Index

а	continuous catalyst regeneration
A8 isomers 322	reforming 326
absolute average deviation (AAD) 53	fluid catalytic cracking 208
absorbers	hydroprocessing units 443, 512
atmospheric distillation unit 92, 160	amine 69, 474
fluid catalytic cracking 187	aniline point 5
vacuum distillation unit 160	API gravity 2
acentric factor 39	Apparent heat of cracking 257
acid-catalyzed cracking reactions 189	Aqueous phase 95
acid number, ASTM D3339-11 5	Arab Heavy density distribution 79
activity coefficient 47	Arab Heavy TBP distillation curve 78
activity factors	Arab Light density distribution 81
alkylation 518	Arab Light TBP distillation curve 80
continuous catalyst generation	aromatic content 207
reforming 384	coefficients for 206
fluid catalytic cracking 200, 265	aromatic hydrogenation 464, 513
hydrocracking 491 hydroprocessing units 425, 476	aromatic ring condensation 189
hydroprocessing units 425, 476 adjustment factors 332	aromatics
adsorption 310	continuous catalyst regeneration
advanced kinetic and property	reforming 309, 344
parameters 532	fluid catalytic cracking 191, 235
air leaks 153	hydroprocessing units 413
alkylation	Arrhenius equation 530
feed components and alkylation	Aspen HYSYS
kinetics 518–519	alkylation model 518
hydrofluoric acid alkylation process	atmospheric distillation unit 77
simulation 519–527	continuous catalyst regeneration
process description 517-518	reforming 354
alkylation simulation model 520	main fractionator 267
alkylcycloalkanes 311	initial component and
alkylcyclepentanes 311	thermodynamics setup 356,
American Petroleum Institute (API)	358
correlations	input feedstock and process variables
atmospheric distillation unit 85	362, 367

Petroleum Refinery Process Modeling: Integrated Optimization Tools and Applications, First Edition. Y. A. Liu, Ai-Fu Chang, and Kiran Pashikanti.
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2018 by Wiley-VCH Verlag GmbH & Co. KGaA.

Aspen HYSYS (contd.)	plant performance, adjustments to
molecular composition information	104
372, 376	pumparounds for 98–101
for process engineering 551	results 105–109
oil fractions 25–32	side strippers 95–98
process overview and relevant data	thermodynamic model selection
354, 356	84–87
refinery reactor models 552	validating column model predictions,
reformer configuration 358, 362	reality checks for 105
with rigorous reactor 553	Aspen HYSYS petroleum refining,
solver parameters and running initial	delayed coker model 530
model 368, 369	Aspen HYSYS petroleum refining FCC
vacuum distillation unit 157, 165	model
viewing model results 370	and associated gas plant, schematic
Aspen HYSYS petroleum refining	illustration 211
catalytic reformer model 354	average voidage 196–197
deep-cut operation 172	calibration parameters 199–200
delayed coker 530	catalyst deactivation 198–199
fluid catalytic cracking 231	debutanizer temperature profile 218
hydrocracking 471	diesel density comparison 215
new petroleum assay manager	diesel flash point comparison 215
25–32	diesel product, ASTM D86 distillation for 213
old oil manager 16–25	
Aspen HYSYS petroleum refining, atmospheric CDUs	distillation curves 203–205 dry gas composition 216
adding custom stream properties	fractionation 200–202
101–104	gasoline density comparison 214
Arab Heavy assays, bulk properties of	gasoline product, ASTM D86
83	distillation for 213, 214
Arab Light assays, bulk properties of	kinetic lump transition to boiling
84	point-based pseudocomponents
blend streams, specification of 86	208
creating blends from assays 81, 85	LPG composition 216
creation and configuration of CDU	21-lump kinetic model 197–198
88–95	main fractionator temperature profile
crude charge feed and	217
prefractionation unit 87–88	modeling strategy 209-211
density distributions, specification of	molecular composition 205–208
83	primary absorber temperature profile
generated pseudocomponent list	218
review 83, 86	primary stripper temperature profile
initial assay definition-TBP	217
distillation data 82	product yield results 211
light gas components of assays 84,	slip factor 196–197
85	sponge oil absorber temperature
operating profile measurements 105	profile 219
petroleum assay manager 77	submodels 195

