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Multiple Equilibria, Principles, and Derivations

1.1 General Considerations

Chemical reactions are initiated by accidental collision ofmolecules that have the
potential (e.g., sufficient energy) to react with one another to be converted into
products:

A + B → P +Q.

In living matter, it cannot be left to chance whether a reaction happens or not.
At the precise time, the respective compounds must be selected and converted
into products with high precision, while at unfavorable times spontaneous
reactions must be prevented. An important prerequisite for this selectivity of
reactions is the highly specific recognition of the required compound.Therefore,
any physiological reaction occurring in the organism is preceded by a specific
recognition or binding step between the respective molecule and a distinct
receptor. The exploration of binding processes is substantial for understanding
biological processes. The receptors can be enzymes as well as nonenzymatic
proteins such as serum albumin, membrane transport systems, receptors for
hormones or neurotransmitters, or nucleic acids. Generally, receptors aremacro-
molecular in nature and thus considerably larger than the efficacious molecules,
the ligands. For the binding process, however, both the macromolecule and its
ligand must be treated as equivalent partners (unlike for enzyme kinetics, where
the enzyme as catalyst does not take part in the reaction).
As a precondition for binding studies, specific binding must be established and

unspecific association excluded. There exist various reasons for unspecific bind-
ing such as hydrophobic or electrostatic interactions (charged ligands can act
as counterions for the surplus charges of proteins). A rough indicator for spe-
cific binding is the magnitude of the dissociation constant, which is mostly below
10−3 M (although there are exceptions such as the binding of H2O2 to catalase
or glucose to glucose isomerase). Specific binding is characterized by a defined
number of binding sites n, which is in stoichiometric relationship to the macro-
molecule. Ligands at high concentrations saturate the binding sites. Structurally
similar compounds can displace the ligand from its binding site, while unrelated
compounds have no effect. In contrast, unspecific binding has no defined number
of binding sites, and the binding process is not saturable.
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In the following sections, the processes leading to a specific interaction
between a ligand and a macromolecule are described, that is, how the ligand
finds its binding site and which factors determine the affinity. The essen-
tial mechanisms of interaction between ligand and macromolecule are then
presented.

1.2 Diffusion

A prerequisite for any reaction of a ligand with a macromolecule is that the part-
ners must find one another. A particle moves in the free space straight ahead
with a kinetic energy of kBT∕2, T being the absolute temperature and kB the
Boltzmann constant. According to Einstein’s relationship, a particlewith themass
m moving in a distinct direction with velocity v possesses kinetic energy mv2∕2.
Combining both relationships, Eq. (1.1) follows:

v2 = kBT∕m. (1.1)

Accordingly, a macromolecule such as the enzyme lactate dehydrogenase
(Mr = 140 000) would move at a rate of 4ms−1, its substrate lactic acid
(Mr = 90.1) at 170ms−1, a water molecule (Mr = 18) at 370ms−1. Enzyme and
substrate will fly past one another like rifle bullets. In the dense fluid of the cell,
however, the moving particles are permanently hampered and deflected from
linear movement by countless obstacles: water molecules, ions, metabolites,
macromolecules, and membranes. Thus, the molecule moves rather like a stag-
gering drunkard than straight ahead. But this tumbling increases the collision
frequency and the probability of distinct molecules meeting one another.
The distance x covered by a molecule in solution within time t in one direction

depends on the diffusion coefficient D according to the equation:

x2 = 2 Dt. (1.2)

The diffusion coefficient is itself a function of the concentration of the diffus-
ing compound; in dilute solution, it can be considered as constant. It depends on
the particle size, consistency of the fluid, and temperature. For small molecules
in water, the coefficient is D = 10−5 cm2 s−1. A cell with the length of 1 μm is
passed within 500 μs, 1 mm within 500 s, and so on; thus, for a thousandfold
distance a millionfold time is required. This demonstrates that there exists no
“diffusion velocity”; the movement of the molecules is not proportional to time
but to its square root. A diffusing molecule does not remember its previous posi-
tion; it does not strive systematically for new spaces but searches new regions
randomly in undirectedmovement. As an example, a 10-cm-high saccharose gra-
dient (Dsaccharose = 5 × 10−6 cm2 s−1), used in ultracentrifugation for separation
and molecular mass determination of macromolecules, has a life span of about
4 months.The tendency of the gradient to equalize its concentration is consider-
ably low.
Equation (1.2) describes the one-dimensional diffusion of a molecule. For dif-

fusion in a three-dimensional space over a distance r, the diffusion into the three
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space directions x, y, and z is assumed to be independent of each other:

r2 = x2 + y2 + z2 = 6 Dt. (1.3)

Mere meeting of ligand and macromolecule is not sufficient to accomplish
specific binding; rather, the ligand must locate the binding site on the macro-
molecule. This is realized by translocation of the ligand volume 4𝜋R3∕3 by the
relevant distance of its own radius R. After a time tx, the molecule has searched
according to Eq. (1.3) for r = R a volume of

6 Dtx

R2 ⋅
4𝜋R3

3
= 8𝜋DRtx. (1.4)

The volume searched per time unit is 8𝜋DR, and the probability of collision for
a certain particle in solution is proportional to the diffusion coefficient and the
particle radius.
At the start of a reaction A + B → P, both participants are equally distributed

in solution. Within a short time, molecules of one type, for example, B, become
depleted in the vicinity of the molecule of the other type (A) not yet converted,
so that a concentration gradient is formed. Consequently, a net flow Φ of B
molecules occurs in the direction of the A molecules located at a distance r,

Φ = dn
dt

= DF dc
dr

, (1.5)

n is the net surplus of molecules passing through an area F within time t, and c
is the concentration of B molecules located at a distance r from the A molecules.
This relationship in its general form is known as Fick’s first law of diffusion. In our
example of a reaction of two reactants, F has the dimension of a spherical surface
with the radius r. Eq. (1.5) then changes into(

dc
dr

)
r
= Φ

4𝜋r2D′ (1.6)

D′ is the diffusion coefficient for the relative diffusion of the reactive molecules.
Integration of Eq. (1.6) yields

cr = c∞ − Φ
4𝜋rD′ (1.7)

where cr is the concentration of B molecules at the distance r and c∞ the
concentration at infinite distance from the A molecules. The last corresponds
approximately to the average concentration of B molecules. The net flow Φ is
proportional to the reaction rate and that is again proportional to the average
concentration c of those B molecules just in collision with the A molecules, rA+B
being the sum of the radii of an A and a B molecule:

