Contents

Preface *xiii* List of Contributors *xv*

Part I Introduction 1

1Introduction to Reactive Extrusion3Christian Hopmann, Maximilian Adamy, and Andreas Cohnen
References9

Part II Introduction to Twin-Screw Extruder for Reactive Extrusion 11

v |

- 2 The Co-rotating Twin-Screw Extruder for Reactive Extrusion 13 Frank Lechner
- 2.1 Introduction 13
- 2.2 Development and Key Figures of the Co-rotating Twin-Screw Extruder *14*
- 2.3 Screw Elements 16
- 2.4 Co-rotating Twin-Screw Extruder Unit Operations 22
- 2.4.1 Feeding 23
- 2.4.2 Upstream Feeding 23
- 2.4.3 Downstream Feeding 24
- 2.4.4 Melting Mechanisms 24
- 2.4.5 Thermal Energy Transfer 24
- 2.4.6 Mechanical Energy Transfer 25
- 2.4.7 Mixing Mechanisms 25
- 2.4.8 Devolatilization/Degassing 25
- 2.4.9 Discharge 26
- 2.5 Suitability of Twin-Screw Extruders for Chemical Reactions 26
- 2.6 Processing of TPE-V 27
- 2.7 Polymerization of Thermoplastic Polyurethane (TPU) 29

vi Contents

- 2.8 Grafting of Maleic Anhydride on Polyolefines 31
- 2.9 Partial Glycolysis of PET 32
- 2.10 Peroxide Break-Down of Polypropylene 33
- 2.11 Summary 35
 - References 35

Part III Simulation and Modeling 37

- 3 Modeling of Twin Screw Reactive Extrusion: Challenges and Applications 39
 - Françoise Berzin and Bruno Vergnes
- 3.1 Introduction 39
- 3.1.1 Presentation of the Reactive Extrusion Process 39
- 3.1.2 Examples of Industrial Applications 40
- 3.1.3 Interest of Reactive Extrusion Process Modeling 41
- 3.2 Principles and Challenges of the Modeling 41
- 3.2.1 Twin Screw Flow Module 42
- 3.2.2 Kinetic Equations 44
- 3.2.3 Rheokinetic Model 44
- 3.2.4 Coupling 45
- 3.2.5 Open Problems and Remaining Challenges 45
- 3.3 Examples of Modeling 46
- 3.3.1 Esterification of EVA Copolymer 46
- 3.3.2 Controlled Degradation of Polypropylene 50
- 3.3.3 Polymerization of ε -Caprolactone 55
- 3.3.4 Starch Cationization 59
- 3.3.5 Optimization and Scale-up 61
- 3.4 Conclusion 65 References 66
- 4 Measurement and Modeling of Local Residence Time Distributions in a Twin-Screw Extruder 71

Xian-Ming Zhang, Lian-Fang Feng, and Guo-Hua Hu

- 4.1 Introduction 71
- 4.2 Measurement of the Global and Local RTD 72
- 4.2.1 Theory of RTD 72
- 4.2.2 In-line RTD Measuring System 73
- 4.2.3 Extruder and Screw Configurations 75
- 4.2.4 Performance of the In-line RTD Measuring System 76
- 4.2.5 Effects of Screw Speed and Feed Rate on RTD 77
- 4.2.6 Assessment of the Local RTD in the Kneading Disk Zone 79
- 4.3 Residence Time, Residence Revolution, and Residence Volume Distributions *81*
- 4.3.1 Partial RTD, RRD, and RVD 82
- 4.3.2 Local RTD, RRD, and RVD 86

- 4.4 Modeling of Local Residence Time Distributions 88
- 4.4.1 Kinematic Modeling of Distributive Mixing 88
- 4.4.2 Numerical Simulation 89
- 4.4.3 Experimental Validation 92
- 4.4.4 Distributive Mixing Performance and Efficiency 93
- 4.5 Summary 97 References 98
- 5 In-process Measurements for Reactive Extrusion Monitoring and Control 101 José A. Covas

5.1 Introduction 101

- 5.2 Requirements of In-process Monitoring of Reactive Extrusion *103*
- 5.3 In-process Optical Spectroscopy 111
- 5.4 In-process Rheometry 116
- 5.5 Conclusions 125 Acknowledgment 126

References 126

Part IV Synthesis Concepts 133

6 Exchange Reaction Mechanisms in the Reactive Extrusion of Condensation Polymers 135 Concetto Puglisi and Filippo Samperi

- 6.1 Introduction 135
- 6.2 Interchange Reaction in Polyester/Polyester Blends 138
- 6.3 Interchange Reaction in Polycarbonate/Polyester Blends 143
- 6.4 Interchange Reaction in Polyester/Polyamide Blends 148
- 6.5 Interchange Reaction in Polycarbonate/Polyamide Blends 155
- 6.6 Interchange Reaction in Polyamide/Polyamide Blends 159
- 6.7 Conclusions 166
 - References 167