Aspen HYSYS petroleum refining	modeling distillation columns
hydrocracker model 411	65–72
backward approach 413	overflash 62
built-in process flow diagram of 411	petroleum distillation column
forward approach 412	140-144
HDN reaction network of 415	preheat train and heat recovery 62
HDS reaction network of 413, 414	process optimization 109–114
integrated HCR process model 419	process variables effects on product
97 model compounds 411, 413	qualities 129–131
objective functions in 424, 425, 427	products recovered from 64
reaction activity factors 424, 426,	requirements for 75
427	simulation model representation
reaction network of 413	76–77
reaction types and inhibitors 416	stripping steam and product draw
specific gravity predictions 451, 453	rate, effects of 111–114
workshop 497-505	atmospheric distillation 7
Aspen HYSYS petroleum refining	average absolute deviation (AAD)
software 472	continuous catalyst regeneration
Aspen HYSYS V9 531	reforming 337-353
Aspen PIMS 226	fluid catalytic cracking 214–216
for production planning 551	HP hydrocracking 449–453
Aspen RefSYS	MP hydrocracking 449, 452–453
assays	average relative deviation (ARD) 444,
oil fractions 25–32	456
atmospheric distillation unit 72	average voidage 196–197
ASTM D86 distillation 6	,
ASTM D1160 distillation 6	Ь
ASTM D2887 distillation 6	backblending 73
ASTM D1160 interconversion 15	atmospheric distillation unit 114,
atmospheric crude distillation units 59	123
Aspen HYSYS Petroleum Refining 77–104	fluid catalytic cracking 201, 208, 387
backblending procedure 114–125	vacuum distillation unit 151
column hydraulic analysis 131–139	backblending procedure, atmospheric
data requirements and validation	CDUs 114
73–76	converging updated column model
desalting and dewatering process	120
61–62	Heated_FEED stream 120–122
draw rates effect on product profiles	importing distillation data into Asper
126–129	HYSYS 115–116
feed characterization 72-73	new blend stream 116-119
fractionation zone of 67	product yield and properties 115
furnace, purpose of 62	results 123–125
improving distillation curves 109	backblending process 201
initial crude processing, process flow	backward feedstock approach 412
of 60-61	base vector 227, 228
kerosene draw rate 110 111	hench-scale reactors 314

Benedict-Webb-Rubin-Starling (BWRS)	continuous catalyst regeneration
EOS 49	reforming 356
benzene 346	delayed coking 529
benzothiophene 411	fluid catalytic cracking 231
benzene-toluene-xylene (BTX) 309,	hydrocracking 356
347	hydroprocessing 356
Beta density distribution function	computational fluid dynamics (CFD)
atmospheric distillation unit 74	193
continuous catalyst regeneration unit	Conradson carbon residue (CCR) 5,
325	529, 542
fluid catalytic cracking 204	continuous catalyst regeneration (CCR)
oil fractions 10, 74	reforming
bifunctional/bimetallic catalysts 311	applications 340
blending	Aspen HYSYS 354, 376
atmospheric distillation unit 78, 114	calibration 330, 333
continuous catalyst regeneration unit	catalytic reformer model 319, 323
325	chemical feedstock production 347,
fluid catalytic cracking 224	349
oil fractions 35	combined effect 345
boiling point based hypothetical, see	cyclic processes 305
pseudocomponents; generation	data consistency 329
boiling point curve 5	downstream fractionation system
bottom residue stream 529	387, 395
branched paraffins (BP) 518	energy utilization and process
bulk density 26	performance 349, 350
bulk properties 72	feed characterization 324, 328,
1 1	330
C	feed rate, effect of 344
calibration 330, 333	feedstock quality, effect of 346
catalyst configuration, in FCC unit	fractionation system 323, 324
246-250	kinetic models and networks 314,
catalyst deactivation 199	317
catalytic reformer model 319, 323	model calibration 376, 387
C3-C5 olefins 517	model implementation 328, 329
cetane index 7	moving-bed 305
cetane number 7	overall modeling strategy 333, 335
Chao-Seader method 48	process chemistry 311, 313
chromatographic simulation 7	process overview 304, 311
Chueh-Prausnitz correlation 42	reactor temperature effect 341,
Clausius-Clapeyron equation 45	343
cloud point 5	refinery planning 350, 354
CokerFeed 532	results 335, 340
Coker gas oil (CGO) 185	RON and product distribution profile
coking process 190	395, 399
component list	semiregenerative processes 305
alkylation 518	thermophysical properties 323
atmospheric distillation 78	unit-level models 317, 319

