Contents

Preface xvii

Part I Visible-Light Active Photocatalysis – Research and Technological Advancements 1

1 Research Frontiers in Solar Light Harvesting 3

Srabanti Ghosh

- 1.1 Introduction 3
- 1.2 Visible-Light-Driven Photocatalysis for Environmental Protection 4
- 1.3 Photocatalysis for Water Splitting 8
- 1.4 Photocatalysis for Organic Transformations *11*
- 1.5 Mechanistic Studies of Visible-Light-Active Photocatalysis 13
- 1.6 Summary 14 References 15
- 2 Recent Advances on Photocatalysis for Water Detoxification and CO₂ Reduction 27
 - Carlotta Raviola and Stefano Protti
- 2.1 Introduction 27
- 2.2 Photocatalysts for Environmental Remediation and CO_2 Reduction 30
- 2.2.1 Undoped TiO₂ 30
- 2.2.2 Undoped Metal Oxides Different from TiO₂ 32
- 2.2.3 Carbon Modified Metal Oxides as Photocatalysts 33
- 2.2.4 Doped Metal Oxides 34
- 2.2.5 Perovskites 35
- 2.2.6 Metal Chalcogenides 36
- 2.2.7 Other Catalysts 37
- 2.3 Photoreactors for Solar Degradation of Organic Pollutants and CO₂ Reduction 38
- 2.3.1 Non Concentrating (Low Concentration or Low Temperature) Systems 39
- 2.3.2 Medium Concentrating or Medium Temperature Systems 40

- 2.3.3 High Concentrating or High-Temperature Systems 42
- 2.3.4 Parameters of a Solar Reactor 43
- 2.4 Conclusion 44 Acknowledgment 44 References 45

3 Fundamentals of Photocatalytic Water Splitting (Hydrogen and Oxygen Evolution) 53

Sanjib Shyamal, Paramita Hajra, Harahari Mandal, Aparajita Bera, Debasis Sariket, and Chinmoy Bhattacharya

- 3.1 Introduction 53
- 3.2 Strategy for Development of Photocatalyst Systems for Water Splitting 54
- 3.3 Electrochemistry of Semiconductors at the Electrolyte Interface 56
- 3.4 Effect of Light at the Semiconductor–Electrolyte Interface 58
- 3.5 Conversion and Storage of Sunlight 62
- 3.6 Electrolysis and Photoelectrolysis 63
- 3.7 Development of Photocatalysts for Solar-Driven Water Splitting 65
- 3.8 Approaches to Develop Visible-Light-Absorbing Metal Oxides 66
- 3.9 Conclusions 68 References 68
- 4 Photoredox Catalytic Activation of Carbon—Halogen Bonds: C—H Functionalization Reactions under Visible Light 75 Javier I. Bardagi and Indrajit Ghosh
- 4.1 Introduction 75
- 4.2 Activation of Alkyl Halides 77
- 4.3 Activation of Aryl Halides *91*
- 4.4 Factors That Determine the Carbon–Halogen Bond Activation of Aryl Halides *108*
- 4.5 Factors That Determine the Yields of the C—H Arylated Products *109*
- 4.6 Achievements and Challenges Ahead 109
- 4.7 Conclusion 110 References 110

Part II Design and Developments of Visible Light Active Photocatalysis 115

5 Black TiO ₂ : The New-Generation Photocatalyst	117	
---	-----	--

Sanjay Gopal Ullattil, Soumya B. Narendranath, and Pradeepan Periyat

- 5.1 Introduction 117
- 5.2 Designing Black TiO₂ Nanostructures *118*
- 5.3 Black TiO_2 as Photocatalyst 122
- 5.4 Conclusions 123 References 123

