Contents

Oxide Films and Conduction AFM xi List of Contributors xv

- 1 History and Status of the CAFM 1 Chengbin Pan, Yuanyuan Shi, Fei Hui, Enric Grustan-Gutierrez, and Mario Lanza
- 1.1 The Atomic Force Microscope *1*
- 1.2 The Conductive Atomic Force Microscope 4
- 1.3 History and Status of the CAFM 9
- 1.4 Editor's Choice: On the Use of CAFM to Study Nanogenerators Based on Nanowires *16*

|v

1.5 Conclusions 20 References 20

2 Fabrication and Reliability of Conductive AFM Probes 29

Oliver Krause

- 2.1 Introduction 29
- 2.2 Manufacturing of Conductive AFM Probes 30
- 2.2.1 Thin Film Cantilever 30
- 2.2.2 Corner Tips 30
- 2.2.3 Etched Silicon Probes 31
- 2.2.4 Coating of Probes 32
- 2.2.5 Conductive Thin Film Probes 34
- 2.2.6 Material Conversion 35
- 2.3 How to Choose Your C-AFM Tip 36
- 2.3.1 Cantilever Choice 36
- 2.3.2 Tip Material Choice 36
- 2.3.3 Resolution of C-AFM Tips 37
- 2.4 Tip Wear and Sample Damage: Applicable Forces and Currents in C-AFM *38*
- 2.4.1 Tip Wear: Mechanical Wear Varying Forces 38
- 2.4.2 Tip Wear: Mechanical Wear Different Materials 39
- 2.4.3 Tip Wear: Electrical Wear 39
- 2.4.4 Tip Damage by Excess Voltage/High Currents 40
- 2.4.5 Damaging the Sample Surface 42

vi Contents

- 2.5 Conclusions 43 References 43
- 3 Fundamentals of CAFM Operation Modes 45
 - Guenther Benstetter, Alexander Hofer, Donping Liu, Werner Frammelsberger, and Mario Lanza
- 3.1 Introduction 45
- 3.2 Tip-Sample Interaction: Contact Area, Effective Emission Area, and Conduction Mechanisms 47
- CAFM Tip on Metallic Surfaces 49 3.2.1
- 3.2.2 CAFM Tip on Semiconducting Surfaces 50
- 3.2.3 CAFM Tip on Insulating Surfaces 52
- Work Function Difference and Offset Voltage 56 3.3
- 3.4 Operation Modes 60
- 3.4.1 Contact Mode 61
- 3.4.2 PeakForce Mode 62
- 3.4.3 Torsional Resonance Mode 63
- 3.5 Case Studies 64
- 3.5.1 Defects in SiC after Plasma Exposure in Fusion Reactors 64
- Electrical Conductivity of Dislocations in GaN 67 3.5.2
- 3.5.3 Microstructure and Local Electrical Conductivity of Laser-Sintered Nanoparticles 69
- 3.6 Conclusion and Future Perspectives 70 Acknowledgment 70 References 71
- 4 Investigation of High-k Dielectric Stacks by C-AFM: Advantages, Limitations, and Possible Applications 79 Mathias Rommel and Albena Paskaleva
- 4.1Introduction 79
- 4.2 Comparison Between Macroscopic I-V Measurements and C-AFM 81
- 4.3 Influence of Displacement Currents on the Sensitivity of C-AFM Measurements 85
- Applications of C-AFM 89 4.4
- 4.4.1Morphology of Thin Dielectric Films 89
- 4.4.2 Assessment of the Interfacial SiO₂ Thickness 94
- Trapping Phenomena and Degradation Mechanism in High-k 4.4.3 Dielectric Stacks 98
- 4.4.4 Reliability of High-k Dielectric Films 104
- 4.4.4.1Gate Oxide Reliability at the Nanoscale 104
- 4.4.4.2 In-Depth Analysis of Bimodal TDDB Distributions 109
- Conclusion 112 4.5 References 113

