Contents

Preface xvii

About the Editors xiii

1	Bioinspired Polydopamine and Composites
	for Biomedical Applications 1
	Ziyauddin Khan, Ravi Shanker, Dooseung Um, Amit Jaiswal, and Hyunhyub Ko
1.1	Introduction 1
1.2	Synthesis of Polydopamine 2
1.2.1	Polymerization of Polydopamine 2
1.2.2	Synthesis of Polydopamine Nanostructures 3
1.3	Properties of Polydopamine 5
1.3.1	General Properties of Polydopamine 5
1.3.2	Electrical Properties of Polydopamine 6
1.3.2.1	Amorphous Semiconductor Model (ASM) of Melanin Conductivity 7
1.3.2.2	Spin Muon Resonance Model (SMRM) of Melanin Conductivity 8
1.4	Applications of Polydopamine 10
1.4.1	Biomedical Applications of Polydopamine 11
1.4.1.1	Drug Delivery 11
1.4.1.2	Tissue Engineering 12
1.4.1.3	Antimicrobial Applications 12
1.4.1.4	Bioimaging 15
1.4.1.5	Cell Adhesion and Proliferation 16
1.4.1.6	Cancer Therapy 16
1.5	Conclusion and Future Prospectives 21
	References 23
2	Multifunctional Polymer-Dilute Magnetic Conductor
	and Bio-Devices 31
	Imran Khan, Wegar A. Siddiqui, Shahid P. Ansari, Shakeel Khan,
	Mohammad Mujahid Ali khan, Anish Khan, and Salem A. Hamid
2.1	Introduction 31
2.2	Magnetic Semiconductor-Nanoparticle-Based Polymer
	Nanocomposites 34
2.3	Types of Magnetic Semiconductor Nanoparticles 34
2.3.1	Metal and Metal Oxide Nanoparticles 34
	7.2

viii Contents	
-----------------	--

2.3.2	Ferrites 35
2.3.3	Dilute Magnetic Semiconductors 36
2.3.4	Manganites 37
2.4	Synthetic Strategies for Composite Materials 37
2.4.1	Physical Methods 38
2.4.2	Chemical Methods 40
2.4.2.1	In Situ Synthesis of Magnetic Nanoparticles and Polymer
2.1.2.1	Nanocomposites 40
2.4.2.2	<i>In Situ</i> Polymerization in the Presence of Magnetic Nanoparticles 41
2.5	Biocompatibility of Polymer/Semiconductor-Particle-Based
	Nanocomposites and Their Products for Biomedical Applications 42
2.5.1	Biocompatibility 42
2.6	Biomedical Applications 43
2.0	References 43
	Neteriores 15
3	Polymer–Inorganic Nanocomposite and Biosensors 47
	Anish Khan, Aftab Aslam Parwaz Khan, Abdullah M. Asiri,
	Salman A. Khan, Imran Khan, and Mohammad Mujahid Ali Khan
3.1	Introduction 47
3.2	Nanocomposite Synthesis 48
3.3	Properties of Polymer-Based Nanocomposites 48
3.3.1	Mechanical Properties 48
3.3.2	Thermal Properties 51
3.4	Electrical Properties 52
3.5	Optical Properties 53
3.6	Magnetic Properties 54
3.7	Application of Polymer–Inorganic Nanocomposite in Biosensors 54
3.7.1	DNA Biosensors 54
3.7.2	Immunosensors 58
3.7.3	Aptamer Sensors 61
3.8	Conclusions 62
	References 63
4	Carbon Nanomaterial-Based Conducting Polymer Composites
	for Biosensing Applications 69
	Mohammad O. Ansari
4.1	Introduction 69
4.2	Biosensor: Features, Principle, Types, and Its Need in Modern-Day
	Life 70
4.2.1	Important Features of a Successful Biosensor 71
4.2.2	Types of Biosensors 71
4.2.2.1	Calorimetric Biosensors 71
4.2.2.2	Potentiometric Biosensors 72
4.2.2.3	Acoustic Wave Biosensors 72
4.2.2.4	Amperometric Biosensors 72
4.2.2.5	Optical Biosensors 72

4.2.3	Need for Biosensors 72
4.3	Common Carbon Nanomaterials and Conducting
	Polymers 73
4.3.1	Carbon Nanotubes (CNTs) and Graphene (GN) 73
4.3.2	Conducting Polymers 73
4.4	Processability of CNTs and GN with Conducting Polymers, Chemical
	Interactions, and Mode of Detection for Biosensing 74
4.5	PANI Composites with CNT and GN for Biosensing Applications 75
4.5.1	Hydrogen Peroxide (H ₂ O ₂) Sensors 75
4.5.2	Glucose Biosensors 76
4.5.3	Cholesterol Biosensors 77
4.5.4	Nucleic Acid Biosensors 78
4.6	PPy and PTh Composites with CNT and GN for Biosensing
	Applications 79
4.7	Conducting Polymer Composites with CNT and GN for the Detection of Organic Molecules 80
4.8	Conducting Polymer Composites with CNT and GN for Microbial
4.0	Biosensing 83
4.9	Conclusion and Future Research 83
	References 84
5	Graphene and Graphene Oxide Polymer Composite for Biosensors
	Applications 93
	Aftab Aslam Parwaz Khan, Anish Khan, and Abdullah M. Asiri
5.1	Introduction 93
5.2	Polymer–Graphene Nanocomposites and Their Applications 96
5.2.1	Polyaniline 97
5.2.2	Polypyrrole 102
5.3	Conclusions, Challenges, and Future Scope 106
	References 108
6	Polyaniline Nanocomposite Materials for Biosensor Designing 113
	Mohammad Oves, Mohammad Shahadat, Shakeel A. Ansari,
	Mohammad Aslam, and Iqbal IM Ismail
6.1	Introduction 113
6.2	Importance of PANI-Based Biosensors 118
6.3	Polyaniline-Based Glucose Biosensors 118
6.4	Polyaniline-Based Peroxide Biosensors 120
6.5	Polyaniline-Based Genetic Material Biosensors 121
6.6	Immunosensors 122
6.7	Biosensors of Phenolic Compounds 123
6.8	Polyaniline-Based Biosensor for Water Quality Assessment 123
6.9	Scientific Concerns and Future Prospects of Polyaniline-Based
	Biosensors 124
6.10	Conclusion 126
	References 126

