Contents

Preface *xi*

- 1 Introduction 1 References 9
- 2 Color Appearance and Color Quality: Phenomena and Metrics *11*
- 2.1 Color Vision 11
- 2.2 Colorimetry 16
- 2.2.1 Color-Matching Functions and Tristimulus Values 17
- 2.2.2 Chromaticity Diagram 19
- 2.2.3 Interobserver Variability of Color Vision 20
- 2.2.4 Important Concepts Related to the Chromaticity Diagram 21

v

- 2.2.5 MacAdam Ellipses and the u' v' Chromaticity Diagram 24
- 2.3 Color Appearance, Color Cognition 26
- 2.3.1 Perceived Color Attributes 26
- 2.3.2 Viewing Conditions, Chromatic Adaptation, and Other Phenomena 28
- 2.3.3 Perceived Color Differences 29
- 2.3.4 Cognitive Color, Memory Color, and Semantic Interpretations 29
 2.4 The Subjective Impression of Color Quality and Its Different
- 2.4 The Subjective Impression of Color Quality and Its Different Aspects 31
- 2.5 Modeling of Color Appearance and Perceived Color Differences 35
- 2.5.1 CIELAB Color Space 36
- 2.5.2 The CIECAM02 Color Appearance Model 37
- 2.5.3 Brightness Models 41
- 2.5.3.1 The CIE Brightness Model 43
- 2.5.3.2 The Ware and Cowan Conversion Factor Formula (WCCF) 44
- 2.5.3.3 The Berman et al. Model 44
- 2.5.3.4 Fotios and Levermore's Brightness Model 45
- 2.5.3.5 Fairchild and Pirrotta's L^{**} Model of Chromatic Lightness 45
- 2.5.4 Modeling of Color Difference Perception in Color Spaces 45
- 2.5.4.1 CIELAB Color Difference 45
- 2.5.4.2 CAM02-UCS Uniform Color Space and Color Difference 46
- 2.6 Modeling of Color Quality 48

- vi Contents
 - 2.6.1 Color Fidelity Indices 49
 - 2.6.1.1 The CIE Color-Rendering Index 49
 - 2.6.1.2 The Color Fidelity Index of the CQS Method 52
 - 2.6.1.3 The Color Fidelity Index CRI2012 (nCRI) 53
 - 2.6.1.4 The Color Fidelity Index R_f of the IES Method (2015) 56
 - 2.6.1.5 RCRI 57
 - 2.6.1.6 Summary of the Deficiencies of Color Fidelity Metrics 57
 - 2.6.2 Color Preference Indices 57
 - 2.6.2.1 Judd's Flattery Index 57
 - 2.6.2.2 Gamut Area Index (GAI) in Combination with CIE R_a 58
 - 2.6.2.3 Thornton's Color Preference Index (CPI) 58
 - 2.6.2.4 Memory Color Rendition Index *R*_m or MCRI 58
 - 2.6.2.5 The Color Preference Indices of the CQS Method (Q_a , Q_p) 60
 - 2.6.3 Color Gamut Indices 61
 - 2.6.3.1 The Color Gamut Index of the CQS Method (Q_g) 62
 - 2.6.3.2 The Feeling of Contrast Index (FCI) 62
 - 2.6.3.3 Xu's Color-Rendering Capacity (CRC) 62
 - 2.6.3.4 Gamut Area Index (GAI) 62
 - 2.6.3.5 Fotios' Cone Surface Area (CSA) Index 62
 - 2.6.3.6 The Color Gamut Index R_g of the IES Method (2015) 62
 - 2.6.3.7 Deficiencies of Color Gamut Metrics 63
 - 2.6.4 Color Discrimination Indices 63
 - 2.7 Summary 64
 - References 65

3 The White Point of the Light Source 71

- 3.1 The Location of Unique White in the Chromaticity Diagram 74
- 3.2 Modeling *Unique White* in Terms of L M and L + M S Signals 77
- 3.3 Interobserver Variability of White Tone Perception 78
- 3.4 White Tone Preference 83
- 3.5 The White Tone's Perceived Brightness 85
- 3.6 Summary and Outlook 87
 - References 89
- 4 Object Colors Spectral Reflectance, Grouping of Colored Objects, and Color Gamut Aspects 91
- 4.1 Introduction: Aims and Research Questions 91
- 4.2 Spectral Reflectance of Flowers 94
- 4.3 Spectral Reflectance of Skin Tones 96
- 4.4 Spectral Reflectance of Art Paintings 97
- 4.5 The Leeds Database of Object Colors 98
- 4.6 State-of-the-Art Sets of Test Color Samples and Their Ability to Evaluate the Color Quality of Light Sources *100*
- 4.7 Principles of Color Grouping with Two Examples for Applications *114*
- 4.7.1 Method 1 Application of the Theory of Signal Processing in the Classical Approach *120*