Φ = kcrA+B (1.8)

where k is the rate constant of the reaction in the steady state, where cr becomes
equal to crA+B and r equal to rA+B. Substituted into Eq. (1.7), this becomes

crA+B =
c∞

1 + k
4𝜋rA+BD′

. (1.9)
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The net flow under steady-state conditions is

Φ = kac∞ (1.10)

where ka is the relevant association rate constant. Equations (1.8)–(1.10)may thus
be rewritten as

1
ka

= 1
4𝜋rA+BD′ +

1
k
. (1.11)

This relation becomes linear in a graph plotting 1∕ka against the viscosity 𝜂

of the solution as, according to the Einstein–Sutherland equation, the diffusion
coefficient at infinite dilution D0 is inversely proportional to the friction coeffi-
cient f and that again is directly proportional to the viscosity 𝜂:

D0 =
kBT

f
=

kBT
6𝜋𝜂r

. (1.12)

1∕k is the ordinate intercept. In the case of k ≫ 4𝜋rA+BD′, the intercept is
placed near the coordinate base; it becomes

ka = 4𝜋rA+BD′. (1.13)

This borderline relationship is known as the Smoluchowski limit for translating
diffusion; the reaction is diffusion controlled. In contrast, in reaction-controlled
reactions, the step following diffusion, that is, the substrate turnover, determines
the rate. A depletion zone emerges around the enzyme molecule, as substrate
molecules are not replaced fast enough. A diffusion-limited dissociation occurs if
the dissociation of the product limits the reaction. Viewing two equally reactive
spheres with radii rA and rB and diffusion coefficients DA and DB, we obtain for
Eq. (1.13):

ka = 4𝜋rA+BD′ = 4𝜋(rA + rB)(DA + DB). (1.14)

By substituting Eq. (1.12) and with the approximation rA = rB and with D0 =
DA = DB, we obtain

ka =
8kBT
3𝜂

. (1.15)

Thus, the association rate constants for diffusion-controlled reactions are in
the range 109 − 1010 M−1 s−1.

1.3 Modes of Ligand Binding

Uniform values should be obtained if the rate constants are exclusively deter-
mined by diffusion. In reality, however, the values of the rate constants of
diffusion-controlled reactions of macromolecules vary within a range of more
than five orders of magnitude. The reason for this variation is that, for successful
binding of the ligand, random collision with the macromolecule is not sufficient.
Both molecules must be in a favorable position to each other. This causes a
considerable retardation of the binding process. On the other hand, attracting
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forces could facilitate the interaction and direct the ligands toward their proper
orientation. Under such conditions, rate constants can even surpass the values
of mere diffusion control. Quantitative recording of such influences is difficult as
they depend on the specific structures of both themacromolecule and the ligand.
Theories have been developed to establish general rules for ligand binding.
Ligands approach a macromolecule at a rate according to Eq. (1.13), but only

those meeting the correct site in the right orientation will react. If the binding
site is considered as a circular area, forming an angle 𝛼 with the center of the
macromolecule (Figure 1.1a), the association rate constant of Eq. (1.13) will be
reduced by the sine of that angle:

ka = 4𝜋rA+BD′ sin 𝛼. (1.16)

The necessity of appropriate orientation between ligand and binding site
should be considered by the introduction of a suitable factor, depending on the
nature of the reactive groups involved. It is also suggested that the ligand may
associate unspecifically to the surface of the macromolecule, where it dissociates
in a two-dimensional diffusion to find the binding site (sliding model; Berg, 1985,
Figure 1.1b).The initial unspecific binding, however, cannot distinguish between
the specific ligand and other metabolites, which may also bind and impede
the two-dimensional diffusion. The gating model (Figure 1.1c) assumes the
binding site to be opened and closed like a gate by changing the conformation of

Enzyme

Substrate

r
α

Binding site

Sliding

Productive
binding

Unproductive
binding

Closed

Gate 

Open 

(a)

(b)

(c)

Figure 1.1 Modes of ligand binding. (a) Interaction of a substrate molecule with its binding
site on the enzyme. (b) Different types of interaction between ligand and macromolecule.
(c) Gating.
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the protein, thus modulating the accessibility for the ligand (McCammon and
Northrup, 1981).
A basic limit for the association rate constant for the enzyme substrate is

the quotient from the catalytic constant kcat and the Michaelis constant Km (cf.
Section 2.2.1):

kcat
Km

=
kcatk1

k−1 + k2
. (1.17)

For a diffusion-controlled reaction, the value is frequently around 108 M−1 s−1.
The reaction rate for most enzyme reactions is determined more by the nonco-
valent steps during substrate binding and product dissociation rather than by the
cleavage of bounds.

1.4 Interaction betweenMacromolecules and Ligands

1.4.1 Binding Constants

Binding of a ligand A to a macromolecule E

E + A
k1−−−−⇀↽−−−−

k−1
EA (1.18)

is described with the law of mass action, applying the association constant Ka

Ka =
k1

k−1
= [EA]

[A][E]
(1.19a)

or its reciprocal value, the dissociation constant Kd

Kd =
k−1
k1

= [A][E]
[EA]

. (1.19b)

Both notations are used: the association constant more frequently for the
treatment of equilibria and the dissociation constant for enzyme kinetics. Here,
the dissociation constant is employed throughout. The association constant has
the dimension of a reciprocal concentration (M−1); the higher the numerical
value, the higher the affinity. Conversely, dissociation constants possess the
dimension of a concentration (M), and lower values indicate stronger binding.
Equations (1.19a) and (1.19b) are not quite correct. The concentration terms
should be transformed into activity terms by multiplying with an activity
coefficient f , for example, a = f [A]. Since f approaches 1 in dilute solutions, this
factor can be disregarded for enzyme reactions.
If one reaction component is present in such a large excess that its concen-

tration change during the reaction can be neglected, its concentration can be
combined with the rate constant. This applies especially for water, if it takes part
in the reaction, especially in hydrolytic processes:

A +H2O
enzyme
−−−−⇀↽−−−− P +Q.