7	Recent Advances in Chitosan-Based Films for Novel Biosensor 137 Akil Ahmad, Jamal A. Siddique, Siti H. M. Setapar, David Lokhat, Ajij Golandaj, and Deresh Ramjugernath
7.1	Introduction 137
7.2	Chitosan as Novel Biosensor 139
7.3	Application 151
7.4	Conclusion and Future Perspectives 152
	Acknowledgment 153
	References 153
8	Self Healing Materials and Conductivity 163 Jamal A. Siddique, Akil Ahmad, and Ayaz Mohd
8.1	Introduction 163
8.1.1	What Is Self-Healing? 163
8.1.2	History of Self-Healing Materials 163
8.1.3	What Can We Use Self-Healing Materials for? 164
8.1.4	Biomimetic Materials 164
8.2	Classification of Self-Healing Materials 164
8.2.1	Capsule-Based Self-Healing Materials 165
8.2.2	Vascular Self-Healing Materials 165
8.2.3	Intrinsic Self-Healing Materials 167
8.3	Conductivity in Self-Healing Materials 169
8.3.1	Applications and Advantages 170
8.3.2	Aspects of Conductive Self-Healing Materials 171
8.4	Current and Future Prospects 171
8.5	Conclusions 172
	References 173
9	Electrical Conductivity and Biological Efficacy of Ethyl Cellulose
	and Polyaniline-Based Composites 181
	Faruq Mohammad, Tanvir Arfin, Naheed Saba, Mohammad Jawaid,
	and Hamad A. Al-Lohedan
9.1	Introduction 181
9.2	Conductivity of EC Polymers 183
9.2.1	Synthesis of EC–Inorganic Composites 183
9.2.2	Conductivity of EC-Based Composites 184
9.3	Conductivity of PANI Polymer 187
9.3.1	Synthesis of PANI-Based Composites 189
9.3.2	Conductivity of PANI-Based Composites 190
9.4	Biological Efficacy of EC and PANI-Based Composites 192
9.5	Summary and Conclusion 194 Acknowledgments 195
	References 195
	ACICICICCS 170

10	Synthesis of Polyaniline-Based Nanocomposite Materials and Their Biomedical Applications 199 Mohammad Shahadat, Shaikh Z. Ahammad, Syed A. Wazed,
10.1	and Suzylawati Ismail
10.1 10.2	Introduction 199 Biomedical Applications of PANI-Supported Nanohybrid Materials 201
10.2.1	Biocompatibility 201
10.2.2	Antimicrobial Activity 202
10.2.3	Tissue Engineering 204
10.3	Conclusion 211
	Acknowledgment 211
	References 211
11	Electrically Conductive Polymers and Composites for Biomedical
	Applications 219
	Haryanto and Mohammad Mansoob Khan
11.1	Introduction 219
11.2	Conducting Polymers 219
11.2.1	Conducting Polymer Synthesis 221
11.2.1.1	Electrochemical Synthesis 221
11.2.1.2	Chemical Synthesis 221
11.2.2	Types of Conducting Polymer Used for Biomedical
	Applications 221
11.2.2.1	Polypyrrole 221
11.2.2.2	Polyaniline 222
11.2.2.3	Polythiophene and Its Derivatives 222
11.3	Conductive Polymer Composite 223
11.3.1	Types of Conductive Polymer Composite 223
11.3.1.1	Composites or Blends Based on Conjugated Conducting Polymers 223
11.3.1.2	Composites or Blends Based on Non-Conjugated Conducting Polymers 224
11.3.2	Methods for the Synthesis of Conductive Polymer Composites 225
11.3.2.1	Melt Processing 225
11.3.2.2	Mixing 225
11.3.2.3	Latex Technology 225
11.3.2.4	<i>In Situ</i> Polymerization Method 225
11.4	Biomedical Applications of Conductive Polymers 226
11.4.1	Electrically Conductive Polymer Systems (ECPs) for Drug Targeting
11.4.2	and Delivery 226 Electrically Conductive Polymer System (ECPs) for Tissue Engineering and Regenerative Medicine 227

xii | Contents

- 11.4.3 Electrically Conductive Polymer Systems (ECPs) as Sensors of Biologically Important Molecules 227
- 11.5 Future Prospects 228
- 11.6 Conclusions 228 References 228

Index 237