correlation	d
API 208	D1160 analysis, for heavy FCC feedstock
Bolkan-Kenny 196	203
Braun-K10 (BK-10) 47	data acquisition, HCR 421
Chueh-Prausnitz 42	deactivation 315–317, 399
ESSO 86	dealkylation 190, 413
Gooson 208	debutanizer
Riazi 209	continuous catalyst regeneration
Riazi-Daubert 439	reforming 324
Riedel 44	fluid catalytic cracking 187,
Twu 38	214–218, 233, 275
correlation-based approach 238	overall column (stage) efficiency 69
COSTALD (Correspond States Liquid	decyclization 186
Density) correlation 42	deep-cut operations 172
cracking gases 153	default calibration parameters 199,
creep step parameters 480	384
critical pressure 49	dehydrocyclization 314
critical temperature 49	dehydrogenation 189
critical volume 49	dehydroisomerization 311
crude assays	delayed coking
bulk properties	coking reaction kinetics 529–530
API gravity 2	feed characterization 529–530
CCR 5	kinetic lumps 529–530
Ramsbottom carbon residue 5	petroleum shift reactor 542–548
fractional properties 6–7	process description 528–529
interconversion of distillation curves	simulation and calibration 530–541
7	delta coke 257
crude distillation, see atmospheric crude	DELTA vector 227–229
distillation units	DELTA-BASE matrix 542
crude distillation unit (CDU) 416	DELTA-BASE vectors 183, 228–230,
cubic average boiling point	351–353
(CABP) 10	delumping 420, 435
cubic equation of state 49	building fractionator model 440
cut points	Gauss-Legendre Quadrature
hydrocracking 438	438–442
petroleum distillation column 143	pseudocomponents 435–437
refinery-wide simulation 553	desalting process 61–62
cycle oil 186	dewatering process 61–62
cyclization	DIPPR (Design Institute for Physical
CCR reforming 313	Property Research) 44
fluid catalytic cracking 186,	"dirty-water" approach 46
316	dissolved light gases 153
cyclic processes 305	distillation-based properties 72
cycloalkanes 188	distillation columns, modeling of
cycloheptane 313	equilibrium-stage approach 65
cyclohexanes 315	individual stage efficiency 68
cyclones 196	inside-out algorithm 69–71
Cyclones 170	morac out argorithm 07 /1