Water as a solvent with a concentration of 55.56 mol l−1 exceeds by far the
nano- to millimolar amounts of all other components in an enzyme assay and
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any change in its concentration will hardly be detectable. A binding constant for
water cannot be determined, and the reaction is treated as if water is not involved:

K ′
d =

[A][H2O]
[P][Q]

= Kd[H2O]; Kd =
[A]

[P][Q]
.

Hydrogen ions, frequently involved in enzyme reactions, are treated in a similar
manner. An apparent dissociation constant is defined:

Kapp = Kd[H+].

Contrary to genuine equilibrium constants, this constant is dependent on the
pH value in the solution.

1.4.2 Binding to a Single Site

The binding constants for a distinct system can be determined applying the mass
action law (Eq. (1.19)). For this, the concentrations of the freemacromolecule [E],
the free substrate [A], and the enzyme–substrate complex [EA] must be known,
but this is usually not the case. Only the total amounts of macromolecule [E]0
and ligand [A]0 added to the reaction can be considered as known.They separate
into free and bound components according to the mass conservation principle:

[E]0 = [E] + [EA], (1.20)
[A]0 = [A] + [EA]. (1.21)

As is described in Chapter 11, the portion of the ligand bound to the macro-
molecule [A]bound can be obtained by binding experiments. If only one ligand
molecule binds to themacromolecule as formulated in Eq. (1.18), [A]bound is equal
to [EA]. Substituting Eq. (1.20) into Eq. (1.19b) eliminates the freemacromolecule
concentration [E]:

[A]bound =
[E]0[A]

Kd + [A]
. (1.22)

This equation describes the binding of a ligand to a macromolecule with one
binding site, obviously the only possible mechanism for this case. Many enzymes
and macromolecules, however, can bind more than one ligand molecule, and for
such cases different bindingmechanismsmust be considered.They are presented
in the following sections, where treatment and evaluation of the respective bind-
ing equations is also discussed.

1.5 Binding to Identical Independent Sites

1.5.1 General Binding Equation

Proteins and enzymes in living organisms are composedmostly of more than one
subunit. Often all subunits are identical, and in such cases it can be taken that
every subunit carries the same identical binding site for the ligand, so that the
number n of binding sites is identical to the number of subunits. This is a plau-
sible assumption, but it must be kept in mind that in the treatment of binding
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processes identity means equality of binding constants. If the affinities of binding
sites located on nonidentical subunits are the same by chance, or if a single sub-
unit possesses more than one binding site with similar binding constants (e.g.,
due to gene duplication), this will not be differentiated by binding analysis and
requires additional experiments.
For the binding of a ligand to a macromolecule with a single binding site

only one binding mechanism exists, whereas several modes of binding are
possible when the macromolecule carries more than one binding site, as shown
in Figure 1.2. If the sites are identical, binding can either proceed independently
(Figure 1.2b), or interactions between the sites can influence the binding
course (Figure 1.2c). The same two possibilities exist if the sites are not identical
(Figure 1.2d,e), but in both cases complex binding behavior is observed. These
different binding modes are discussed in the following sections, while this
section treats the simplest case, independent binding to identical sites. Actually,
an independent binding process is already described by Eq. (1.22), since it should

Binding to a single site

Identical, independent sites Nonidentical, independent sites

Identical, interacting sites Nonidentical, interacting sites

(b)

(c) (e)

(d)

(a)

Figure 1.2 Modes of binding of a ligand to a macromolecule. Binding to one single site (a)
follows a normal binding course. If the macromolecule possesses more (e.g., four) binding
sites, four different binding modes are possible. If the sites are identical and independent,
normal binding occurs (b), whereas characteristic deviations appear if the binding sites
interact with one another (c). Deviations also occur for the case of nonidentical binding sites
even if they are independent (d) and the more if they interact with one another (e).
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make no principal difference whether the binding occurs at a macromolecule
with one single binding site or whether n independent sites are gathered on the
same macromolecule. For this case, the macromolecule concentration [E]0 in
Eq. (1.22) is replaced by [F]0, the total amount of identical binding sites, which is
related to the total macromolecule concentration by [F]0 = n[E]0:

[A]bound =
[F]0[A]

Kd + [A]
=

n[E]0[A]
Kd + [A]

. (1.23a)

This equation differs fromEq. (1.22) in two respects.Thenumerator is extended
by the number of binding sites, and [A]bound can no longer be equated with [EA]
but comprises all partially saturated forms of the macromolecule:

[A]bound = [EA] + 2[EA2] + 3[EA3] + · · · + n[EAn] (1.24)

The macromolecule is saturated stepwise:

E + A −−−−⇀↽−−−− EA K ′
1 =

[E][A]
[EA]

EA + A −−−−⇀↽−−−− EA2 K ′
2 =

[EA][A]
[EA2]

EA2 + A −−−−⇀↽−−−− EA3 K ′
3 =

[EA2][A]
[EA3]

⋮ ⋮

EAn−1 + A −−−−⇀↽−−−− EAn K ′
n =

[EAn−1][A]
[EAn]

Each step has its own dissociation constant. If, for independent binding, all
individual dissociation constants are taken as equal, Eq. (1.23a) is obtained
according to the upper derivation. It must be mentioned, however, that this is
a simplified derivation, neglecting the fact that the ligand has various modes of
orientation between the several binding sites of the macromolecule. In Box 1.1,
the general binding equation is derived with regard to this case, but it can be
seen, that albeit these complications finally Eq. (1.23a) results.

Box 1.1 Derivation of the General Binding Equation

The dissociation constants of the individual binding steps are calledmacroscopic
dissociation constants K ′ in contrast tomicroscopic (or intrinsic) binding constants
K for binding to the individual sites of the macromolecule.
This is demonstrated in Scheme 1.1 for a macromolecule with three binding

sites. The first binding step has one macroscopic dissociation constant K ′
1 but

three microscopic dissociation constants, designated as K1, K2, and K3, according
to the numbers of the binding sites 2E

1
3. Therefore, one ligand binding to the

macromolecule can choose between three binding sites, and, consequently,
three different macromolecule species can be formed. For the second binding
step, three forms are also possible, but there are six ways to obtain these species;

(Continued)
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Box 1.1 (Continued)

K12

K1 K13

K2

K21

K132

K123

K321K23K31

K32

K3

K1′ K2′ K3′

Macroscopic binding constants

Microscopic binding constants

E EA

EA AEA

AEE2 EA
A AEA

A

AEAEA

EA2 EA3

+A

–A

+A

–A

+A

–A

1

3

Scheme 1.1 Macroscopic and microscopic binding constants of a macromolecule with
three identical binding sites. The E-form at the left in the lower scheme shows the relative
orientation and the denomination of the binding sites. The constants are designated
according to the sequence of occupation, the last figure indicating the actual occupation.

accordingly, there exist six microscopic dissociation constants (e.g., K12). From
these three forms, three equilibria characterized by three microscopic binding
constants (e.g., K123) lead to the one fully saturated macromolecule form. The
complete binding process is described by 3 macroscopic and 12 microscopic
dissociation constants (Scheme 1.1). The relationship between both types of
constants can be established by applying the respective mass action laws. The
macroscopic dissociation constant of the first binding step is defined as

K ′
1 =

[E][A]
[EA]

= [E][A]
[EA] + [AE] + [EA]

.

