numbers
for the final state. Its related average number could even be a non-integer value,
for example, 5.5. Based on this average, one could define a heuristic formula like
nA(t) = n0exp(−kt) and use this as a description for the reaction independent of
its stochastic character.

For a formal description of (1.24), we define a (discrete) random variable
XA(t) describing the number of molecules of species A at time t. The reaction
probability for reaction R is specified by the so-called propensity function
aR = aR(XA(t), t), which is equal to the product of a rate constant k and the
number of possible combinations of reactant molecules involved in reaction R
(see [6]). Thus, the propensity of reaction (1.24) is given by aR = kXA(t). Note
that this is really a discrete process; the possible number of molecules is an
integer value.

Returning to (1.24) and the underlying stochastic process, we define the prob-
ability distribution function (PDF) of the random variable XA(t) by

p(t, x) = P[XA(t) = x], x ∈ N (1.25)

It describes the probability that at time t we have x molecules of type A. Its time
evolution is given by the CME:

dp(t, x)
dt

= aR(x + 1, t)p(t, x + 1) − aR(x, t)p(t, x)

= k(x + 1)p(t, x + 1) − kxp(t, x) (1.26)

In general, the description using a CME governs infinite many system realizations
and describes how the probability changes for single realizations. Here, the time
derivative of p(t, x) for a given x depends on the probability of systems p(t, x + 1)
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Figure 1.10 Two possible paths for the number of molecules disappearing with a certain rate.
In the first picture, the status of the system is 7 at time 0, then 6 at time 1, then still 6 at times 2
and 3 (7–6–6–6). This means that in only one of the three time intervals the reactions really
happened. For the second path, the reaction takes place in the second and third time step,
leading to status 7–7–6–5 at times 0–1–2–3. The difference is simply given by the underlying
stochastic process. In order to get a reasonable average, one has to repeat this very often.

having just one more molecule. For reaction schemes with M reactions, the gen-
eral CME reads

dp(t, x)
dt

=
M∑

m=1
[am(x − 𝜈m, t)p(t, x − 𝜈m) − am(x, t)p(t, x)] (1.27)

where 𝜈m is the stoichiometric factor of the species in reaction m. For our simple
case and for moderate numbers of A, a numerical solution of (1.26) is possible
and some results are presented in Figure 1.11.
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We can observe that the lower the initial number n0, the more important is the
distribution and its standard deviations compared to the average number. This is
very important, since the reaction R considered earlier consists only of one sin-
gle molecule type – and we already had to solve a CME with 10, 100, and even
1000 equations. For reactions between two different molecules, this number of
equations is squared; and for a polymerization system with species P1,P2,… ,Ps
for very large s, the CME reaches a tremendous dimension which will not be
solved as a set of differential equations for some time in future.

Fortunately, the complexity can be reduced drastically if certain molecules or
properties appear “very often” in a system, that is, if they have many “copies.”
Then we talk of the so-called high copy numbers in the stochastic description of
chemical reactions. The higher the copy number, the less important is the knowl-
edge of the full PDF, see Figure 1.11; case n0 = 1000 and the PDF can be replaced
by its average without too much loss of information. Generally, this reduction
is not trivial, but for the single reaction (1.26) we can do this. Introducing the
moments

𝜆0(t) =
∞∑

x=0
p(t, x), 𝜆1(t) =

∞∑
x=0

xp(t, x) (1.28)

and inserting them into (1.26), we can derive the following differential equation
for the average A(t) = 𝜆1(t)∕𝜆0(t):

dA(t)
dt

= −kA(t) (1.29)

It is no surprise that this is the well-known RKE belonging to reaction (1.24).
The time evolution of the RKE describes the average of the PDF from the CME
that is associated with the stochastic process. In Figure 1.12, we have sketched
our procedure. The reaction system leads to a CME resulting in the PDF. We can
average the PDF to obtain values of interest, but also average the CME to an RKE
and then compute the required values directly. If possible, we want to use the
path via the RKE – complex enough for polymerization - since it is much easier
to derive and to solve than the general CME.

