Contents

List of Contributors xiiiForeword xvThe Structure of "The HPLC-Expert 2" xvii

1 When Should I Use My UHPLC as a UHPLC? 1

Stavros Kromidas

- 1.1 Introduction 1
- 1.2 What Do I Want to Achieve and What Is a UHPLC Capable of? 2

v

- 1.2.1 What Do I Want to Achieve? 2
- 1.2.2 What Is a UHPLC Capable of? 2
- 1.3 What Is Required from an HPLC Method? 3
- 1.3.1 Separate Well 3
- 1.3.2 Separate Fast 12
- 1.3.3 Improve Mass Sensitivity 13
- 1.3.4 Robust Separations in Routine Use 15
- 1.4 The UHPLC in Routine Use A Brief Report *17*
- 1.5 How Can the Potential of UHPLC Effectively Be Fully Exploited? (See Also Chapters 2, 3, and 9) 20
- 1.5.1 Dead Volumes 20
- 1.6 Summary and Outlook 22
- 1.6.1 Outlook 24 References 25

Part I Hardware and Software, Separation Modes, Materials 27

2 The Modern HPLC/UHPLC Device 29

- 2.1 The Modern HPLC/UHPLC System 29 Steffen Wiese and Terence Hetzel
- 2.1.1 Today's Demands on the Individual Modules 29
- 2.1.1.1 Overview 29
- 2.1.2 UHPLC Pump Technology 30
- 2.1.2.1 High- and Low-Pressure Pumps 30
- 2.1.2.2 Gradient Delay Volume 34

vi Contents

- 2.1.3 Autosampler 35
- 2.1.3.1 Fixed-Loop Autosamplers 36
- 2.1.3.2 Flow-Through Autosamplers 38
- 2.1.3.3 Review of the Advantages and Disadvantages of Fixed-Loop and Flow-Through Autosamplers 40
- 2.1.4 Column Oven 41
- 2.1.5 Detectors 44
- 2.1.6 Capillaries and Fittings 47 Acknowledgment 50 References 50
- 2.2 The Thermostate of Columns A Minor Matter 52 Michael Heidorn and Frank Steiner
- 2.2.1 Thermal Modes of Column Thermostats 54
- 2.2.2 Temperature Differences between Column and Mobile Phase 57
- 2.2.3 Frictional Heat Just a Phenomenon in UHPLC? 62
- 2.2.4 Thermostatic Control in Method Transfer, Method Speed-Up, and Method Development 68 Literature 71

3 The Issue of External Band Broadening in HPLC/UHPLC Devices 73

Monika Dittmann

- 3.1 Introduction 73
- 3.2 Theoretical Background 74
- 3.2.1 Efficiency and Resolution of Modern UHPLC Columns 74
- 3.2.2 Estimation of Column Peak Volumes 76
- 3.3 Extracolumn Dispersion in (U)HPLC Systems 78
- 3.3.1 Sources of External Band Broadening in HPLC/UHPLC Systems 78
- 3.3.1.1 Injection Systems 79
- 3.3.1.2 Tubing 80
- 3.3.1.3 Fittings and Connections 83
- 3.3.1.4 Heat Exchangers 84
- 3.3.1.5 Detection 85
- 3.3.2 Determination of External Band Broadening 88
- 3.3.2.1 Analysis of Extracolumn Volume without Column (Short Circuit Method) 88
- 3.3.2.2 Analysis of Extracolumn Volume Including a Column 89
- 3.4 Impact of External Contributions in Different Application Areas 90
- 3.4.1 Impact on Isocratic Separations 90
- 3.4.2 Impact on Gradient Separations 92
- 3.5 Optimization of HPLC/UHPLC Systems 94
- 3.5.1 Testing of Column Performance 95
- 3.5.2 Other Isocratic Separations 95
- 3.5.3 High-Resolution Gradient Separations 96
- 3.5.4 Fast Gradient Separations 96
- 3.6 Conclusions 97 References 98