_	
5	Characterization of Grain Boundaries in Polycrystalline HfO ₂
	Dielectrics 119 Chathadara Kaba Cara Jacanta O'Chara an dVia Jacana Dav
F 1	Shubhakar Kalya, Sean Joseph O'Snea, and Kin Leong Pey
5.1	Introduction 119
5.2	Experimental Details and Sample Specifications 120
5.3	Formation of Grain Boundaries and its Local Electrical Properties in HfO_2 Dielectric 120
5.4	RVS and CVS Stressing of HfO_2/SiO_x Dielectric Stack 124
5.5	Uniform Stressing with Successive Scanning in CAFM Mode 126
5.6	Conclusions 130
	References 130
6	CAFM Studies on Individual GeSi Quantum Dots and Quantum
	Rings 133
	Rong Wu, Shengli Zhang, Yi Lv, Fei Xue, Yifei Zhang, and Xinju Yang
6.1	Introduction 133
6.2	Conductive Properties of Individual GeSi QDs and QRs 134
6.2.1	Conductive Property Studies on Individual GeSi QDs 135
6.2.1.1	Growth Temperature Dependence 135
6.2.1.2	Electrical Property Changing with the Capping of Si Layer 137
6.2.2	The Conductive Mechanism of GeSi QRs 140
6.3	Modulating the Conductive Properties of GeSi QDs 144
6.3.1	Oxidation and Normal Force 144
6.3.2	Bias Voltage 146
6.3.3	Inter-Dot Coupling 149
6.4	Simultaneous Measurements of Composition and Current
	Distributions of GeSi QRs 152
6.5	Conclusions 157
	References 157
7	Conductive Atomic Force Microscopy of Two-Dimensional
	Electron Systems: From AlGaN/GaN Heterostructures to
	Graphene and MoS ₂ 163
	Filippo Giannazzo, Gabriele Fisichella, Giuseppe Greco, Patrick Fiorenza,
	and Fabrizio Roccaforte
7.1	Introduction 163
7.2	Nanoscale Electrical Characterization of AlGaN/GaN
	Heterostructures 164
7.2.1	Contacts to AlGaN/GaN Heterostructures 165
7.2.2	Electrical Nanocharacterization of AlGaN Surface Passivated by a
	Rapid Thermal Oxidation 168
7.2.3	CAFM on Dielectrics for Gate Insulated AlGaN/GaN Transistors 169
7.3	CAFM Characterization of Graphene and MoS_2 171
7.3.1	Local Electrical Properties of Graphene 2DEG 173

viii	Contents

7.3.2	Nanoscale Inhomogeneity of the Schottky Barrier and Resistivity
7.3.3	Graphene Contacts to AlGaN/GaN Heterostructures 178
7.4	Conclusions 181
	Acknowledgments 182
	References 182
8	Nanoscale Three-Dimensional Characterization with Scalpel
	SPM 187
	Umberto Celano and Wilfried Vandervorst
8.1	Introduction 187
8.2	SPM Metrology with Depth Information 188
8.3	Scalpel SPM: A Tip-Based Slice-and-View Methodology 190
8.3.1	General Description 190
8.3.2	Practical Implementation 193
8.4	Applications 196
8.4.1	Scalpel SPM for 3D Observation of Conductive Filaments in Resistive Memories 196
8.4.2	Mechanisms for Filament Growth 200
8.4.3	Chemical Nature of the Filament 202
8.4.4	Scalpel SPM for Failure Analysis 203
8.5	Conclusions and Outlook 206
	References 207
9	Conductive Atomic Force Microscopy for Nanolithography
	Based on Local Anodic Oxidation 211
	Matteo Lorenzoni and Francesc Pérez-Murano
9.1	Introduction to AFM Nanolithography 211
9.2	Local Anodic Oxidation 212
9.3	Kinetics of LAO 214
9.4	Measurement of Electrical Current During LAO 217
9.5	Conclusions 219
	Acknowledgments 219
	References 220
10	Combination of Semiconductor Parameter Analyzer and
	Conductive Atomic Force Microscope for Advanced
	Nanoelectronic Characterization 225
	Vanessa lalesias. Xu Jina. and Mario Lanza
10.1	Introduction 225
10.2	Combination of SPA and CAFM for Local Channel Hot Carrier
	Degradation Analysis 227
10.3	Combination of CAFM and SPA for Resistive Switching Analyses 230
10.3.1	Device-Level Stress with SPA Followed by CAFM
	Characterization 230