distillation columns, modeling of	flow diagram 156, 212, 307, 406, 412,
(contd.)	417, 418
MESH equations 66	flow rate relationship 522
Murphree vapor stage efficiency 67,	fluid catalytic cracking (FCC)
	cycle oil 413
overall stage efficiency 67–69	process 8, 306, 310, 317, 333, 350
rate-based approach 65	fluid catalytic cracking (FCC) unit 183,
distillation curves 203–205	231, 408
spreadsheet 7	acid-catalyzed cracking reactions
D2887 9-point distillation curve 529	189
draw rate 91	binary interaction parameters for
dry gas 186	fluid package 238
	calibration 258–266
e	case studies 285–291
effective cut point (ECP) 522	catalyst activity factor and
efficiency factor, see Murphree stage	equilibrium metal contents 250
efficiency	catalyst blend 248
end boiling point (EBP) 310	catalyst library 246, 247
end of run (EOC) 464	catalyst parameters 248
energy consumption 60, 321, 336, 350,	component list, addition of 231,
445	235, 237
energy flows 33, 60	configuration 240
energy utilization 349, 350	COSTALD method 238
equation of state (EOS) 49	dehydrogenation 190
equilibrium-stage approach 65	dimensions for 240
equilibrium catalyst properties 236	downstream fractionation 187–188
equilibrium stages 67	equilibrium catalyst properties 236
ESSO correlation 86	feed configuration 241–246
equation-of-state (EOS) approach 49	gas flow rates and compositions 236
extrapolation of incomplete distillation	gasoline producer 184
curve 13	gasoline yield, improvement of 220–222
f	gas plant associated with 233
feed adjust 413	gas plant section 188
feed characterization 324, 328, 330	heat losses 240
feed components and alkylation kinetics	hydrogen transfer reactions 190
alkylation simulation model 520	increasing unit throughput 223–224
turning factors, classes reactions	initial Aspen HYSYS flowsheet 238
518	
feed kinetic lump compositions 530	initial catalyst blend window 246 initial solver output 254
feed lumping technique 320	isomerization reactions 189
feedstock preparation 147	for linear programming application
feed system, alkylation reactor 521	226
feed type library (fingerprint) 242	liquid feeds and products 235
fitting parameters of Beta distribution 203	LP DELTA-BASE vector generation 291–297
flash point 2	lumped kinetic model 190–193
-	=

main fractionator 267–275	stabilization column 188
main fractionator associated with	Gauss-Legendre quadrature 438-442
233	Gooson correlation 208
model results 253-258	Grayson-Streed EOS 86
operating variable configuration	Gravity see specific gravity
250–252	gross heat of combustion, see high
overhead wet gas system and feed	heating value (HHV)
sections 275–281	
reaction section 232	h
regenerator operating variables 251	heat balance, FCC 257, 266
riser and regenerator operating	heat capacity 42
conditions 236	heat exchanger networks 62
riser–regenerator complex 185–187	heat of vaporization (ΔH_{VAP}) 43
schematic illustration 185, 187	heavy cycle oil (HCO) 186
simulation flowsheet 234	heavy naphtha 130, 206, 268, 275, 406
solver convergence options 252	448
standard cut grouped/square cut	heavy straight run (HSR) naphtha 65
yields 254	heavy vacuum gas oil (HVGO) 148
submodels for 195	Hessian parameters 252, 368
sulfur content in gasoline 224–225	HF alkylation process 527
T301_Absorber and	H2HC ratio 313
T303_Reabsorber 281–285	high heating value (HHV) 5
tuning factors 241	high-octane components, in gasoline
unit-level models 193–195	products 189
Universal Oil Products design 185	high-pressure HCR (HP HCR) 411
fluid package 235, 473	LPG composition and distillation curves 459–461
fluorescent indicator adsorption (FIA)	performance of fractionators 455
412	process flow diagram of 419
fractionation 200–202	product property 462–464
fractionation index, top section (SI	product yields 455–459
TOP) 522	reactor and hydrogen recycle system
fractionation system 323, 324	454–455
"free-water" approach 46 freeze point 2	reactor model
front-end tail gas 153	equivalent reactor 431–432
Froude number 197	procedures 430
fuel properties 51	reconciliation of 432–435
fuel property index 51	high-pressure separator (HPS) 419
fugacity coefficient 47	hydrocarbon-hydrocarbon interactions
rugacity coefficient 47	45
g	hydrocracking (HCR) 406
gasoline	calibrating preliminary model to
continuous catalyst regeneration	match plant measurement
reforming 395	481–497
fluid catalytic cracking 187	case studies 497–505
overcracking 291	complexity of petroleum oil 407
production scenarios 220, 285, 469	data acquisition 421