In order to perform the step from CME to RKE, we have to ask what the high
and low copy numbers are in this context. For example, in radical polymerization
we sometimes have to consider concentrations of radicals at a level of 10−10 mol∕l.
Assume a very small reactor with a volume of only 1 cm3. Then we have about
6 × 1010 radical molecules, which is a very high copy number. If we distinguish
those polymer radicals by their chain lengths and assume a maximum chain
length of s = 105, we still have an average of 105 molecules per species class Ps. In

Reaction

RKE A(t)

CME PDF

Figure 1.12 Commutative
diagram for CME and RKE.
Note that the upper path
usually cannot be performed
with high accuracy, since the
CME cannot be solved
directly.
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addition, characterizing the polymers by the number of branches and assuming
a maximum of about 10–100 branches per chain, we still will be on the safe side
with about 103–104 chains per box. For further classification, for example, also
distinguishing with respect to the lengths of branches, it may happen that there
are no two chains with identical properties. An illustrative example for a rather
simple system is given in (1.23). Then the PDF becomes important, since it may
deviate much from the average.

In view of this consideration, we can state that for chain-length distributions
and their typical concentration ranges and properties, we usually have “enough”
molecules to replace the CME by an RKE. However, we will encounter the CME
again in Section 4.3.3 on emulsion polymerization, where we will meet really low
copy numbers of radicals.

1.4.2 Approaches to Polymer Properties

Coming back to the description of a polymer and its characteristics we can gen-
erally describe a polymer molecule by

Ps,j1,j2,…,jk ,… (1.30)

where s denotes the chain length and the jk an open number of additional prop-
erties. We have learned in Section 1.4.1 that by introduction of too many further
properties we reduce the copy number of one particular kind of molecule to a
region were the treatment of a CME is necessary. Imagine how many polymer
chains of length 1538 with 12 branches, all of given length, 189 comonomer units,
67 of them with a dangling end group, are really in a reactor even if, in principle,
all phenomena to generate such chains are present. With Equation (1.23) we have
shown already on the inner composition of copolymers how small the probability
for one special structure of a polymer molecule can be.

Therefore, it makes sense to reduce the number of observed properties right
from the beginning. The selection and the level of details depend on what may
happen in a reactor, what can be measured or controlled, and so on. This will often
lead to only a few additional properties of interest and sometimes it is sufficient
to know them as an average over the whole polymer. For that we can sum with
respect to all additional indexes jk and define

Ps ∶=
∑

j1

∑
j2

∑
…

Ps,j1,j2,… (1.31)

This means that the polymer Ps as defined in Definition 1 can be now considered
as a description of a complex polymer chain reduced to its main property, the
chain length s. Obviously, we may leave out one or more of the summations in
(1.31) and keep some properties in the description, for example,

Ps,j1
∶=

∑
j2

∑
…

Ps,j1,j2,… (1.32)

In terms of our picture of putting chains into boxes used in the beginning of
this section, (1.31) means that we only have boxes for chains with different poly-
mer degree s, where for (1.32) we introduce sub-boxes for just one additional
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property. The general description with all indexes would imply more and more
sub-sub-sub-boxes with less and less single chains.

An alternative to reduce boxes is to use a summation with respect to chain
length s and all other indexes, where we multiply by some index:

C1 ∶=
∑

s

∑
j1

∑
j2

∑
…

j1 ⋅ Ps,j1,j2,… (1.33)

In order to better show what this means we can also use (1.32) and write

C1 =
∑

s

∑
j1

j1 ⋅ Ps,j1
(1.34)

C1 is nothing else than the total number of property j1 in all polymer chains, that
is, independent of their chain length. We are not introducing sub-boxes for the
property j1, but we throw a coin into one collector box aside whenever we see
this property on a chain. Such a global counter is quite helpful in the description
of polymer kinetics, and is widely used if the (averaged) property does not differ
too much from chain to chain. For example, the incorporation of a comonomer
can often be described nicely using a counter. It is also possible to introduce a
chain-length-dependent counter for j1 by not summing over the index s in (1.34).

Cs,1 =
∑

j1

j1 ⋅ Ps,j1
(1.35)

In terms of our boxes, this implies that we have one counter box for each
chain-length box. However, in contrast, to use detailed sub-boxes for prop-
erty j1, the counter boxes will fill up much quicker; in most cases, they
will belong to a high copy number, even in this chain-length-dependent
case. While global counters can very easily be added to reaction kinetics,
chain-length-dependent counters require more mathematical preparations. We
sketch this in Section 2.6.4.

For the derivation of reaction kinetics and its equations in Chapter 2, we will
use the full average (1.31) and global counters for all properties of interest. Due
to the character of the summation process, a global counter for a certain property
can usually be treated like a virtual reaction product without mass.