- 10.4 Conclusions 237 References 238
- 11 Design and Fabrication of a Logarithmic Amplifier for Scanning Probe Microscopes to Allow Wide-Range Current Measurements 243 Lidia Aauilera and Joan Grifoll-Soriano
- 11.1 Introduction 243
- 11.2 Fabrication of a Logarithmic Preamplifier for CAFMS 244
- 11.2.1 Design 244
- Fabrication and Testing 249 11.2.2
- 11.2.2.1 Printed Circuit Board 249
- 11.2.2.2 Cleaning 250
- 11.2.2.3 Decoupling 250
- 11.2.2.4 Input and Output Isolation 251
- 11.2.2.5 Unexpected Passive Components in the PCB 251
- Implementation in a CAFM and Case Study 255 11.2.3
- 11.3 Conclusions 260 References 261
- 12 Enhanced Current Dynamic Range Using ResiScope[™] and Soft-ResiScope AFM Modes 263 Louis Pacheco and Nicolas F. Martinez
 - Introduction 263
- 12.1 12.2 Conductive AFM 264
- 12.3 ResiScope[™] Mode 267
- Soft-ResiScope Mode 271 12.4
- 12.5 Conclusions 275 References 275
- **Multiprobe Electrical Measurements without Optical** 13 Interference 277 David Lewis, Andrey Ignatov, Sasha Krol, Rimma Dekhter, and Alina Strinkovsky
- Introduction 277 13.1
- 13.2 The Multiprobe Platform: Design and Key Features 279
- 13.2.1 The Scanner 279
- The Probes 281 13.2.2
- 13.2.3 Feedback of Multiprobe Systems 282
- 13.3 The Present and the Future 284
- 13.3.1 AFM Multiprobe Application 284
- Optical Multiprobe Operation 285 13.3.2
- 13.3.3 Thermal Measurements 285
- NanoElectrical Transport Measurements 287 13.3.4
- 13.3.5 New Horizons in Multiprobe Measurements 291
- 13.4 Conclusions 292 References 293

x Contents

14	KPFM and its Use to Characterize the CPD in Different	
	Materials 297	
	Yijun Xia and Bo Song	

- 14.1 Introduction 297
- 14.2 Kelvin Probe Force Microscopy 297
- 14.2.1 Basic Principle of Kelvin Probe Force Microscopy 297
- 14.2.2 KPFM Operational Modes: AM- and FM-Mode 299
- 14.2.3 KPFM Measurement, at Ambient or UHV Conditions 300
- 14.3 Applications of KPFM 301
- 14.3.1 KPFM on Conventional Inorganic Materials 301
- 14.3.1.1 Metallic Nanostructures 301
- 14.3.1.2 Semiconductor Surfaces 302
- 14.3.2 KPFM on Organic Adsorbates on Surfaces 304
- 14.3.3 Characterization of the Electrical Properties of Nanoscaled Devices *305*
- 14.3.3.1 Junctions and Heterostructrues 305
- 14.3.3.2 Transistors 307
- 14.3.3.3 Solar Cells 308
- 14.4 Conclusion and Outlook 311Acknowledgment 312References 312

15 Hot Electron Nanoscopy and Spectroscopy (HENs) 319

Andrea Giugni, Bruno Torre, Marco Allione, Gerardo Perozziello, Patrizio Candeloro, and Enzo Di Fabrizio

- 15.1 Introduction 319
- 15.2 Coupling Schemes 321
- 15.3 Plasmonic Device and Optical Characterization 326
- 15.4 Theoretical Section 327
- 15.4.1 Semiclassical Considerations 329
- 15.4.2 Quantum Mechanical Considerations 333
- 15.4.3 Quantum Confinement 334
- 15.5 HENs Measurements: Plasmon-Assisted Current Maps and Ultimate Spatial Resolution 335
- 15.5.1 Hot Electron Mapping 336
- 15.5.2 Hot Electron Resolution Limit 338
- 15.6 Kelvin Probe, HENs, and Electrical Techniques 340
- 15.6.1 SKPM Theoretical Frame: a Short Introduction 340
- 15.6.2 HENs 344
- 15.6.2.1 Spatial Resolution 344
- 15.6.2.2 Sensitivity and Specificity 344
- 15.7 Fast Pulses in Adiabatic Compression for Hot Electron Generation *347*
- 15.8 Conclusion 348 Acknowledgments 349 References 349

Index 355