6	Effect of Modification of TiO ₂ with Metal Nanoparticles on Its
	Photocatalytic Properties Studied by Time-Resolved
	Microwave Conductivity 129
	Hynd Remita, María Guadalupe Méndez Medrano, and Christophe
	Colbeau-Justin
6.1	Introduction 129
6.2	Deposition of Metal Nanoparticles by Radiolysis and by
	Photodeposition Method 130
6.3	Electronic Properties Studied Time-Resolved Microwave
	Conductivity 132
6.3.1	Surface Modification of Titania with Monometallic
	Nanoparticles 133
6.3.1.1	Surface Modification of Titania with Pt Clusters 133
6.3.1.2	Surface Modification of TiO_2 with Pd Nanoparticles 135
6.3.1.3	Modification of TiO_2 with Ag Nanoparticles 136
6.4	Modification of TiO_2 with Au Nanoparticles 138
6.5	Modification of TiO_2 with Bi Clusters 144
6.6	Surface Modification of TiO_2 with Bimetallic Nanoparticles 146
6.6.1	Surface Modification with Au–Cu Nanoparticles 146
6.6.2	Surface Modification with Ag and CuO Nanoparticles 148
6.6.3	Comodification of TiO ₂ with Ni and Au Nanoparticles for Hydrogen
	Production 150
6.6.4	TiO ₂ Modified with NiPd Nanoalloys for Hydrogen Evolution 153
6.7	The Effect of Metal Cluster Deposition Route on Structure and
	Photocatalytic Activity of Mono- and Bimetallic Nanoparticles
	Supported on TiO_2 155
6.8	Summary 156
	References 157
7	Glassy Photocatalysts: New Trend in Solar Photocatalysis 165
	Bharat B. Kale, Manjiri A. Mahadadalkar, and Ashwini P. Bhirud
7.1	Introduction 165
7.2	Fundamentals of H_2S Splitting 166
7.2.1	General 166
7.2.2	Thermodynamics of H_2S Splitting 166
7.2.3	Role of Photocatalysts 167
7.3	Designing the Assembly for H_2S Splitting 168
7.3.1	Standardization of H_2S Splitting Setup 168
7.3.2	Interaction of Photocatalyst and Reagent System 169
7.4	Chalcogenide Photocatalysts 170
7.5	Limitations of Powder Photocatalysts 170
7.6	Glassy Photocatalyst: Innovative Approach 171
7.6.1	Semiconductor–Glass Nanocomposites and Their Advantages 171
7.7	General Methods for Glasses Preparation 172
7.7.1	Glass by Melt-Quench Technique 172

7.8 Color of the Glass – Bandgap Engineering by Growth of Semiconductors in Glass *174*

x Contents

7.9	CdS–Glass Nanocomposite 174
7.10	Bi_2S_3 -Glass Nanocomposite 178
7.11	Ag_3PO_4 -Glass Nanocomposite 179
7.11	
1.12	Summary 183 Acknowledgments 184
	References 184
	References 184
8	Recent Developments in Heterostructure-Based Catalysts for
-	Water Splitting 191
	Savio J. A. Moniz
8.1	Introduction 191
8.1.1	Band Alignment 193
8.2	Visible-Light-Responsive Junctions 195
8.2.1	BiVO ₄ -Based Junctions 195
8.2.1.1	$BiVO_4/WO_3$ 197
8.2.1.2	$BiVO_4/ZnO$ 197
8.2.1.3	$BiVO_4/TiO_2$ 199
8.2.1.4	$BiVO_4/Carbon-Based Materials$ 199
8.2.2	Fe_2O_3 -Based Junctions 199
8.2.3	WO_3 -Based Junctions 201
8.2.4	C_3N_4 -Based Junctions 202
8.2.5	Cu ₂ O-Based Junctions 204
8.3	Visible-Light-Driven Photocatalyst/OEC Junctions 207
8.3.1	BiVO ₄ /OEC 207
8.3.2	Fe_2O_3/OEC 207
8.3.3	WO ₃ /OEC 208
8.4	Observation of Charge Carrier Kinetics in Heterojunction
	Structure 209
8.4.1	Transient Absorption Spectroscopy 209
8.4.2	Electrochemical Impedance Spectroscopy 211
8.4.3	Surface Photovoltage Spectroscopy 213
8.5	Conclusions 215
	References 216
0	Conducting Doluments New orthwattunes for Solar Linkt
9	Conducting Polymers Nanostructures for Solar-Light
	Harvesting 227
0.1	Srabanti Ghosh, Hynd Remita, and Rajendra N. Basu
9.1	Introduction 227
9.2	Conducting Polymers as Organic Semiconductor 228
9.3	Conducting Polymer-Based Nanostructured Materials 231
9.4	Synthesis of Conducting Polymer Nanostructures 231
9.4.1	Hard Templates 232
9.4.2	Soft Templates 232
9.4.3	Template Free 233
9.5	Applications of Conducting Polymer 233
9.5.1	Conducting Polymer Nanostructures for Organic Pollutant
	Degradation 233