The microscopic binding constants are used to replace the individual macro-
molecule forms

K1 = [E][A]
[EA]

; [EA] = [E][A]
K1

K2 = [E][A]
[AE]

; [AE] =
[E][A]
K2

K3 = [E][A]
[EA]

; [EA] =
[E][A]
K3



1.5 Binding to Identical Independent Sites 11

K ′
1 =

1
1
K1

+ 1
K2

+ 1
K3

.

If the three binding sites are identical, the microscopic constants can be equal-
ized, K1 = K2 = K3 = K , and both types of constants are related by K ′ = K∕3.
Correspondingly, the second binding step is

K ′
2 =

[EA][A]
[EA2]

=
([EA] + [AE] + [EA])[A]
[AEA] + [EAA] + [AEA]

K12 = [EA][A]
[AEA]

; [AEA] =
[EA][A]
K12

, etc., hence

K ′
2 =

K13K21K23 + K12K13K23 + K13K21K32

K13K23 + K12K23 + K13K21
.

For K12 = K13 = · · · = K , K ′
2 = K .

The third binding step is

K ′
3 =

[EA2][A]
[EA3]

=
([AEA] + [EAA] + [AEA])[A]

[AEAA]
,

K123 =
[AEA][A]
[AEAA]

; [AEA] =
K123[AEAA]

[A]
, etc.

For K123 = K132 = · · · = K , K ′
3 = 3K .

Even if all microscopic dissociation constants are identical, they differ from the
macroscopic ones, and there are differences between each binding step. The gen-
eral relationshipbetweenboth types of dissociation constants fornbinding sites is

K ′
d = Kd

i
n − i + 1

, (1)

where i represents the respective binding step. Ligands occupying stepwise a
macromolecule with identical sites haveΩ possibilities of orientation, depending
on the respective binding step i:

Ω = n!
(n − i)!i!

(2)

For the derivation of the general binding equation, a saturation function r is
defined as the quotient from the portion of bound ligand to the total amount of
the macromolecule:

r =
[A]bound
[E]0

=
[EA] + 2[EA2] + 3[EA3] + · · · + n[EAn]
[E] + [EA] + [EA2] + [EA3] + · · · + [EAn]

. (3)

The concentrations of the individual macromolecule forms are not accessible
experimentally and are replaced by the macroscopic dissociation constants:

K ′
1 =

[E][A]
[EA]

; [EA] = [E][A]
K ′
1

K ′
2
[EA][A]
[EA2]

; [EA2] =
[EA][A]

K ′
2

= [E][A]2

K ′
1K

′
2

(Continued)
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Box 1.1 (Continued)

K ′
3

[EA2][A]
[EA3]

; [EA3] =
[EA2][A]

K ′
3

= [E][A]3

K ′
1K

′
2K

′
3

⋮ ⋮ ⋮

K ′
n

[EAn−1][A]
[EAn]

; [EAn] =
[EAn−1][A]

K ′
n

= [E][A]n

K ′
1K

′
2K

′
3 · · · K

′
n
.

On substituting these in Eq. (3),

r =

[A]
K ′ + 2[A]2

K ′
1K

′
2

+ 3[A]3

K ′
1K

′
2K

′
3

+ · · · + n[A]n

K ′
1K

′
2K

′
3 · · · K

′
n

1 + [A]
K ′
1

+ [A]2

K ′
1K

′
2

+ [A]3

K ′
1K

′
2K

′
3

+ · · · + [A]n

K ′
1K

′
2K

′
3 · · · K

′
n

=

∑n
i=1

i[A]i(∏i
j=1 K

′
j

)

1 +
∑n

i=1
[A]i(∏i
j=1 K

′
j

)
. (4)

In the case of independent identical binding sites, the macroscopic binding
constants of the individual binding steps according to Eq. (1) are replaced by a
uniformmicroscopic constant Kd:

r =

∑n
i=1 i

(∏i
j=1

n − j + 1
j

)(
[A]
Kd

)i

1 +
∑n

i=1

(∏i
j=1

n − j + 1
j

)(
[A]
Kd

)i
. (5)

The product terms of the numerator and denominator are binomial coefficients,
which can be converted as follows:(

n
i

)
=
(

n!
i!(n − i)!

)
,

so that Eq. (5) may be written in the form

r =

∑n
i=1 i

(
n
i

)(
[A]
Kd

)i

1 +
∑n

i=1

(
n
i

)(
[A]
Kd

)i
.

Applying the binomial rule, the denominator can be converted as (1 + [A]∕Kd)n.
For the numerator, the derived binomial rule applies:

r =
n

(
[A]
Kd

)(
1 + [A]

Kd

)n−1

(
1 + [A]

Kd

) .
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Equation (1.23a) can reduce to the following equation, already obtained by the
simplified derivation:

r =
[A]bound
[E]0

= n[A]
Kd + [A]

. (6)

