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Persistent toxic substances (PTS) are chemical species that possess the properties
of bioaccumulation, degradation difficulty, and poison [1–6]. Usually, PTS pri-
marily refer to persistent organic pollutants (POPs, including polycyclic aromatic
hydrocarbons (PAHs); polybrominated diphenyl ethers (PBDEs); polychlorinated
biphenyls (PCBs); and organochlorine pesticides (OCPs)) and heavy metal ions
(HMIs, including Pb(II), Cd(II), Cr(VI), As(III), and so on) [7–9]; the details can
be found in Chapter 2 (PTS in aquatic environment). The most popular PTS
include POPs, which are organic chemical substances that could remain intact for
a long period, accumulate in the tissues of living organisms (bioaccumulation),
and have toxic effects. POPs usually come from various pesticides, industrial
chemicals, and unintentional chemical by-products such as dioxins. POPs are
now globally distributed, including in environments where they have never been
used, and are linked to a range of health effects, such as cancer, allergies, and
hypersensitivity, damage to the central and peripheral nervous systems, repro-
ductive disorders, and disruption of the immune system. Other persistent, bioac-
cumulative, and toxic (PBTs) substances include organometallic substances, such
as organomercury. The attributes of POPs and PBTs mean they will continue
to do great damage to human health and the environment for a long period of
time. These chemicals have seriously destructive effect on health and environ-
ment. It may include carcinogenicity, reproductive impairment, developmental
and immune system changes, and endocrine disruption, thus posing a threat of
lowered reproductive success and, in extreme cases, possible loss of biological
diversity [10–13]. At present, there is concern due to these pollutants’ ability to
travel long distances through the atmosphere or oceans to places where these
compounds have never been used before [14–18]. A PTS study in different chem-
ical environment such as soils, sediments, water, and snow in geographical areas
with a continuous matter cycling flux could provide insights into the biogeo-
chemical cycling of the pollutants within hydrographical basins according to their
anthropogenic influence [19].

The detection and monitoring of environmental pollutants is very important
in the overall safety and security of humans, other animals, and plants. A variety
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of environmental media including water, sediment, and biomonitors have been
utilized to monitor contaminants. For example, Mussel Watch monitoring uses
bivalves and has been implemented successfully regionally and internationally
[20]. Although these devices do not require large amounts of water samples to be
collected and transported, technical operations are necessary to install them on
site [21]. In these contexts, it would be invaluable to establish monitoring media,
which could easily be collected and shipped at relatively low cost. Recently, a
variety of analytical techniques for PTS monitoring have been reported, such
as cold vapor atomic fluorescence spectrometry (CV-AFS), atomic absorption
spectroscopy (AAS), inductively coupled plasma atomic emission spectrom-
etry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS),
synchrotron-based probing techniques, and so on [22–24]. While highly sen-
sitive and selective, traditional chromatographic and spectroscopic analytical
techniques are time consuming, expensive, and require much expertise. In
a word, the above-mentioned methods involve use of expensive instruments
and materials, require complicated procedures, and are not suitable for in situ
analysis due to the ponderous and complicated instruments. Therefore, there is
need for simple, rapid, specific, sensitive, and portable methods for analyzing
environmental security threats.

Electrochemical sensors are an important and representative subclass of
chemical sensors. In terms of electrochemical sensor, an electrode is used as the
sensing element, and it is highly qualified for meeting the size, cost, and power
requirements of environmental monitoring [25, 26]. High sensitivity, selectivity,
and a wide linear range are important characteristics of electrochemical sensing
systems. Additionally, it requires only minimal space and low power source, and
low-cost instrumentation. This kind of device has been applied in a vast range of
fields of clinical, industrial, environmental, and agricultural analyses. In the past
several decades, electrochemical devices have been used for PTS monitoring,
which could serve as a variety of water quality parameters (e.g. conductivity,
dissolved oxygen, or pH). Consequently, electrochemical sensors have led to
a wider range of environmental applications including the measurement of
trace metals in natural waters [27–36], carcinogen monitoring (e.g. N-nitroso
compounds or aromatic amines) [37–44], the development of biosensors for
the detection of organic pollutants (e.g. pesticides, phenols) in ground water
[45–53], and environmental protection and clean energy conversion [49, 54–58],
providing a fast return of the analytical information in a timely, safe, and
cost-effective manner. Such devices could offer direct and reliable monitoring
(including assessment of the fate and gradient of the target analytes).