Contents xi

9.5.2	Conductin	ng Polymer Nanostructures for Photocatalytic Water
	Splitting	237

- 9.5.3 Conducting Polymer-Based Heterostructures 242
- 9.6 Conclusion 245 References 246

Part III Visible Light Active Photocatalysis for Solar Energy Conversion and Environmental Protection 253

- Sensitization of TiO₂ by Dyes: A Way to Extend the Range of Photocatalytic Activity of TiO₂ to the Visible Region 255 Marta I. Litter, Enrique San Román, the late María A. Grela, Jorge M. Meichtry, and Hernán B. Rodríguez
- 10.1 Introduction 255
- 10.2 Mechanisms Involved in the Use of Dye-Modified TiO_2 Materials for Transformation of Pollutants and Hydrogen Production under Visible Irradiation 256
- 10.3 Use of Dye-Modified TiO_2 Materials for Energy Conversion in Dye-Sensitized Solar Cells 260
- 10.4 Self-Sensitized Degradation of Dye Pollutants 262
- 10.5 Use of Dye-Modified TiO₂ for Visible-Light-Assisted Degradation of Colorless Pollutants 265
- 10.6 Water Splitting and Hydrogen Production using Dye-Modified TiO₂ Photocatalysts under Visible Light 269
- 10.7 Conclusions 270 Acknowledgement 271 References 271
- 11 Advances in the Development of Novel Photocatalysts for Detoxification 283 Ciara Byrne, Michael Nolan, Swagata Banerjee, Honey John, Sheethu Jose, Pradeepan Periyat, and Suresh C. Pillai
- 11.1 Introduction 283
- 11.2 Theoretical Studies of Photocatalysis 285
- 11.2.1 Doping and Surface Modification of TiO_2 for Bandgap Engineering 285
- 11.2.2 Alignment of Valence and Conduction Band Edges with Water Oxidation and Reduction Potentials 291
- 11.2.3 Electron and Hole Localization 293
- 11.3 Metal-Doped Photocatalysts for Detoxification 296
- 11.3.1 High-Temperature Stable Anatase TiO₂ Photocatalyst 296
- 11.3.2 Main Group Metal Ions on Anatase Stability and Photocatalytic Activity 296
- 11.3.3 Effect of Transition Metals on Anatase Stability and Photocatalytic Activity 296

xii Contents

- 11.3.4 Effect of Rare Earth Metal Ions on Anatase Stability and Photocatalytic Activity 297
- 11.4 Graphene-TiO₂ Composites for Detoxification 299
- 11.5 Commercial Applications of Photocatalysis in Environmental Detoxification *303*
- 11.5.1 Self-Cleaning Materials 303
- 11.5.2 Bactericidal 307
- 11.5.3 Wastewater Detoxification 308
- 11.6 Conclusions 313 References 313

12 Metal-Free Organic Semiconductors for Visible-Light-Active Photocatalytic Water Splitting 329

S. T. Nishanthi, Battula Venugopala Rao, and Kamalakannan Kailasam

- 12.1 Introduction 329
- 12.2 Organic Semiconductors for Photocatalytic Water Splitting and Emergence of Graphitic Carbon Nitrides 331
- 12.3 Graphitic Carbon Nitrides for Photocatalytic Water Splitting 332
- 12.3.1 Precursor-Derived g-CN 334
- 12.3.2 Nanoporous g-CN by Templating Methods 336
- 12.3.2.1 Hard Templating 337
- 12.3.2.2 Soft Templating 339
- 12.3.2.3 Template-Free 340
- 12.3.3 Heteroatom Doping 341
- 12.3.3.1 Metal Doping 341
- 12.3.3.2 Nonmetal Doping 342
- 12.3.4 Metal Oxides/g-CN Nanocomposites 344
- 12.3.5 Graphene and CNT-Based g-CN Nanocomposites 345
- 12.3.6 Structural Modification with Organic Groups 345
- 12.3.7 Crystalline Carbon Nitrides 347
- 12.3.8 Overall Water Splitting and Large-Scale Hydrogen Production Using Carbon Nitrides 348
- 12.4 Novel Materials 349
- 12.4.1 Triazine and Heptazine-Based Organic Polymers 349
- 12.4.2 Covalent Organic Frameworks (COFs) and Beyond 350
- 12.5 Conclusions and Perspectives 351 References 352
- **13** Solar Photochemical Splitting of Water 365

