FIORD errata list

(Typographical errors in Fundamentals of Ionizing Radiation Dosimetry, Wiley 2017)

Pedro Andreo, David T. Burns, Alan E. Nahum, and Jan Seuntjens

October 8, 2018

PAGE

20 - In Table 1.3 the c_0 and c_1 fitting coefficients for the L-shell fluorescence yield in the Z range 26-51 should be

Fluorescence	Range	Fitting coefficient				
yield	of Z	c_0	c_1	c_2	c_3	c_4
$\omega_{ m L}$	26-51	-9.2521×10^{-2}	8.7531×10^{-3}	-2.8087×10^{-4}	3.4823×10^{-6}	_

- 21 The legend of Figure 1.6(b) should read "Mean fluorescence x-ray energies, \bar{k}_i (dashed lines), in the K, L1 and M1 shells; for comparison, the binding energies, $U_{\rm B}(i)$ are also shown (solid lines)".
- 99 In Figure 2.34, the labelling of the electronic stopping power curves $(S_{\rm el}/\rho)$ is incorrect: C should be the top curve and U the bottom curve, i.e.,

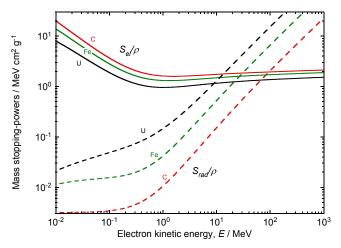


Figure 2.34. Mass radiative (dashed lines) and electronic (solid lines) stopping powers as a function of the kinetic energy of electrons in carbon (Z=6), iron (Z=26), and uranium (Z=92). (Data from ICRU, 1984b).

156 - In eqs. (3.31) – (3.34), the polarization angle ϕ should be replaced by φ , and the last term of eq. (3.33) should have E_0^2 instead of E_0 , i.e.,

$$B_{\text{out}} = \frac{e}{4\pi\varepsilon_0} \, \frac{\dot{v} \, \sin\varphi}{c^3 \, r} = \frac{E_{\text{out}}}{c} \tag{3.31}$$

$$S_{\text{out}} = \frac{E_{\text{out}}B_{\text{out}}}{\mu_0} = \frac{E_{\text{out}}^2}{c\,\mu_0} = \varepsilon_0 \, c \, E_{\text{out}}^2 = \varepsilon_0 \, c \left(\frac{e}{4\pi\varepsilon_0 c^2} \, \frac{\dot{v} \, \sin\varphi}{r}\right)^2 \tag{3.32}$$

$$S_{\text{out}} = \varepsilon_0 c \left(\frac{e}{4\pi\varepsilon_0 c^2} \frac{\sin \varphi}{r} \right)^2 \left(\frac{e}{m_e} E_0 \sin \omega t \right)^2 = \varepsilon_0 c \frac{r_e^2 E_0^2 \sin^2 \omega t \sin^2 \varphi}{r^2}$$
(3.33)

$$\bar{S}_{\text{out}} = \varepsilon_0 c \overline{E_{\text{out}}^2} = \varepsilon_0 c \frac{r_{\text{e}}^2 E_0^2 \overline{\sin^2 \omega t} \overline{\sin^2 \varphi}}{r^2} = \frac{1}{2} \varepsilon_0 c r_{\text{e}}^2 E_0^2 \overline{\sin^2 \varphi}}{r^2}$$
(3.34)

169 - In Figure 3.16(b), the label of the y-axis should be " $d\sigma_{c,KN}/d\phi$ /(mb electron⁻¹ rad⁻¹)"

173 - In eq. (3.95), $m_e c^2$ on both sides of the equation should be squared, i.e.,

$$E'_{\text{tot}}^2 - (m_e c^2)^2 = c^2 (q^2 + 2 \mathbf{q} \cdot \mathbf{p}_e) + E_{\text{tot}}^2 - (m_e c^2)^2$$
 (3.95)

249 - In Table 4.2 the photon attenuation values should be

Primary	Photon attenuation (%)	Neutron attenuation (%)	
radiation	over maximum	over maximum	
energy (MeV)	secondary electron range	secondary proton range	
0.1	0.25	0.05	
1.0	2.31	0.04	
10	10.2	0.5	
30	20.0	1.5	

258 - The answer to exercise #13 should be:

Answer:
$$K = 7.65 \times 10^5 \text{ erg g}^{-1} = 76.5 \text{ Gy}$$
; $K_{el} = 5.58 \times 10^5 \text{ erg g}^{-1} = 55.8 \text{ Gy}$.

as there was a typo in the erg-to-MeV conversion. The full solution (for the Exercises book) then becomes

(a) For the total kerma, $K = \Psi (\mu_{\rm tr}/\rho)_{\rm Pb}$, where

$$\Psi = 3.5 \times 10^6 \, \frac{\text{phot}}{\text{cm}^2 \, \text{s}} \times 6.048 \times 10^5 \, \text{s} \times \frac{6 \, \text{MeV}}{\text{phot}} \times \frac{1.6022 \times 10^{-6} \, \text{erg}}{\text{MeV}} = 2.0349 \times 10^7 \, \frac{\text{erg}}{\text{cm}^2}$$

and from the Data Tables

$$(\mu_{\rm tr}/\rho)_{\rm Pb, 6MeV} = 0.0376\,{\rm cm^2/g}$$

therefore

$$K = 2.0349 \times 10^7 \frac{\text{erg}}{\text{cm}^2} \times 0.0376 \frac{\text{cm}^2}{\text{g}} = 7.6513 \times 10^5 \frac{\text{erg}}{\text{g}} = 76.51 \text{ Gy}$$

(b) For the electronic kerma, $K_{\rm el} = \Psi \; (\mu_{\rm en}/\rho)_{\rm Pb}$

$$(\mu_{\rm en}/\rho)_{\rm Pb,6MeV} = 0.0274\,{\rm cm}^2/{\rm g}$$

therefore

$$K_{\rm el} = 2.0349 \times 10^7 \, \frac{\rm erg}{\rm cm^2} \times 0.0274 \, \frac{\rm cm^2}{\rm g} = 5.5757 \times 10^5 \, \frac{\rm erg}{\rm g} = 55.76 \, \rm Gy$$

- **417** In Figure 9.11, the label of the x-axis should be "y / MV"
- 524 Six lines after eq. (12.35), the Boag et al. reference should be 1996, instead of 1966
- **842** In Table A.1, under "Atomic mass constant", delete the factor $\times 10^8$ for the unit of $m_{\rm u}$ in MeV, i.e., $m_{\rm u}=931.494~061(21)~{\rm MeV}$