Electroanalytical sensors are concerned with the interplay between electricity
and chemistry, namely, the measurements of electrical quantities, such as cur-
rent, potential, or charge, and their relationship to chemical parameters, such
as the concentration of PTS. Most of the electrochemical devices used for envi-
ronmental monitoring fall within three categories and ultimately depend upon
the specific analyte, nature of the sample matrix, and the sensitivity and selectiv-
ity requirements [32, 59]. Amperometry and voltammetry are the main methods
in electrochemical sensing. The use of a potential applied between a reference
electrode and a working electrode could cause the oxidation or reduction of an
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electroactive species. Thus, the applied potential will serve as the driving force
for the electron-transfer reaction. The resulting current is a direct measure of
the rate of the electron-transfer reaction and is proportional to the target ana-
lyte concentration. The most common example is the oxygen Clark electrode that
has been widely used for monitoring the level of oxygen in the water column and
sediment pore water. Potentiometry is another method in electrochemical sens-
ing. In potentiometric sensors (primarily ion-selective electrodes), the analytical
information is obtained by converting an ion-recognition event into a potential
signal. A local equilibrium is established across the recognition membrane, lead-
ing to a change in the membrane potential. The analytical information is obtained
from the potential difference between the ion-selective electrode and a reference
electrode. Potentials are a function of species activity, not concentration. Typical
examples are potentiometric devices for in situ monitoring of pH and concen-
tration of CO2 or S2−. Conductimetry is the third method in electrochemical
sensing. Conceptually, it is the simplest of the electroanalytical techniques but
is inherently nonspecific. The concentration of the charge is obtained through
measurement of solution resistance. Usually, voltammetry and conductimetry
are two main techniques applied in monitoring PTS, and the details can be found
in Chapter 3.

The nanoelectrochemical method involves the electrodes and materials
applied in monitoring of PTS at the micro–nano scale. In terms of the electrodes
in the detection of PTS, the ultra-microelectrode has unique electrochem-
ical properties when compared with conventional counterparts. The use of
ultra-microelectrodes (with diameter smaller than 20 μm) has been employed
for minimizing errors associated with fluctuations in natural convection. Such
relative independence of microelectrode sensors from convective flow reflects
the larger natural convection boundary layer compared to the Nernst layer. In
addition, the decreased ohmic distortions at ultra-microelectrodes allow direct
electrochemical measurements to be made in aquatic systems (e.g. inland water)
of low ionic strength. This also obviates the need for supporting electrolyte,
thereby minimizing possible impurities. For example, Brendel and Luther
demonstrated the utility of a voltammetric microelectrode for obtaining depth
profiles of dissolved iron, manganese, oxygen, and S2− in marine environments
[60]. Besides, the intrinsic sensitivity, simplicity, and portability of electrochem-
ical methods have been receiving much more attention in the monitoring of
PTS [61–64]. Owing to the small electrode area of the micro–nano electrodes,
the electric double layer capacitance and the electrode time constant are small,
resulting in a fast electrode response rate. Compared to conventional elec-
trodes, micro–nano electrodes are suitable for electrochemical measurement
techniques, such as square wave voltammetry (SWV), pulse voltammetry, and
fast scan voltammetry. Additionally, the small electric double layer capacitance
endows micro–nano electrodes with a small charging current and fast decay
rate. Consequently, the charging current interference is minimized in the
electrochemical analysis process, significantly improving the sensitivity and
reducing the limit of detection. The intrinsically small diameters and high aspect
ratios allow them to be applied in the field of electrochemical monitoring of
PTS. Recently, our group and Compton’s group have made some achievements
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in the detection of HMIs with the help of micro–nano electrodes [65–79], which
will be discussed in detail in Chapter 10.