hydrocracking (HCR) (contd.)	interaction parameters 239
delta-base vector generation	integrated fluid catalytic cracking (FCC)
468-471	process, see fluid catalytic
flow diagram of 406	cracking (FCC) unit
fractionation system 505–512	interconvert distillation curves 13
HP HCR unit ['] 411, 419	intrinsic rate constant 415
hydrogen partial pressure 464	isenthalpic/isobaric flashes 47
integrated HCR model 419–421	isomerization reactions 189
lumping techniques 407, 408	iteration spreadsheet for MeABP
mass balance 421–423	calculation 11
MP HCR unit 411, 416–419	calculation 11
preliminary reactor model 471–481	j
product property correlation 442	Jacobian 229, 252, 351, 542
	jet fuel 5, 52, 406, 418, 461
reactor model development, see	jet luei 3, 32, 400, 410, 401
Reactor model development	k
three-layer onion 407	kinetic coke 198
VGO 406	
WART versus feed flow rate versus	kinetic lump compositions 529 kinetic models and networks 317
product distribution 466–468	kinetic models and networks 317 Krane's model 315
hydrocracking reactions 310	Krane's model 315
hydrodenitrogenation (HDN) 413, 415	1
hydrodesulfurization (HDS) 408, 413,	•
414	Langmuir-Hinshelwood-Hougen-
hydrofluoric acid alkylation process	Watson (LHHW) mechanism
simulation 519–527	414
hydrogen balance 329	Lee-Kesler EOS 37
hydrogen consumption 415, 444, 464	Light components 21–28
hydrogenation 311	light cycle oil (LCO) 186, 233, 235
hydrogenolysis 311	light ends tuning 332
hydrogen-to-hydrocarbon ratio 366	light gas oil (LGO) 65, 115
hydrogen transfer reactions 518	light naphtha 29, 54, 64, 91, 106, 114,
hydroprocessing units, HCR, see	124, 206, 406, 447, 449
hydrocracking (HCR)	light straight run (LSR) naphtha 65
hydrotreating and hydrocracking	line search parameters 252, 368
process 309	linear free energy relationships (LFER)
hypothetical components 1, 93	317
7.1	linear programming (LP)
i	based planning 183, 542
iButane recycle loop 523	methods 226
ideal gas heat capacity 42–43	techniques 350
ignition 52	liquid petroleum gas (LPG) 303, 449
incomplete distillation curve 13	lognormal distribution 205
index-based approach 51	lower heating value (LHV) 5
inhibitors 416	lubricant production 147
initial boiling point (IBP) 5, 352	lumped kinetic model 190
input assay 22	lumping based on molecular
inside-out algorithm 69–71	composition
marac-out argorithm 09-71	Composition

Aspen HYSYS Petroleum Refining	liquid density 40–42
hydrocracker model, see Aspen	mixed or activity-coefficient approach
HYSYS petroleum refining	47-49
hydrocracker model	molecular weight 37-38
reactor hydrodynamics 411	physical properties 43–45
SOL technique 408	process thermodynamics 45–50
lumping based on nonmolecular	mixed or activity-coefficient approach
composition	47
key features of 409–411	model applications
21-lump kinetic model 197–198	atmospheric distillation unit 126,
LVGO (light vacuum gas oil) 148, 170,	129
177, 544	continuous catalyst regeneration reforming 395
m	delayed coking 542
main fractionator temperature profile	fluid catalytic cracking 285, 291
217	hydrocracking 495
mass balance 70, 142, 263, 329, 423	production planning 291, 468,
material, equilibrium, summation and	542
heat(MESH) equations 66	refinery-wide simulation 551
mean average boiling point (MeABP)	vacuum distillation unit 171
10–20, 208, 436	modified HYSYS inside-out algorithm
mechanistic FCC models 192	70, 71
medium-pressure HCR (MP HCR)	molal average boiling point (MABP)
description of 416-419	10
distillation curves of liquid products 449–451	molecular-type homologous series (MTHS) 412
performance of fractionators 445	molecular weight 323
product property 451–454	motor octane number (MON) 6, 517
product yields 447–449	moving-bed catalyst regeneration 305
reactor and hydrogen recycle system	Murphree stage efficiency 200, 440
444-445	Murphree vapor stage efficiency
unit 411	67, 68
medium-pressure (MP) steam 543	,
mercaptan sulfur 2	n
MESH equations	naphtha or unstablilized gasoline 529
metal coke 198	naphthene content 207
metal functions, catalysts 312	net heat of combustion, see lower
metal content, catalysts 210, 236, 259	heating value (LHE)
methane	Newton-Raphson method 70
methanol-to-olefins (MTO) 317	nitrogen content 529
methyl mercaptan 2	normal distribution function 328
methylcyclohexane (MCH) 346	nonlinear programming (NLP) 226
methylcyclopentane (MCP) 346	
minimal pseudocomponents properties	0
estimation	objective function 253, 264, 332, 369,
critical properties 38–40	381, 385, 425, 486
ideal gas heat capacity 42–43	octane number 6, 366, 517