The authorship of the binding equation is ascribed to Irvin Langmuir, who
developed such a relationship in 1916 for the adsorption of gases to solid sur-
faces, although Adrian J. Brown and Victor Henri derived a similar equation in
1900, which was revised by Leonor Michaelis and Maud Menten in 1913. This
Michaelis–Menten equation is of fundamental importance for enzyme kinetics
(see Section 3.2.1).
Equation (1.23a) (respectively, Eq. (6) in Box 1.1) describes the relationship

between the free and the bound ligand. By successive increase of the free ligand
a saturation curve is obtained (Figure 1.3a), which follows mathematically the
function of a right-angle hyperbola (the correlation between the saturation
curve and a hyperbola is explained in Section 3.3.1.1, Box 3.1). At extremely
high concentrations of the ligand, ([A] → ∞) Kd in the denominator of Eq.
(1.23a) can be ignored, and the curve approaches n[E]0 (respectively n for Eq. (6)
Box 1.1), from which the number of binding sites can be obtained. Half of this
value, n[E]0∕2 respectively n∕2, that is, half saturation, indicates the position
where the free ligand concentration equals the value of the dissociation constant,
[A] = Kd, a possibility to determine this value. Thus, both the dissociation con-
stant and the number of binding sites can be obtained from the saturation curve
(Figure 1.3a).
There exist three principally equivalent modes for plotting binding data. The

amount of bound ligand [A]bound obtained from the experiment can be plotted
directly against the free ligand concentration [A]. Saturation will be reached at
n[E]0. It is more convenient to take the saturation function r dividing [A]bound by
[E]0, as discussed already. If r is further divided by n, the function Y is obtained:

Y =
[A]bound

n[E]0
= [A]

Kd + [A]
. (1.23b)

In this case, the value of the saturation becomes 1. The function Y is used if
different mechanisms are compared theoretically (without defining n) or, exper-
imentally, when the portion of bound ligand is not directly known, as in spectro-
scopic titrations (see Section 1.5.2.2).

1.5.2 Graphic Representations of the Binding Equation

1.5.2.1 Direct and Linear Diagrams
Generally binding studies should yield three kinds of information:

• The affinity of the macromolecule for the ligand, represented by the value of
the dissociation constant Kd

• The number of binding sites n
• The respective binding mechanism.
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The goal of graphic representations is to obtain this information in a clear,
unambiguous manner. There exist different kinds of graphic representations,
and it must be decided which will be the most appropriate for the respective
experimental data. Usually, the data will be represented in different plots because
special aspects will become more obvious in one type than in another, although,
as a rule, missing information cannot be recalled by any representation.
The direct plotting of the data of a binding experiment has already been shown

in Figure 1.3a. This mode of plotting is recommended as a primary step, since
the data suffer no distortion, especially with respect to the error distribution. A
difficulty is the estimation of saturation. Because saturation can be reached only
at infinity, the value of full saturation is frequently underestimated. It must be
kept in mind that the experiment yields no continuous curve rather a scatter-
ing set of single data points. This uncertainty also influences the accuracy of the
determination of n and Kd. Nonlinear regression should be applied to improve
the analysis.
Instead of direct plotting, r can be plotted against log [A] in a semilogarith-

mic diagram as well. This procedure is recommended especially when larger
concentration ranges have to be covered, which cannot be resolved completely
in the direct plot. In the semilogarithmic diagram, the saturation curves have
a sigmoidal shape, and the logarithm of Kd is obtained from half saturation
(Figure 1.3b).
Besides the problems of determination of the constants, it is also not easy with

nonlinear plots to recognize deviations from the normal saturation course and to
detect possible alternative binding mechanisms. Weak deviations will easily be
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Figure 1.3 Modes of representing binding data. (a) Direct plot; (b) semilogarithmic plot;
(c) Scatchard plot; (d) double-reciprocal plot; and (e) Hanes plot.
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hidden behind the data scatter. With linear diagrams, it can be discerned clearly
whether a special mechanism fits a straight line or not; on the other hand, these
diagrams exhibit other disadvantages.
Three simple linear transformations of the binding equation exist. The

double-reciprocal plot, ascribed to Klotz (1946) (although he was not the original
author; the problem of proper denomination of special diagrams is discussed in
Section 3.3.1.3) is based on the reverse form of Eq. (1.23a):

1
r
= 1

n
+

Kd

n[A]
. (1.25)

Plotting 1∕r against 1/[A] should yield a straight line, intercepting the ordinate
at 1∕n and the abscissa at−1∕Kd.Therefore, both constants can easily be obtained
by extrapolation (Figure 1.3d). Alternative mechanisms show characteristic devi-
ations from linearity. The double-reciprocal plot has the advantage of separation
of the variables (in contrast to the other two linear diagrams); however, due to
the reciprocal entry, strong distortions of the error limits are observed, which
are compressed to the high ligand range and expanded to the low ligand range.
Linear regression is not applicable and especially the determination of n at the
ordinate intercept often becomes dubious with scattering data.
For the analysis of binding data, the diagram of Scatchard (1949) is preferred.

It allows an unequivocal determination of the value of n, which is of great impor-
tance for many analysis. Multiplication of Eq. (1.25) by rn∕Kd yields

r
[A]

= n
Kd

− r
Kd

. (1.26)

Plotting r∕[A] versus r yields a straight line intersecting the abscissa at n and the
ordinate at n∕Kd (Figure 1.3c). In this diagram, the error limits increase toward
high ligand concentrations, but the effect is lower thanwith the double-reciprocal
diagram and linear regression is often applied. Although the variables are not
separated, this is the most reliable linear diagram.
A third diagram is obtained by multiplying Eq. (1.25) by [A]:

[A]
r

= [A]
n

+
Kd

n
. (1.27)

This diagram is equivalent to the Hanes plot in enzyme kinetics, but for the
analysis of binding data it is seldom used. By plotting [A]∕r versus [A], Kd∕n fol-
lows from the ordinate and −Kd from the abscissa intercept (Figure 1.3e). An
advantage of this representation is the nearly constant error limit.

1.5.2.2 Analysis of Binding Data from Spectroscopic Titrations
Although methods for the determination of binding are described later (cf.
Chapter 13), theoretical aspects of the analysis are discussed here. Spectroscopic
titrations are convenient methods to study binding processes, but the data need a
special treatment as the diagrams discussed so far cannot be applied directly.The
main difference from other binding methods is that the share of the free ligand
[A] cannot be obtained directly by experiment and also the share of bound ligand
is observed only as a relative spectral change and not as a molar concentration.
In the experimental procedure, usually increasing amounts of the ligand are
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successively added to a constant amount of the macromolecule in a photometric
cuvette. The spectral change induced by binding of the ligand is recorded. For
the evaluation of the data, only the total amount of the added ligand [A]0 is
known, while for the conventional plots (Figure 1.3) the free ligand concentration
[A] is required. In similar diagrams used in enzyme kinetics, usually the total
substrate concentration is taken, since due to the very low (catalytic) enzyme
concentrations the share of bound substrate can be ignored and the amounts
of total and free ligand can be equated. In binding measurements, however,
the macromolecule is present in high concentrations to get a detectable signal.
Therefore, the share of bound ligand cannot be ignored and [A] cannot be
displaced by [A]0. The direct plotting of the extent of the spectral change against
[A]0, as obtained from the experiment, yields a titration curve. For evaluation, it
must be either treated in a special manner or converted into conventional plots
as shown in Figure 1.3. This is discussed in the following paragraphs. Another
representation, the Dixon plot, is discussed in Section 3.3.1.1.
In the low concentration range of the titration curve, as long as the condition