4	The Gradient; Requirements, Optimal Use, Hints, and		
	Pitfalls 101		
	Frank Steiner		
4.1	Instrumental Influences in Gradient Elution – An Overview 101		
4.1.1	The Gradient Delay Effect and the Gradient Dwell Volume of a System <i>101</i>		
4.1.2	The Role and Function of the Gradient Mixer 103		
4.1.3	Deviations from Ideal Behavior of Gradient Generation Resulting from Fundamental Physicochemical Phenomena 106		
4.1.4	Instrumental Influences on Gradient Elution Outside the Pump 112		
4.1.5	The Stress and Wear on Columns in Gradient Methods 115		
4.2	Gradient Elution Technology and How to Systematically Characterize Gradient Instrumentation 117		
4.2.1	Physicochemical Effects of High Pressure on Liquids 117		
4.2.2	The Need of Solvent Degassing 120		
4.2.3	The Different Types of Pump Technology (Serial, Parallel, Cam Drive, Linear Drive) and Their Specific Properties and Requirements 122		
4.2.4	The Specific Gradient Pump Type and Its Implications for Practical Operation 125		
4.2.5	HPG Pumps and How Discontinuous Pump Cycles Resulting from Pressure Pulsation Impact Retention Time Precision in Practice 127		
4.2.6	LPG Pumps and How Their Immanent Discontinuous Generation of Gradient Composition May Impact Retention Time Precision in Practice 132		
4.2.7	Thermal Effects in Gradient Pumps and How Intelligent Instrument Control Can Minimize the Consequences on Chromatography 134		
4.2.8	Ultrafast Methods with Very Steep or Ballistic Gradients 137		
4.2.9	Fundamental Considerations on the Determination of a Gradient Delay Volume 143		
4.2.10	The Marker Pulse Method as a Quick Way for GDV Determination <i>145</i>		
4.2.11	The Dolan Test as the Classical Method for GDV Optimization 148		
4.2.12	Designs of Mixers and Their Effectiveness Relative to Their GDV Contribution 150		
4.2.13	Systematic Characterization of the Mixing Efficiency and Gradient Formation of a Pump 155		
4.2.14	Optimizing the Mixing Volume in Dependence of Pump Type and Flow Rate for Demanding Applications Such as TFA Gradients 162		
4.2.15	Exceptional Elution Behavior of Proteins with Mobile-Phase Mixing Ripples 168 References 169		
5	Requirements of LC-Hardware for the Coupling of Different		
	Mass Spectrometers 171		
	Terence Hetzel, Thorsten Teutenberg, Christoph Portner, and Jochen Tuerk		
5.1	Introduction 171		
5.2	From Target Analysis to Screening Approaches 171		

- 5.2.1 Target Analysis 171
- 5.2.2 Suspected-Target Screening 172
- 5.2.3 Nontarget Screening 172
- 5.3 What Should Be Considered for UHPLC/MS Hyphenation? 173
- 5.3.1 The Interface and the Optimum Flow Rate 173
- 5.3.2 Optimization of MS Parameters *174*
- 5.3.3 Optimization of the Chromatographic Parameters *174*
- 5.3.4 Choice of the Suitable Column and Column Dimension 176
- 5.4 Target Analysis Using Triple-Quadrupole Mass Spectrometry *178*
- 5.5 Screening Approaches Using LC-MS *185*
- 5.6 Miniaturization LC-MS Quo Vadis? *189* References *192*
- 6 2D chromatography Opportunities and limitations 193 Thorsten Teutenberg and Juri Leonhardt
- 6.1 Introduction 193
- 6.2 Why Two-Dimensional HPLC? 193
- 6.3 Peak Capacity of One- and Two-Dimensional Liquid Chromatography *195*
- 6.3.1 Peak Capacity of One-Dimensional Liquid Chromatography 195
- 6.3.2 Peak Capacity of Two-Dimensional Liquid Chromatography 196
- 6.3.2.1 Heart-Cut 2D LC (LC-LC) 196
- 6.3.2.2 Comprehensive 2D LC (LC × LC) 197
- 6.4 Modulation 200
- 6.4.1 Online Heart-Cut 2D LC 200
- 6.4.2 Comprehensive Online 2D LC 200
- 6.4.3 Stop-Flow and Offline LC × LC 202
- 6.5 Practical Problems of Online $LC \times LC$ 203
- 6.5.1 Compatibility of the Solvent Systems 203
- 6.5.2 Dilution 203
- 6.5.3 High Flow Rate 203
- 6.5.4 Compatibility with Mass Spectrometry 203
- 6.6 Development of a Miniaturized LC × LC System 204
- 6.6.1 Technical Platform 204
- 6.6.2 Selection of the Stationary Phase 204
- 6.6.3 Selection of the Mobile Phase and Temperature 205
- 6.6.4 Column Dimension and Modulation 205
- 6.6.5 Gradient Programming and Overall Analysis Time 206
- 6.6.6 Coupling with Mass Spectrometry 206
- 6.7 Real Applications 207
- 6.7.1 Measurement of a Reference Standard 207
- 6.7.2 Measurement of a Real Sample 209
- 6.8 Advantages of the MS/MS Functionality 211
- 6.9 General Comments to Specific Aspects of an LC × LC System 211