1.4.3 Stochastic and Deterministic Simulation

We have shown that the CME describes a stochastic process, but its solution
(e.g., (1.26) at least) could be obtained by the deterministic solution of some dif-
ferential equations. In literature, deterministic (using differential equations) and
stochastic (using so-called Monte Carlo methods) approaches to polymer reac-
tion kinetics are often separated. After the discussion in this section, we are now
able to explain the role of these approaches.

The CME is a highly dimensional equation for a highly multivariate distribu-
tion. Its solution is deterministic, a multivariate probability function as we have
presented in Figure 1.11. The problem is that in nearly all cases of interest (and
in particular for polymer kinetics) the CME cannot be solved directly as we have
done for the simple case. Instead, one can try to use a stochastic algorithm to
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generate single realizations of the stochastic process behind the CME. In order
to give an idea of how this works, we consider the simple reaction (1.24) again.

Starting with a given number of molecules A, we can set a reasonable time
interval. From the propensity function we know a rate of reaction. Then we per-
form a random experiment to decide whether the reaction really happens in the
given time interval. We update the number of molecules accordingly, choose the
next time interval, and repeat the random experiment. This is already pictured in
Figure 1.10. Reaching a given end time, we will end up with one single number of
molecules that can be considered as one realization of the CME (1.26).

Does it make sense to compare this single value to a real experiment? Of course,
not, since the experiment is also one realization of the process and the results
could differ quite a lot. Even for high copy numbers, we cannot expect the one sin-
gle realization of the CME to be especially close to the average. Therefore, we have
to repeat the whole procedure very often, until we can estimate that the obtained
average of results is reliable. This is a Monte Carlo method and – neglecting all
details – is well known as the stochastic simulation algorithm (SSA) [6]. We have
seen that by this algorithm we obtain an approximation of the PDF and its quality
depends on how often we repeat the stochastic process. Actually, this quality is
mostly oriented on the accuracy of the average of the PDF, even if we also obtain
information on the distribution itself. In practice, one has to run thousands up
to millions of single runs to get a relatively smooth result without too much of
perturbations. For polymer systems, one can incorporate many properties (see
Figures 1.8 and 1.9), but still one has to average them for further treatment and
comparison. The price to be paid for this flexibility is the computational effort
and the relatively low accuracy compared to the exact solution of the CME.

Note: The Monte Carlo method approximates the solution of the CME in a
stochastic way. It is based on the propensities given in the CME and not on the
RKE. In principle, the CME could also be solved by a differential equation solver,
but the Monte Carlo method is the method of choice for CMEs.

The formal reduction of a CME to an RKE is not trivial, but can be very com-
plex. It also requires assumption on the stochastic coupling between variables.
Therefore, it is quite common to derive the RKE directly from the reaction system
using reaction rates. The RKE describes the averages of the PDF. We remember
again that these averages are not those we have taken with respect to polymer
properties (1.31), but the averages of the stochastic process.

Note: The RKE is an approximation of the underlying CME assuming high copy
numbers. It is solved by analytical (in rare cases) or numerical methods for differ-
ential algebraic equations. It is not solved by a Monte Carlo method. The RKE may
also describe a number of property variables increasing the dimension of the sys-
tem. However, realistic dimensions for a numerical treatment are only 1 (already
used for the chain length), 2, or 3.

The two approaches are illustrated in Figure 1.13
The two results AR(t) and AC(t) of the different approaches (both expressions

representing all state variables of a system) are not identical. Common parts are
usually more accurately given by the solution AR(t) of the RKE, whereas AC(t)
might include more properties. Computing times to get AR(t) can often be sec-
onds or minutes; for AC(t) it may sometimes be hours or even days. Moreover, the
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Reaction

RKE

CME
PDF

(Monte-Carlo)
Ac(t)

(Averaging)

AR(t)
(Deterministic,

e.g., ODE solver)

Figure 1.13 Diagram for CME and RKE including methods.

accuracy control is more difficult for Monte Carlo methods. We can also men-
tion that there are mixed or hybrid approaches in use combining the stochastic
solution of the CME with the deterministic solution of the RKE [7, 8].

Since the main property for polymers still is the chain length and the RKE for
chain-length distributions can directly be solved, in this book we mainly derive,
analyze and solve RKEs. Reaction phenomena will directly be transformed into
differential equations, as done in major parts of the literature. If we want to
consider additional properties, we will decide about the copy number and use a
reasonable approach, sometimes global counters, sometimes higher dimensional
RKEs, sometimes stochastic approaches. Last but not the least, the taken
approach has to be oriented to the capabilities of the measurement techniques of
Table 1.2, for example, whether they are based on averages or full distributions.