[A]0 < [E]0 holds, nearly all the added ligands bind to the macromolecule
and no free ligand appears; thus [A]0 ∼ [A]bound. Under these conditions, the
added ligand is directly related to the spectral change, and the initial part of the
titration curve follows a straight line through which a tangent can be drawn.
This tangent represents, also in its extension, the share of the bound ligand,
while at higher concentrations the curve deviates from the tangent because of
the appearance of free ligand when the macromolecule becomes successively
saturated (Figure 1.4a). The spectral signal increases upon further addition
of ligand as long as free binding sites are available, but the increase ceases
until all sites are occupied. The curve reaches a saturation plateau through
which an asymptotic line can be drawn. The extent of the optical signal at the
position of the asymptotic line corresponds to the amount of ligand bound
to all available binding sites: n[E]0. This value can be obtained directly from
the abscissa coordinate of the position, where the initial tangent meets the
saturation asymptote (see Figure 1.4a). Initially, the extent of the optical signal
is taken as ordinate scale. After the experiment, these relative values must be
converted into Y values, setting the saturation equal to Y = 1. The total amount
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Figure 1.4 Evaluation of spectroscopic titrations. (a) Direct plotting and (b) Stockell plot.
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of ligand [A]0 indicated at the abscissa is the sum of free and bound ligands. Both
shares can be separated drawing vertical lines from any point of the curve to
the ordinate. These lines are divided by the origin tangent into two sections, the
right one indicating the share of the free and the left one the bound ligand. With
the exception of the points fitting the initial tangent, all data points of the curve
can be converted in this manner and with this information the conventional
diagrams described in Section 1.5.2.1 can be drawn and evaluated accordingly.
A severe disadvantage of this procedure is the fact that it depends essentially

on the alignment of tangents. With strongly scattering values or if the assump-
tion does not hold that at low concentrations all added ligand binds, the align-
ment will become incorrect. This must be considered especially in the case of
low-affinity binding, where there is a tendency to align the tangent too flat. Since
both asymptotic lines represent the case of infinite high affinity, the more reliable
the evaluation of the titration curve, the higher the actual affinity.
To circumvent the uncertainty of the initial tangent, the titration curve can be

directly linearized according to a procedure suggested by Stockell (1959), where
the free ligand concentration in Eq. (1.23a) is replaced by [A]0.The spectral signal
is converted into values forY , saturation being defined asY = 1. To derive a linear
relationship, r = nY = n[EA]∕[E]0 is substituted into Eq. (1.25), and [A]bound =
n[EA]:

1
Y

= 1 +
Kd

[A]0 − n[EA]
= 1 +

Kd

[A]0 − nY [E]0
.

Transformation to
[A]0

Y
− [A]0 = n[E]0(1 − Y ) + Kd

results in
[A]0
[E]0Y

=
Kd

[E]0(1 − Y )
+ n. (1.28)

In this diagram (Figure 1.4b), a straight line should result, and n and Kd can
be obtained from the ordinate and abscissa intercepts, respectively. There still
remains the uncertainty of the saturation asymptote, which is required for the
definition of Y = 1. Therefore, the measurements must be extended far into the
saturation range.This plot is very sensitive even for weak deviations from the the-
oretical function, and a wrong saturation value may distort the whole curve. For
this reason, alternative mechanisms or artificial influences are difficult to discern
in the Stockell plot.
A different presentation of binding data was suggested by Job (1928). The total

concentrations of the ligand and macromolecule are kept constant and only the
molar proportions of both components are varied. X is the mole fraction of the
macromolecule and Y is that of the ligand, X + Y = 1. This expression is plotted
against the measured values M of an optical signal or the enzyme activity, which
must be proportional to [A]bound. A maximum curve is obtained, as shown in
Figure 1.5. The position of the maximum corresponds to the stoichiometry of
both binding partners. Tangents can be aligned from X = 0 and Y = 0, and their
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Figure 1.5 Job plot for the evaluation
of binding data.

intercept marks the position of the maximum. The maximum is at X = Y = 0.5
for a 1 : 1 stoichiometry, atX = 0.33,Y = 0.66 for a 1 : 2, and atX = 0.25,Y = 0.75
for a 1 : 4 stoichiometry, corresponding to ligand–macromolecule complexes EA,
EA2, and EA4, respectively. However, the position of themaximum indicates only
the relative ratio; it will be, for example, at the same position for a 1 : 1 (EA), a 2 : 2
(E2A2), or a 4 : 4 (E4A4) stoichiometry.

Kd can be obtained from the ratio of the actualmeasured value at themaximum,
Mm, to the saturation value, M∞, according to Eq. (1.30).
Their common intercept has the value

Yi

Xi
=

Kd + nc0
Kd + c0

. (1.29)

Xi and Yi are the mole fractions of macromolecule and ligand at the inter-
cept, c0 = [E]0 + [A]0 is the (constant) sum of the total concentrations of macro-
molecule and ligand. If c0 ≫ Kd, then Xi∕Yi = n. Here, the stoichiometry of the
binding can be taken from the ratios of themole fractions at the tangent intercept.
If c0 ≪ Kd, then Xi∕Yi = 1; the curve takes a symmetrical shape and the intercept
always has the value 1, irrespective of the actual number of binding sites. This
is a disadvantage of the Job plot. It can be circumvented as long as the sum of
the macromolecule and ligand concentrations is higher than the value of the dis-
sociation constant. If n is known, Kd can be calculated from Eq. (1.29), whereby
the condition c0 ∼ Kd should be considered. Kd can also be obtained from the
maximum of the curve in Figure 1.5 according to

Kd =
(𝛼n + 𝛼 − n)2c0

4𝛼n
. (1.30)

Here, 𝛼 represents the ratio of the actual measured value at the maximum, Mm,
to the saturation value, M∞.