7 *In situ* Synthesis of Inorganic and/or Organic Phases in Thermoplastic Polymers by Reactive Extrusion 179

Véronique Bounor-Legaré, Françoise Fenouillot, and Philippe Cassagnau

- 7.1 Introduction 179
- 7.2 Nanocomposites 179
- 7.2.1 Synthesis of *in situ* Nanocomposites 181
- 7.2.2 Some Specific Applications 183
- 7.2.2.1 Antibacterial Properties of PP/TiO₂ Nanocomposites 183
- 7.2.2.2 Flame-Retardant Properties 184
- 7.2.2.3 Protonic Conductivity 186
- 7.3 Polymerization of a Thermoplastic Minor Phase: Toward Blend Nanostructuration *188*

7.4 7.4.1 7.4.2	Polymerization of a Thermoset Minor Phase Under Shear 196 Thermoplastic Polymer/Epoxy-Amine Miscible Blends 197 Examples of Stabilization of Thermoplastic Polymer/Epoxy-Amine Blends 202
7.4.3	Blends of Thermoplastic Polymer with Monomers Crosslinking via Radical Polymerization 202
7.5	Conclusion 203 References 204
8	Concept of (Reactive) Compatibilizer-Tracer for Emulsification
	Curve Build-up, Compatibilizer Selection, and Process
	Optimization of Immiscible Polymer Blends 209
	Cai-Liang Zhang, Wei-Yun Ji, Lian-Fang Feng, and Guo-Hua Hu
8.1	Introduction 209
8.2	Emulsification Curves of Immiscible Polymer Blends in a Batch
	Mixer 210
8.3	Emulsification Curves of Immiscible Polymer Blends in a Twin-Screw
	Extruder Using the Concept of (Reactive) Compatibilizer 213
8.3.1	Synthesis of (Reactive) Compatibilizer-Tracers 213
8.3.2	Development of an In-line Fluorescence Measuring Device 214
8.3.3	Experimental Procedure for Emulsification Curve Build-up 216
8.3.4	Compatibilizer Selection Using the Concept of
0.25	Compatibilizer-Tracer 219
8.3.5	Process Optimization Using the Concept of
0 2 5 1	Compatibilizer-Tracer 220
8.3.5.1 8.3.5.2	Effect of Screw Speed 220 Effects of the Type of Mixer 221
8.3.6	Effects of the Type of Mixer 221 Section Summary 221
8.3.0 8.4	Emulsification Curves of Reactive Immiscible Polymer Blends in a
	Twin-Screw Exturder 222
8.4.1	Reaction Kinetics between Reactive Functional Groups 222
8.4.2	(Non-reactive) Compatibilizers Versus Reactive Compatibilizers 223
8.4.3	An Example of Reactive Compatibilizer-Tracer 224
8.4.4	Assessment of the Morphology Development of Reactive Immiscible
.	Polymer Blends Using the Concept of Reactive Compatibilizer 225
8.4.5	Emulsification Curve Build-up in a Twin-Screw Extruder Using the
0.4.6	Concept of Reactive Compatibilizer-Tracer 229
8.4.6	Assessment of the Effects of Processing Parameters Using the Concept of Reactive Compatibilizer-Tracer 233
8.4.6.1	Effect of the Reactive Compatibilizer-Tracer Injection Location 233
8.4.6.2	Effect of the Blend Composition 235
8.4.6.3	Effect of the Geometry of Screw Elements 238
8.5	Conclusion 241
	References 241

Part V Selected Examples of Synthesis 245

- 9 Nano-structuring of Polymer Blends by *in situ* Polymerization and *in situ* Compatibilization Processes 247
 - Cai-Liang Zhang, Lian-Fang Feng, and Guo-Hua Hu
- 9.1 Introduction 247
- 9.2 Morphology Development of Classical Immiscible Polymer Blending Processes 248
- 9.2.1 Solid–Liquid Transition Stage 249
- 9.2.2 Melt Flow Stage 251
- 9.2.3 Effect of Compatibilizer 253
- 9.3 *In situ* Polymerization and *in situ* Compatibilization of Polymer Blends 255
- 9.3.1 Principles 255
- 9.3.2 Classical Polymer Blending Versus *in situ* Polymerization and *in situ* Compatibilization 255
- 9.3.3 Examples of Nano-structured Polymer Blends by *in situ* Polymerization and *in situ* Compatibilization 257
- 9.3.3.1 PP/PA6 Nano-blends 257
- 9.3.3.2 PPO/PA6 Nano-blends 264
- 9.3.3.3 PA6/Core-Shell Blends 264
- 9.4 Summary 267 References 268
- 10 Reactive Comb Compatibilizers for Immiscible Polymer Blends 271