- 4.7.2 Method 2 the Application of a Visual Color Model in the Classical Approach *121*
- 4.7.3 Method 3 the Application of Visual Color Models in the Modern Approach *121*
- 4.7.4 First Example of Color Grouping with a Specific Lighting System Applying Two Methods *122*
- 4.7.5 Second Example of Applying Method 3 by Using Modern Color Metrics *123*
- 4.8 Summary and Lessons Learnt for Lighting Practice 125 References 126
- 5 State of the Art of Color Quality Research and Light Source Technology: A Literature Review 129
- 5.1 General Aspects 129
- 5.2 Review of the State of the Art of Light Source Technology Regarding Color Quality *132*
- 5.3 Review of the State of the Art of Colored Object Aspects 141
- 5.4 Viewing Conditions in Color Research 142
- 5.5 Review of the State-of-the-Art Color Spaces and Color Difference Formulae 145
- 5.6 General Review of the State of the Art of Color Quality Metrics 154
- 5.7 Review of the Visual Experiments *160*
- 5.8 Review of the State-of-the-Art Analyses about the Correlation of Color Quality Metrics of Light Sources *161*
- 5.9 Review of the State-of-the-Art Analysis of the Prediction Potential and Correctness of Color Quality Metrics Verified by Visual Experiments 166 References 171
- 6 Correlations of Color Quality Metrics and a Two-Metrics Analysis 175
- 6.1 Introduction: Research Questions *175*
- 6.2 Correlation of Color Quality Metrics 177
- 6.2.1 Correlation of Color Metrics for the Warm White Light Sources *178*
- 6.2.2 Correlation of Color Quality Metrics for Cold White Light Sources 184
- 6.3 Color Preference and Naturalness Metrics as a Function of Two-Metrics Combinations *189*
- 6.3.1 Color Preference with the Constrained Linear Formula (Eq. (6.2)) 192
- 6.3.2 Color Preference with the Unconstrained Linear Formula (Eq. (6.3)) 194
- 6.3.3 Color Preference with the Quadratic Saturation and Linear Fidelity Formula (Eq. (6.4)) 195
- 6.4 Conclusions and Lessons Learnt for Lighting Practice 196 References 198

viii	Contents

7	Visual Color Quality Experiments at the Technische Universität
	Darmstadt 201
7.1	Motivation and Aim of the Visual Color Quality Experiments 201
7.2	Experiment on Chromatic and Achromatic Visual Clarity 204
7.2.1	Experimental Method 205
7.2.2	Analysis and Modeling of the Visual Clarity Dataset 208
7.3	Brightness Matching of Strongly Metameric White Light Sources 212
7.3.1	Experimental Method 213
7.3.2	Results of the Brightness-Matching Experiment 216
7.4	Correlated Color Temperature Preference for White Objects 218
7.4.1	Experimental Method 218
7.4.2	Results and Discussion 223
7.4.3	Modeling in Terms of LMS Cone Signals and Their
	Combinations 223
7.4.4	Summary 225
7.5	Color Temperature Preference of Illumination with Red, Blue, and
	Colorful Object Combinations 225
7.5.1	Experimental Method 226
7.5.2	Results and Discussion 230
7.5.3	Modeling in Terms of LMS Cone Signals and Their
	Combinations 230
7.5.4	Summary 233
7.6	Experiments on Color Preference, Naturalness, and Vividness in a Real
	Room 234
7.6.1	Experimental Method 234
7.6.2	Relationship among the Visual Interval Scale Variables Color
	Naturalness, Vividness, and Preference 238
7.6.3	Correlation of the Visual Assessments with Color Quality Indices 239
7.6.4	Combinations of Color Quality Indices and Their Semantic
	Interpretation for the Set of Five Light Sources 240
7.6.4.1	Prediction of Vividness 240
7.6.4.2	Prediction of Naturalness 241
7.6.4.3	Prediction of Color Preference 241
7.6.5	Cause Analysis in Terms of Chroma Shifts and Color Gamut
	Differences 243
7.6.6	Lessons Learnt from Section 7.6 246
7.7	Experiments on Color Preference, Naturalness, and Vividness in a
	One-Chamber Viewing Booth with Makeup Products 246
7.7.1	Experimental Method 247
7.7.2	Color Preference, Naturalness, and Vividness and Their
	Modeling 251
7.8	Food and Makeup Products: Comparison of Color Preference,
	Naturalness, and Vividness Results 256
7.8.1	Method of the Experiment with Food Products 257
7.8.2	Color Preference, Naturalness, and Vividness Assessments: Merging
	the Results of the Two Experiments (for Multicolored Food and
	Reddish and Skin-Tone Type Makeup Products) 258