1.5.3 Binding of Different Ligands, Competition

Due to the high binding specificity of proteins and especially of enzymes, usu-
ally only the physiological ligand or the enzyme substrate will be able to bind,
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while all other metabolites will be excluded. However, this selection cannot be
absolute, and compounds with high structural homology to the ligand may also
be accepted. Knowing the configuration of the binding site or the active center,
such analogs can be designed and may bind with similar or sometimes even with
higher affinity than the natural ligand. In some cases, they imitate the function of
the ligand, but mostly they are inactive and block the binding site for the native
ligand, preventing its action and revealing an antagonistic effect. This competi-
tion for a distinct binding site of two or more compounds is a valuable tool to
investigate specific binding; thus, the action of drugs depends frequently on the
antagonistic effect (e.g., 𝛽-receptor blocker). Competition is also a valuable tool
in cases where binding of the ligand is difficult to detect, for example, because
of the lack of a measurable signal. In such cases, a fraction of the ligand is con-
verted into a detectable form, for example, by fluorescent labeling. At first, the
binding characteristic and the dissociation constant of the labeled ligand (B) are
determined, and thereafter the measurements are repeated in the presence of
constant amounts of the unlabeled ligand A. In the following, the derivation of
the dissociation constant for this ligand is described.
The competition can be described by the following scheme:

E + A
+
B

EB

EA
KA

KB

Thebinding affinities are expressed by the dissociation constants KA and KB for
both compounds:

KA = [E][A]
[EA]

and KB = [E][B]
[EB]

(1.31a)

The total amount of the macromolecule is

[E]0 = [E] + [EA] + [EB].

[E] and [EB] are replaced by KA and KB in Eq. (1.31a):

[E]0 =
KA[EA]
[A]

(
1 + [B]

KB

)
+ [EA].

By conversion, the following expression for [EA] is obtained:

[EA] =
[E]0[A]

[A] + KA

(
1 + [B]

KB

) .

For a macromolecule with n binding sites,

r = n[A]

[A] + KA

(
1 + [B]

KB

) . (1.32)
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The double-reciprocal relationship is

1
r
= 1

n
+

KA

n[A]

(
1 + [B]

KB

)
(1.33)

and the Scatchard equation is
r
[A]

= n

KA

(
1 + [B]

KB

) − r

KA

(
1 + [B]

KB

) . (1.34)

Compared with the general binding equation, there are now two variable con-
centration terms, but as long as one of them (e.g., B) remains constant and only
A is altered, the term within the brackets will remain constant and the behavior
corresponds to the general binding equationwith a hyperbolic curve (Figure 1.6a)
with the only difference that the value of KA is increased by the value of the
term in brackets. If, in a second test series, another (constant) concentration
of B is taken, again a hyperbolic curve with an altered KA is obtained. In this
manner, a series of hyperbolic curves are obtained. All can be linearized in the
double-reciprocal plot (Figure 1.6b), the Scatchard plot (Figure 1.6c), and the
Hanes plot (Figure 1.6d). Remarkable patterns of the lines with a common ordi-
nate intercept in the double-reciprocal diagram, a joint abscissa intercept in the
Scatchard plot, and parallel lines in the Hanes plot are obtained. These patterns
can be taken as indicative of a competitive mechanism.
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Figure 1.6 Competition of two ligands for the same binding site. The concentration of ligand
A is altered in the presence of constant amounts of ligand B, which vary from curve to curve.
(a) Direct plot, (b) double-reciprocal plot, (c) Scatchard plot, and (d) Hanes plot.
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In the double-reciprocal diagram, the dissociation constant for ligand A, KA,
can be obtained in the absence of B directly from the abscissa intercept, and
with the knowledge of this constant the dissociation constant for B, KB, can be
derived also from the abscissa intercept in the presence of B (Figure 1.6b). From
the other linear plots, the constants can be derived in as shown in Figure 1.6c,d.
Further procedures for the analysis of competition in enzyme kinetic studies are
described in Section 4.2.2.2. But in contrast to enzyme kinetics in binding stud-
ies, competitive and noncompetitivemechanisms are not discernible by graphical
analysis, as shown in the following section.

1.5.4 Noncompetitive Binding

Also in this case, two different ligands, A and B, bind to the samemacromolecule
but at different sites.They do not displace one another, but the ligand bound first
influences the binding of the second one, for example, by steric or electrostatic
interactions, which are mostly repulsive but can also be attractive. Consequently,
each ligand possesses two dissociation constants, one, KA, respectively, KB, for
binding to the free macromolecule, and the second one, K ′

A, K ′
B, for binding to

the EA or EB complex:

EAE + A

EB + A EAB

+
B

+
B

KA

KB K′B
K′A

K ′
A and K ′

B are defined as

K ′
A = [EB][A]

[EAB]
and K ′

B = [EA][B]
[EAB]

, (1.31b)

considering Eq. (1.31a) all four constants are linked.

KA

KB
=

K ′
A

K ′
B
. (1.35)

The total amount of the macromolecule is

[E]0 = [E] + [EA] + [EB] + [EAB]

The individual macromolecule forms can be substituted by the dissociation
constants applying Eqs (1.31a, b):

[E]0 = [E] + [E][A]
KA

+ [E][B]
KB

+ [E][A][B]
KAK ′

B
,

[E] =
[E]0

1 + [A]
KA

+ [B]
KB

+ [A][B]
KAK ′

B

.
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The fraction of [A]bound is

[A]bound = [EA] + [EAB] = [E][A]
KA

+ [E][A][B]
KAK ′

B
,

[A]bound =

[E]0[A]
KA

(
1 + [B]

K ′
B

)

1 + [A]
KA

+ [B]
KB

+ [A][B]
KAK ′

B

.