Yongjin Li, Wenyong Dong, and Hengti Wang

- 10.1 Introduction 271
- 10.2 Synthesis of Reactive Comb Polymers 272
- 10.3 Reactive Compatibilization of Immiscible Polymer Blends by Reactive Comb Polymers 274
- 10.3.1 PLLA/PVDF Blends Compatibilized by Reactive Comb Polymers 274
- 10.3.1.1 Comparison of the Compatibilization Efficiency of Reactive Linear and Reactive Comb Polymers 274
- 10.3.1.2 Effects of the Molecular Structures on the Compatibilization Efficiency of Reactive Comb Polymers 278
- 10.3.2 PLLA/ABS Blends Compatibilized by Reactive Comb Polymers 282
- 10.4 Immiscible Polymer Blends Compatiblized by Janus Nanomicelles 289
- 10.5 Conclusions and Further Remarks 293 References 293

x Contents

11	Reactive Compounding of Highly Filled Flame Retardant Wire
	and Cable Compounds 299
	Mario Neuenhaus and Andreas Niklaus
11.1	Introduction 299
11.2	Formulations and Ingredients 300
11.2.1	Typical Formulation and Variations for the Evaluation 300
11.2.2	Principle of Silane Crosslinking by Reactive Extrusion 301
11.2.3	Production of Aluminum Trihydroxide (ATH) 301
11.2.4	Mode of Action of Aluminum Trihydroxide 302
11.2.5	Selection of Suitable ATH Grades 303
11.3	Processing 306
11.3.1	Compounding Line 306
11.3.2	Compounding Process for Cross Linkable HFFR
	Products 308
11.3.2.1	Two-Step Compounding Process 308
11.3.2.2	One-Step Compounding Process 309
11.3.2.3	Advantages and Disadvantages of the Two Process Concepts
	(Two-Step vs One-Step) 313
11.4	Evaluation and Results on the Compound 314
11.4.1	Crosslinking Density 314
11.4.2	Mechanical Properties 315
11.4.3	Aging Performance 315
11.4.4	Fire Performance on Laboratory Scale 317
11.4.5	Results of the Non-Polar Compounds 318
11.5	Cable Trials 322
11.5.1	Fire Performance of Electrical Cables According
	to EN 50399 322
11.5.2	Burning Test on Experimental Cables According
	to EN 50399 323
11.6	Conclusions 328
	References 329
12	Thermoplastic Vulcanizates (TPVs) by the Dynamic
	Vulcanization of Miscible or Highly Compatible Plastic/Rubber
	Blends 331
	Yongjin Li and Yanchun Tang
12.1	Introduction 331
12.2	Morphological Development of TPVs from Immiscible Polymer
	Blends 333
12.3	TPVs from Miscible PVDF/ACM Blends 334
12.4	TPVs from Highly Compatible EVA/EVM Blends 338
12.5	Conclusions and Future Remarks 342
	References 342

Part VI Selected Examples of Processing 345

 13
 Reactive Extrusion of Polyamide 6 with Integrated Multiple

 Melt Degassing
 347

Christian Hopmann, Eike Klünker, Andreas Cohnen, and Maximilian Adamy

- 13.1 Introduction 347
- 13.2 Synthesis of Polyamide 6 347
- 13.2.1 Hydrolytic Polymerization of Polyamide 6 347
- 13.2.2 Anionic Polymerization of Polyamide 6 348
- 13.3 Review of Reactive Extrusion of Polyamide 6 in Twin-Screw Extruders 352
- 13.4 Recent Developments in Reactive Extrusion of Polyamide 6 in Twin-Screw Extruders 354
- 13.4.1 Reaction System and Experimental Setup 354
- 13.4.2 Influence of Number of Degassing Steps and Activator Content on Residual Monomer Content and Molecular Weight 356
- 13.4.3 Influence of Amount and Type of Entrainer on Residual Monomer Content and Molecular Weight 365
- 13.4.4 Influence of Polymer Throughput on Residual Monomer Content 367
- 13.5 Conclusion 368 References 369
- **14** Industrial Production and Use of Grafted Polyolefins 375 Inno Rapthel, Jochen Wilms, and Frederik Piestert
- 14.1 Grafted Polymers 375
- 14.2 Industrial Synthesis of Grafted Polymers 376
- 14.2.1 Melt Grafting Technology 377
- 14.2.2 Solid State Grafting Technology 378
- 14.3 Main Applications 380
- 14.3.1 Use as Coupling Agents 380
- 14.3.2 Grafted Polyolefins for Polymer Blending 392
- 14.3.2.1 Reactive Blending of Polyamides 392
- 14.3.3 Grafted TPE's for Overmolding Applications 400
- 14.4 Conclusion and Outlook 403 References 404

Index 407