Srinivasa Rao Lingampalli and C. N. R. Rao

- 13.1 Introduction 365
- 13.2 Photocatalytic Water Splitting 366
- 13.2.1 Fundamentals of Water Splitting 366
- 13.2.2 Light-Harvesting Units 367
- 13.2.3 Photocatalytic Activity 369
- 13.2.4 Effect of Size of Nanostructures 369

- 13.3 Overall Water Splitting 371
- 13.3.1 One-Step Photocatalytic Process 371
- 13.3.2 Two-Step (Z-Scheme) Photocatalytic Process 374
- 13.4 Oxidation of Water 376
- 13.5 Reduction of Water 380
- 13.5.1 C_3N_4 and Related Materials 380
- 13.5.2 Semiconductors 382
- 13.5.3 Multicomponent Heterostructures 383
- 13.6 Coupled Reactions 386
- 13.7 Summary and Outlook 387 Acknowledgments 387 References 387
- 14Recent Developments on Visible-Light Photoredox Catalysis by
Organic Dyes for Organic Synthesis393

Shounak Ray, Partha Kumar Samanta, and Papu Biswas

- 14.1 Introduction 393
- 14.2 General Mechanism 393
- 14.3 Recent Application of Organic Dyes as Visible-Light Photoredox Catalysts *396*
- 14.3.1 Photocatalysis by Eosin Y 396
- 14.3.1.1 Perfluoroarylation of Arenes 396
- 14.3.1.2 Synthesis of Benzo[b]phosphole Oxides 397
- 14.3.1.3 Direct C—H Arylation of Heteroarenes 398
- 14.3.1.4 Synthesis of 1,2-Diketones from Alkynes 399
- 14.3.1.5 Thiocyanation of Imidazoheterocycles 401
- 14.3.2 Photocatalysis by Rose Bengal 402
- 14.3.2.1 Aerobic Indole C-3 Formylation Reaction 402
- 14.3.2.2 Decarboxylative/Decarbonylative C3-Acylation of Indoles 404
- 14.3.2.3 Oxidative Annulation of Arylamidines 405
- 14.3.2.4 Cross-Dehydrogenative Coupling of Tertiary Amines with Diazo Compounds 406
- 14.3.2.5 C—H Functionalization and Cross-Dehydrogenative Coupling Reactions 407
- 14.3.2.6 Oxidative Cross-Coupling of Thiols with P(O)H Compounds 408
- 14.3.3 Photocatalysis by Methylene Blue 409
- 14.3.3.1 Oxidative Hydroxylation of Arylboronic Acids 409
- 14.3.3.2 Radical Trifluoromethylation 410
- 14.3.4 Photocatalysis by 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine 411
- 14.3.4.1 Synthesis of 2-Substituted Benzimidazole and Benzothiazole 411
- 14.3.4.2 Oxidation of Alcohols to Carbonyl Derivatives 413
- 14.3.5 Photocatalysis by Phenothiazine Dyes: Oxidative Coupling of Primary Amines 414
- 14.4 Conclusion 415 Abbreviations 415 References 415

xiv Contents

15	Visible-Light Heterogeneous Catalysts for Photocatalytic CO ₂
	Reduction 421
	Sanyasinaidu Boddu, S.T. Nishanthi, and Kamalakannan Kailasam
15.1	Introduction 421
15.2	Pasic Principles of Photocatalytic CO Poduction (12)

- 15.2 Basic Principles of Photocatalytic CO₂ Reduction 422
 15.2.1 Thermodynamic Favorability of the Reactions 423
- 15.3 Inorganic Semiconductors 424
- 15.3.1 Metal Oxides 424
- 15.3.2 Sulfides 428
- 15.3.3 Oxynitrides 429
- 15.4 Organic Semiconductors 430
- 15.4.1 Carbon Nitride and their Composites 430
- 15.4.2 Metal Organic Frameworks (MOFs) 434
- 15.4.3 Covalent Organic Frameworks 435
- 15.5 Semiconductor Heterojunctions 436
- 15.6 Conclusion and Perspectives 437 References 438