The final equation for the noncompetitive binding is obtained by replacing
[A]bound by r = [A]bound∕[E]0, assuming n binding sites and multiplying by KA:

r =
n[A]

(
1 + [B]

K ′
B

)

KA

(
1 + [B]

KB

)
+ [A]

(
1 + [B]

K ′
B

) . (1.36)

Obviously, Eq. (1.36) can be reduce to the normal binding equation if KB =
K ′
B and, consequently, KA = K ′

A, that is, if both ligands do not interact with one
another. Transformation into the double-reciprocal form yields

1
r
= 1

n
+

KA

(
1 + [B]

KB

)

n[A]
(
1 + [B]

K ′
B

)′ . (1.37)

This gives a pattern of straight lines with a joint ordinate intercept similar
to that shown in Figure 1.6b for competitive inhibition. Accordingly, the
Scatchard plot

r
[A]

= n

(
1 + [B]

K ′
B

)

KA

(
1 + [B]

KB

) − r

(
1 + [B]

K ′
B

)

KA

(
1 + [B]

KB

) (1.38)

yields a pattern of straight lines, as shown in Figure 1.6c (the analogous situation
holds for the Hanes plot, Figure 1.6d). Surprisingly, both competitive and non-
competitive binding are indistinguishable by graphic analysis. This is a serious
source of misinterpretation, the more so, as both corresponding mechanisms
in enzyme kinetics are readily distinguishable by graphic analysis (see Section
4.2.1.2).The reason for this discrepancy is not quite obvious. In enzyme kinetics,
a similar situation exists with respect to the partially competitive inhibition,
which yields just the same pattern in linearized diagrams as the competitive
mechanism (Section 4.2.3.3). In fact, noncompetitive binding is analogous
to partially competitive inhibition and not to noncompetitive inhibition. In
noncompetitive inhibition, only the enzyme–substrate complex [EA] is enzy-
matically active, while the complex with both substrate and inhibitor [EAI]
is inactive. In contrast, in partially competitive inhibition both complexes are
equally active. This is just the situation in binding studies, where the amount of
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[A]bound is obtained experimentally as the sum of [EA] and [EAB], considering
both as equally active. It can be differentiated between both mechanisms and
misinterpretations avoided by a simple control. Plotting the slopes of the straight
lines of the double-reciprocal diagrams against the concentration of the second
ligand Bmust yield a straight line (with−KB as abscissa intercept) for competitive
binding, while the curve deviates from linearity in the case of noncompetitive
binding. Such secondary plots can also be derived from the Scatchard and the
Hanes diagram and are discussed in more detail in Section 4.2.1.1.

1.6 Binding to Nonidentical, Independent Sites

Various enzymes, membrane receptors, and other macromolecules carry
different binding sites for the same ligand. They may be found at the same
subunit or polypeptide chain, but more frequently they are located at separate
nonidentical subunits. The bacterial tryptophan synthase, for example, consists
of two types of subunits (𝛼, 𝛽), each binding indole as the intermediate of the
enzyme reaction. The enzyme molecule consists of two copies of each type
of subunit, corresponding to a structure 𝛼2𝛽2, so that binding to identical and
nonidentical sites occurs simultaneously. Identical sites are called binding
classes, one macromolecule can possess several (m) binding classes, each with
several identical binding sites (n1, n2, n3,…).
Obviously, a ligand binding to such a macromolecule occupies the site with the

highest affinity first. Occupation of the lower affinity sites requires higher ligand
concentrations. Assuming independent binding, each binding class is saturated
according to the general binding equation Eq. (1.23a). Correspondingly, the total
binding process is the sum of the individual saturation functions for each binding
class:

r =
n1[A]

Kd1 + [A]
+

n2[A]
Kd2 + [A]

+ · · · +
nm[A]

Kdm + [A]
. (1.39)

Kd1,Kd2, and so on, are the dissociation constants of the individual binding
classes. Each binding process follows a normal hyperbolic binding curve. The
resulting function is a superposition of the different hyperbolae (Figure 1.7a).
It shows a steep increase in the low concentration range of the ligand, where
the high-affinity site becomes occupied. At higher ligand concentrations, most
high-affinity sites are saturated and occupation of the low-affinity sites starts.The
rise of the saturation curve is now clearly smoother. Because of the superposition
of different saturation functions, the resulting curve does not possess a pure
hyperbolic shape, but the deviation is not easy to recognize, especially with scat-
tering data points. For analysis, linearized plots are helpful, because they show
characteristic deviations from linearity. This is demonstrated in Figure 1.7b–d,
where the individual linear curves for a high- and a low-affinity site and the
resulting composed function are drawn in the nonlinear and different linear
representations.
It is much easier to create a composed function from the partial functions than

to resolve the individual functions for the separate binding sites from a composed
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Figure 1.7 Binding of a ligand to two binding classes of different affinities. The individual
straight lines for the high- and the low-affinity sites and the resulting curves are shown.
(a) Direct plotting, (b) double-reciprocal plot, (c) Scatchard plot, and (d) Hanes plot.

function obtained by experimental results. There are several unknown values to
be determined, such as the number of binding classes involved, the number of
identical sites per binding class, and the values of the dissociation constants.
All these parameters cannot be obtained from one curve. As can be seen from
Figure 1.7, the individual functions are not merely the asymptotes to the extreme
ranges of the resulting curve, although it may be assumed that at very low and
very high ligand concentrations the high- and low-affinity sites, respectively, are
occupied preferentially. Rosenthal (1967) suggested a graphical method for ana-
lyzing the Scatchard plot (Figure 1.8).The experimental curve may be considered
to be composed of two straight lines. Their slopes are taken from both end parts
of the original curve and they are moved in a parallel manner so that the sum
of their ordinate intercepts corresponds to the ordinate intercept of the resulting
curve. Lines drawn through the coordinate origin meet the resulting curve at a
point p. Its coordinates are the sums of the coordinates of the respective intersec-
tion points of the individual curves, as described for Figure 1.8. For an appropriate
evaluation, a computer analysis is strongly recommended (Weder et al., 1974).
Nevertheless, the analysis of such binding curves has only indicative charac-

ter. On the one hand, there is no essential difference in the resulting curves with
two or more binding classes; on the other hand, also other binding mechanisms
yield similar curves, such as negative cooperativity and half-of-the-sites reactivity
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Figure 1.8 Graphic analysis of a binding curve with two binding classes according to
Rosenthal (1967). 1 and 2 are the lines of the separate binding classes. A straight line is drawn
from the coordinate origin with the slope 1/[A], intersecting the individual lines at p1 and p2
and the resulting curve at p. The sum of the coordinates [A]bound and [A]bound∕[A] of the
individual intersection points must yield the coordinates of the resulting curve; otherwise, the
position of the individual lines must be changed.

(see Section 2.2.2) or isoenzymes. Determination of the number and identity of
the subunits of the macromolecule by other methods, such as molecular mass
determination, should be performed in parallel.
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