- 6.9.1 Offline LC \times LC versus Online LC \times LC 211
- 6.9.2 Stop-Flow LC × LC 214
- 6.9.3 Multiple Heart-Cut LC-LC and Selected LC \times LC (sLC \times LC) 214
- 6.10 Method Development and Gradient Programming 215
- 6.11 Presentations of the Instrument Manufacturers (in Alphabetical Order) 215
- 6.11.1 Commercially Available Solutions for LC × LC 216
- 6.11.1.1 Agilent 216
- 6.11.1.2 Shimadzu 216
- 6.11.1.3 Thermo/Dionex 216
- 6.11.2 Further Systems 216
- 6.11.2.1 Sciex 216
- 6.11.2.2 Waters 216
- 6.12 2D LC Quo Vadis? 217
- 6.12.1 Software 217
- 6.12.2 System Setup 217
- 6.12.3 Peak versus Peak Capacity 218 References 219
- 7 Materials in HPLC and UHPLC What to Use for Which Purpose 223
 - Tobias Fehrenbach and Steffen Wiese
- 7.1 Introduction 223
- 7.2 Requirements for Materials in UHPLC 225
- 7.2.1 Mechanical Stability 225
- 7.2.2 Chemical Stability 225
- 7.2.3 Analyte Compatibility/Biocompatibility 226
- 7.3 Flow Paths in UHPLC Systems 227
- 7.3.1 Low-Pressure and High-Pressure Flow Path 227
- 7.3.2 Mobile-Phase and Sample Flow Path 228
- 7.4 Low-Pressure Flow Path 229
- 7.5 High-Pressure Flow Path 231
- 7.5.1 Pumps 231
- 7.5.1.1 Inlet and Outlet Valves 231
- 7.5.1.2 Pump Head 233
- 7.5.1.3 Pump Pistons and Piston Seals 236
- 7.5.1.4 Practical Aspects 237
- 7.5.2 Autosamplers 238
- 7.5.2.1 Materials 238
- 7.5.2.2 Sample Needles, Sample Vials, and Closures 238
- 7.5.2.3 Injection Valves 239
- 7.5.2.4 Practical Aspects 241
- 7.5.3 Tubing and Fitting Systems 242
- 7.5.3.1 Outline 242
- 7.5.3.2 Materials 243

x Contents

7.5.3.3 7.5.3.4	Tubing 244 Fitting Systems 246			
7.6	When and Why Can an Inert UHPLC System Be Required? 248			
7.6.1	Concept of Inertness 248			
7.6.1.1	General Inertness 248			
7.6.1.2	Analyte-Specific Inertness 249			
7.6.2	Nature of the Passive Layer 249			
7.6.2.1	Passive Layers of Chromium Alloys 251			
7.6.2.2	Passive Layers of Titanium Alloys 252			
7.6.3	Requirements and Interactions 253			
7.6.3.1	Mechanical and Physical Integrity of the UHPLC System 253			
7.6.3.2	Requirement of the Detection Method 254			
7.6.3.3	Interaction of Analyte and UHPLC System 254			
7.6.4	Passivation Strategies and Methods 258			
	References 261			