oil fractions, thermodynamic properties	required properties for process
Aspen HYSYS petroleum refining	modeling (simulation) 46
new petroleum assay manager	thermodynamic approaches 47
25–32	PIMS (process industry management
old oil manager 16–25	system) 226, 291–297, 470, 549
boiling point based	pinch technology 62
hypothetical/pseudocomponent	pinning 321
generation 8–12	platinum 311
crude assays	plug-flow reactor (PFR) 318
bulk properties 2–6	post-convergence 104
fractional properties 6–7	pour point 2
interconversion of distillation	Poynting correction factor 48 prefractionation units 87
curves 7	prefractionation units 87 preheat train 63
incomplete distillation curve 13 interconvert distillation curves 13	preheater 90, 391
	primary absorber temperature profile
refinery process models, property	218
requirements 33	primary alkylation reactions 518
oil manager vs. petroleum assay	primary anylation reactions 516 primary stripper temperature profile
manager conversion 32–33, 35 olefins 262, 311	217
on stage convention 65	probability distribution 10, 203
organic nitrogen compounds 414	profit margin analysis 548
overall column (stage) efficiency 67	process chemistry
overcracking 291	alkylation 518
overhead gas compressor 183	continuous catalyst regeneration
overhead wet gas system 276	reforming 311
overflash 62, 111	delayed coking 529
02,111	fluid catalytic cracking 188
p	hydrocracking 411
paraffin content 206	process flow diagram (PFD) see flow
paraffin-naphthene-aromatic (PNA)	diagram
content 6, 50, 53, 317, 320,	process optimization
325-328, 331, 363, 372, 373, 529	continuous catalyst regeneration
pathway models 192, 317	reforming 395
Peng-Robinson (PR) equation of state	delayed coking 542
(EOS) 49	fluid catalytic cracking 285, 291
petroleum assay 521	hydrocracking 497
petroleum assay manager improvement	model applications 126, 129, 131,
35	140, 172, 285, 291, 395, 497, 519,
petroleum distillation column	542
140-144	VDU deep-cut operation 172
petroleum fractions 1	process thermodynamics 45-50
petroleum shift reactors 542, 553	property package 235
physical properties	pseudocomponents 72
minimum properties for	commercial process simulators 9
pseudocomponents 35	generation 8–12
oil fractions 2, 6	properties vs. TBP curve 9