On the other hand, using nanomaterials to modify electrodes to improve
the electrochemical sensing performance has been proved the most popular
method [80–86]. Nanomaterials may be decorated with polymers and bioactive
molecules (e.g., monoclonal antibodies) in order to enhance biocompatibility
and to achieve precise targeting; they are increasingly being employed in the
development of electrochemical DNA biosensors due to their unique electro-
catalytic properties. Functionalized nanomaterials offer excellent prospects for
interfacing biological recognition events with electronic signal transduction
in the design of a new generation of bioelectronic devices that exhibit novel
functions [87]. Additionally, it has been observed that chemical composition,
surface condition, crystal structure quality, crystallographic axis orientation, etc.
are critical parameters of nanomaterials, which cumulatively influence electron
transport mechanisms [88–95]. Two major advantages of nanomaterials are
their potential to be utilized as noninvasive diagnostic tools and the capacity
for combining multiple modalities within a single probe. This enables far higher
sensitivities to be achieved, which leads to further clarity and deeper insights
into in vivo processes [31, 81, 82, 96–100]. Nanomaterials are also ideally suited
to be applied as drug-delivery systems, which may facilitate the development
of a new generation of theranostics with exquisitely sensitive chemical and
biological sensing capabilities [101–109]. The ability to identify particular cell
species or specific anatomical sites within the human body may bode very well
for the use of nanobiosensors in medical diagnostics. Given their sensitivity,
flexibility, and miniaturization, these sensors may serve as a new paradigm for
clinical and field-deployable analytical instruments. The intent of this review
is to impart insights into nanomaterials-based electrochemical sensors, and
to illustrate their potential benefits in various key biomedical applications.
Electrochemistry provides powerful analytical techniques encompassing the
advantages of instrumental simplicity, moderate cost, and portability. Modern
electrochemical methods are sensitive, selective, rapid, and facile techniques
applicable to biomedical fields, and indeed in most areas of analytical chemistry.
A number of electrochemical strategies have been explored in the development
of nanomaterials-based electrochemical sensors for biomedical applications. In
nanoelectrochemical sensing, voltammetric techniques have been extremely
useful in measuring blood levels, metabolites, and the urinary excretion of drugs
following low doses, especially when coupled with chromatographic methods.
Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) have evoked
great interest as they can be used for the elucidation of electrode processes
and redox mechanisms [110]. Differential pulse voltammetry (DPV) [111] and
SWV [112] are particularly useful in the determination of trace amounts of
electroactive compounds in pharmaceuticals and biological fluids. Stripping
voltammetry has also been widely utilized due to its ability to preconcentrate
analytes for ultrasensitive detection [113]. Amperometry is another common
electrochemical technique that has been widely employed in electrochemical
sensors and biosensors. More details can be found in Chapter 3. Electro-
chemiluminescent (ECL) and photoelectrochemical assays are also promising
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prospective technologies in that they possess the advantage of enabling both
optical and electrochemical detection. Various signal amplification strategies
based on functional nanomaterials, coupled with different electrochemical
methods, have recently gained considerable interest toward the emergence
of high-performance analytical tools for the ultrasensitive detection of trace
amounts of a wide variety of analytes, including DNA and micro-RNA assays in
clinical and environmental applications [114].

In this book, PTS in aquatic environment is first introduced in Chapter 2.
Common electrochemical principles, such as voltammetry and conductimetry
for PTS detection, are discussed in Chapter 3. Design concepts of nano-
electrochemical sensing interface, including adsorption capability-enhanced
electrochemical signal, selective adsorption for selective recognition, electro-
catalytic performance for enhanced sensitivity, and controllable preparation of
specific crystal facet to boost sensitivity are presented in Chapter 4. The popular
carbon-based nanomaterials modification for enhanced selectivity and sensi-
tivity toward PTS is recommended in Chapter 5. Facet and phase-dependent
electroanalysis performance of nanocrystals is utilized in PTS monitoring to
investigate the mechanism of electrochemical detection at atomic level, as
shown in Chapter 6. Mutual interferences between HMIs on the electrochemical
nanointerfaces are demonstrated in Chapter 7. Metal oxide and its composite
nanomaterials for electrochemical monitoring of PTS are presented in Chapter
8. A new method, nanogap for detection of PTS, is shown in Chapter 9. Nano-
electrodes are used in the determination of PTS, as demonstrated in Chapter 10.
Electrochemical-assisted preconcentration for the spectral detection of PTS is
presented in Chapter 11. At the end of the book (Chapter 12), conclusions and
future perspectives are given based on the present study. All these contents have
been reviewed in detail and the reader could find them in the corresponding
chapters. Nanoelectrochemical methods provide a new and powerful paradigm
in terms of novel and augmented functionality that encompasses a wide variety
of applications in environment analysis research. This brief survey of various
electrochemical sensing strategies may facilitate the development of advanced
applications in environment electroanalysis field.
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