- 7.8.3 Analysis and Modeling of the Merged Results of the Two Experiments 261
- 7.8.4 Effect of Object Oversaturation on Color Discrimination: a Computational Approach 265
- 7.9 Semantic Interpretation and Criterion Values of Color Quality Metrics 268
- 7.9.1 Semantic Interpretation and Criterion Values of Color Differences 268
- 7.9.1.1 Semantic Interpretation of Color Fidelity Indices 270
- 7.9.1.2 Color Discrimination 272
- 7.9.1.3 Criterion Values for White Tone Chromaticity for the Binning of White LEDs 273
- 7.9.2 Semantic Interpretation and Criterion Values for the Visual Attributes of Color Appearance 276
- 7.10 Lessons Learnt for Lighting Practice 277 References 280

8 Optimization of LED Light Engines for High Color Quality 283

- 8.1 Overview of the Development Process of LED Luminaires 283
- 8.2 Thermal and Electric Behavior of Typical LEDs 295
- 8.2.1 Temperature and Current Dependence of Warm White LED Spectra 295
- 8.2.1.1 Temperature Dependence of Warm White pc-LED Spectra 295
- 8.2.1.2 Current Dependence of Warm White pc-LED Spectra 297
- 8.2.1.3 Current Dependence of the Color Difference of Warm White pc-LEDs 297
- 8.2.2 Temperature and Current Dependence of Color LED Spectra 299
- 8.3 Colorimetric Behavior of LEDs under PWM and CCD Dimming 300
- 8.4 Spectral Models of Color LEDs and White pc-LEDs 302
- 8.5 General Aspects of Color Quality Optimization *305*
- 8.6 Appropriate Wavelengths of the LEDs to Apply and a System of Color Quality Optimization for LED Luminaires *311*
- 8.6.1 Appropriate Wavelengths of the LEDs to Apply 311
- 8.6.2 Systematization for the Color Quality Optimization of LED Luminaires *315*
- 8.6.2.1 Conventional Structures of LED Luminaries in Real Applications 315
- 8.6.2.2 Schematic Description of the Color Quality Optimization of LED Luminaries *315*
- 8.6.2.3 Algorithmic Description of Color Quality Optimization in the Development of LED Luminaries *318*
- 8.6.2.4 Optimization Solutions 319
- 8.7 Optimization of LED Light Engines on Color Fidelity and Chroma Enhancement in the Case of Skin Tones 320
- 8.8 Optimization of LED Light Engines on Color Quality with the Workflow 323
- 8.8.1 Optimization of the LED Light Engine on Color Quality Using the RGB-W-LED Configuration 323

x Contents

8.8.2	Optimization of the LED Light Engine on Color Quality with the $R_1 - R_2 - G - B_1 - B_2 - W$ - LED - configuration 327
8.9	Conclusions: Lessons Learnt for Lighting Practice 333 References 334
•	

9 Human Centric Lighting and Color Quality 335

- 9.1 Principles of Color Quality Optimization for Human Centric Lighting 335
- 9.2 The Circadian Stimulus in the Rea *et al.* Model 338
- 9.3 Spectral Design for HCL: Co-optimizing Circadian Aspects and Color Quality 344
- 9.4 Spectral Design for HCL: Change of Spectral Transmittance of the Eye Lens with Age 348
- 9.5 Conclusions 354 References 355

10 Conclusions: Lessons Learnt for Lighting Engineering 357

Index 365