Part IV Mechanistic Studies of Visible Light Active Photocatalysis 447

- 16 Band-gap Engineering of Photocatalysts: Surface Modification versus Doping 449 Ewa Kowalska, Zhishun Wei, and Marcin Janczarek
- 16.1 Introduction 449
- 16.2 Doping 451
- 16.2.1 Metal Ion Doping 451
- 16.2.2 Nonmetal Ion Doping 453
- 16.2.3 Codoping 455
- 16.2.4 Self-Doping 457
- 16.3 Surface Modification 458
- 16.3.1 Metals 458
- 16.3.2 Nonmetals 464
- 16.3.3 Organic Compounds (Colorless and Color) 464
- 16.4 Heterojunctions 468
- 16.4.1 Excitation of One Component 468
- 16.4.2 Excitation of Both Components 469
- 16.5 Z-Scheme 470
- 16.6 Hybrid Nanostructures 471
- 16.7 Summary 473
 - References 473

- 17 Roles of the Active Species Generated during Photocatalysis 485 Mats Jonsson
- 17.1 Introduction 485
- 17.2 Mechanism of Photocatalysis in TiO₂/Water Systems 486
- 17.3 Active Species Generated at the Catalyst/Water Interface 486
- 17.4 Oxidative Degradation of Solutes Present in the Aqueous Phase 490
- 17.5 Impact of H_2O_2 on Oxidative Degradation of Solutes Present in the Aqueous Phase 492
- 17.6 The Role of Common Anions Present in the Aqueous Phase 493
- 17.7 Summary of Active Species Present in Heterogeneous Photocatalysis in Water 494

References 495

18 Visible-Light-Active Photocatalysis: Nanostructured Catalyst Design, Mechanisms, and Applications 499 Ramachandran Vasant Kumar and Michael Coto

- 18.1 Introduction 499
- 18.2 Historical Background 499
- 18.3 Basic Concepts 501
- 18.4 Structure of TiO_2 504
- 18.5 Photocatalytic Reactions 506
- 18.6 Physical Architectures of TiO₂ 507
- 18.7 Visible-Light Photocatalysis 509
- 18.8 Ion Doping and Ion Implantation 510
- 18.9 Dye Sensitization 513
- 18.10 Noble Metal Loading 514
- 18.11 Coupled Semiconductors 518
- 18.12 Carbon–TiO₂ Composites 518
- 18.13 Alternatives to TiO₂ 520
- 18.14 Conclusions 521 References 522

Part V Challenges and Perspectives of Visible Light Active Photocatalysis for Large Scale Applications 527

- **19 Quantum Dynamics Effects in Photocatalysis** 529
 - Abdulrahiman Nijamudheen and Alexey V. Akimov
- 19.1 Introduction 529
- 19.2 Computational Approaches to Model Adiabatic Processes in Photocatalysis *531*

xvi Contents

19.3	Computational Approaches to Model Nonadiabatic Effects in
	Photocatalysis 532
19.4	Quantum Tunneling in Adiabatic and Nonadiabatic Dynamics 535
19.5	The Mechanisms of Organic Reactions Catalyzed by Semiconductor
	Photocatalysts 541
19.5.1	Methanol Photooxidation on Semiconductor Surfaces 541
19.5.2	Water-Splitting Reactions on Semiconductor Surfaces 544
19.5.3	Carbon Oxide Redox Reactions on Semiconductor Surfaces 546
19.6	Conclusions and Outlook 547
	References 549
20	An Overview of Solar Photocatalytic Reactor Designs and Their
20	Broader Impact on the Environment 567
	Justin D. Glover, Adam C. Hartley, Reid A. Windmiller, Naoma S. Nelsen,
	and Joel E. Boyd
20.1	Introduction 567
20.2	Materials 568
20.3	Slurry-Style Photocatalysis 569
20.4	Deposited Photocatalysts 569
20.5	Applications 570
20.5.1	Gas Phase and Self-Cleaning Applications 570
20.5.2	Water Purification Applications 571
20.5.3	Inclined Plate Collectors 571
20.5.4	Parabolic Trough Concentrator 572
20.5.5	Compound Parabolic Concentrator Reactor 573
20.5.6	The Environmental Impact of Nanoscale Titania 574
20.5.7	Detecting and Quantifying Nanoparticles 574
20.5.8	Transformation of Nanoparticles in the Environment 575
20.5.9	Toxicity of Nanoparticles 576
20.6	Conclusion 577
	References 577
21	Conclusions and Future Work 585
	Srabanti Ghosh

Index 589