Experience Reports, Trends 269 What a Software has to Possess in Order to Use the Hardware

Optimally 271

Arno Simon

- 8.1 Functionality and Handling 271
- 8.1.1 Integration 272

Part II

8

- 8.1.2 Instrument Control 273
- 8.1.3 Useability 274
- Ease of Use 274 8.1.4
- 8.1.5 User Interface 275
- 8.1.6 Multilingual 276
- 8.2 Data Exchange 277
- 8.2.1 Import and Export of Data 278
- 8.3 From PCs Scalability to Global Installation 278
- Software Placement 278 8.3.1

9	Aspects of the Modern HPLC Device – Experience Report of an		
	Operator	281	

- Steffen Wiese and Terence Hetzel
- 9.1 Introduction 281
- Determination of the Gradient Delay Volume 281 9.2
- 9.3 High-Throughput Separations 285
- 9.4 Method Transfer between UHPLC Systems of Different Manufacturers 287
- 9.5 Application of Elevated Temperatures 290
- Large-Volume Injection (LVI) 293 9.6
- 9.7 UHPLC Separation with 1 mm ID Columns 296 Acknowledgment 299 References 299

Contents xi

- 10 Experiences of an Independent Service Engineer Hints and Recommendations for an Optimal Operation of Agilent and Waters-Devices 301 Siegfried Chroustovsky
- 10.1 Introduction 301
- 10.2 The Degasser, Principles *301*
- 10.2.1 Different Manufacturers, Different Concepts 302
- 10.3 The Pump, Principles *303*
- 10.3.1 Different Manufacturers, Different Concepts 305
- 10.4 The Autosampler, Principles 306
- 10.4.1 Different Manufacturers, Different Concepts 307
- 10.5 The UV Detector, Principles 308
- 10.5.1 Different Manufacturers, Different Concepts 309
- 11 The Analyte, the Question, and the UHPLC The Use of UHPLC in Practice 311 Stefan Lamotte
- 11.1 Introduction 311
- 11.2 When Does It Make Sense to Use UHPLC and When Should I Better Use Conventional HPLC? *311*
- 11.3 Dissolution Tests in Pharmaceutical Industry 313
- 11.4 Method Development and Optimization *314*11.5 Typical "Classical" Liquid Chromatographic
 - Analysis 314
- 11.6 Fast (Most Second) Dimension of Multidimensional Chromatography *315*
- 11.7 Separation of (Bio)polymers 316
- 11.8 Process Analysis (PAT) 316
- 11.9 Conclusion 316 References 316
- 12 Report of Device Manufacturers Article by Agilent, Shimadzu, and ThermoScientific 319
- 12.1 Agilent Technologies 319 Jens Trafkowski References 328
- 12.2 HPLC Current Status and Future Development 328 Björn-Thoralf Erxleben
- 12.3 Thermo Fisher Scientific, Germering 334 Frank Steiner
- 12.3.1 Total System Requirements and Related Key Experiences 334
- 12.3.1.1 NanoLC 335
- 12.3.1.2 HPLC and UHPLC on Two Instrumental Platforms (UltiMate 3000, Vanquish) 336
- 12.3.1.3 Viper-Based System Tubing 338
- 12.3.2 The Contribution of the Individual Components to the Success of a System 338

xii Contents

- 12.3.2.1 The Flow Delivery Device Much More Than a High Pressure Pump 339
- 12.3.2.2 The Injector and Liquid Handling Devices for Robust and Ultra-Precise Sample Dosage Even in High-Throughput Workflows 340
- 12.3.2.3 New Ways of Column Thermostatting to Combine Highest UHPLC Column Efficiency and Best Method Transfer Capabilities 342
- 12.3.2.4 How to Detect Fast and Ultraefficient UHPLC Separations 344
- 2D-LC and Alternative Ways to Increase Productivity for Analyzing 12.3.3 Complex Samples – and Outlook to Changing Paradigms 346

About the Authors 349

Index 355