pumparounds	regenerator 258, 266
atmospheric distillation unit 99	Reid vapor pressure (RVP) 392
fluid catalytic cracking 273	research octane number (RON) 6, 517
hydrocracking 510	residence time 287
vacuum distillation unit 168	residual Hessian parameters 252, 368
purge gas 406	residue-type feeds 243
	rhenium 311
r	Riazi-Daubert correlation 53
Rackett parameter 41	rigorous model
Raoult's law 47	continuous catalyst regeneration
Ramsbottom carbon residue 5	reforming 354, 376, 387
rate-based approach 65	delta-base vectors 191, 468
reaction classes	fluid catalytic cracking 267–285
alkylation 518	vacuum distillation unit 165
continuous catalyst regeneration	rigorous VDU simulation model 154,
reforming 311	165–172
delayed coking 529	ring dealkylation 415
fluid catalytic cracking 189	riser outlet temperature (ROT) 220,
hydroprocessing units 416	221
reaction network 413-415	
reactor inlet temperature 349	S
reactor model development 424	secondary alkylation reactions 518
delumping, see delumping	semiregenerative processes 305
HP HCR process 430–435	side strippers 67, 68, 95, 272, 507
MP-HCR 424–430	side-chain scission 189
reactor-regenerator unit 185	simplified model, VDU 157
reactor temperature specifications 366	simulation
recontactor 389	alkylation 519
Redlich-Kwong (RK) EOS 49	atmospheric distillation unit 77, 120
refinery production planning 225, 350,	continuous catalyst regeneration
354	reforming 354, 376, 387
LP DELTA-BASE vector generation	delayed coking 530
291–297	fluid catalytic cracking 231, 258, 267
refinery process models, property	hydrocracking 471, 481
requirements 33	vacuum distillation unit 157, 165
refinery reactor models, Aspen HYSYS	refinery plant-wide 157
552	simulation basis manager 232, 233,
refinery-wide process simulaiton	235, 473
deploys 551–553	single-event approach 316
developing tools 551	slip factor 196–197
fractionation model 549	smoke point 5
integrating process model 548-549	Soave-Redlich-Kwong (SRK) 49, 358,
reactor models 549	474
simulation model 548–549	SOLVER method 204, 205
refractive index, ASTM D1218 5	solver parameters 90, 368
RefSYS 245, 247, 477	specific gravity (SG) 2
regeneration timescale 308	Spencer-Danner method 42
0	±

570	Index	
	sponge oil absorber temperature profile 219 spreadsheet distillation curve conversion 13 HCR mass balance 421 make-up gas streams, VDU 152 MeABP calculation 13	u unit-level models 193, 317–319 Universal Oil Products (UOP) CCR process 305 design, FCC 185 utility consumption 349, 542
	square cut yields 255 stabilizer 392, 538 stage efficiency, fractionation atmospheric distillation column 69 fluid catalytic cracking 201 hydrocracking 440	v vacuum distillation 7 vacuum distillation units (VDUs) 147 absorbers 155 atmospheric residue, representation of 149–152
	reformer 324 stage-by-stage model 201, 240 structure-oriented lumping (SOL) 192, 408 sulfides 2 sulfur content fluid catalytic cracking 225, 246 gasoline 224	data requirement 149 deep-cut operation 172 high-temperature operations 152 light gases, source of 153 operation types 147 plant data and modeling approaches 155–157
	hydrocracking 426, 470 oil fractions 6 superficial gas velocity 197	process flow diagram 148 product distribution 154 rigorous simulation model 154, 165–172
	t T_c correlation 39 ten-lump model 191 thermodynamic approaches required physical properties and	simplified and rigorous simulations 155 simplified VDU model 154, 157–165 in Southeast Asia 156
	recommendation 46 thermal cracking delayed coking 528 fluid catalytic cracking 189, 291 vacuum distillation unit 153 thermophysical properties 323	wet operating conditions 148 validation atmospheric distillation unit 73 continuous catalyst regeneration reforming unit 334, 487 fluid catalytic cracking 209–217,
	thiols 2 three-layer onion hydroprocessing unit modeling 408 toluene 346 2-2-4-trimethylpentane (224TMP) 6 true boiling point (TBP) 7, 326, 328 twenty-one-lump kinetic model FCC 197	263 vanadium contaminants 3 vapor enthalpy 66 vapor-liquid equilibrium in distillation 8 vapor pressure 43 viscosity gravity constant (VGC) 205
	Twu correlation 37 typical crude assay 3	viscosity gravity factor (VGF) 205 volatility 69

w wash grid 148 water draw stream 120–122 water wash 188 Watson K factor atmospheric distillation column 79 delayed coking 529 hydrocracking 436 oil fractions 10–12 PNA contents 530	weighting factors for reformer model calibration 332, 382 for property index mixing 51 wet gas compressor 187 what-if-scenario workflow see also flowchart, flow diagram
Weight-average boiling point (WABP) 8	xylenes 310, 338, 347, 380
weight-averaged bed temperature (WABT) 321, 360 weight-averaged inlet temperature (WAIT) 313, 321, 360, 366 weight-average reactor temperatures (WARTs) 444 weighted-average reactor inlet temperature (WAIT) 341, 345 weight hourly space velocity (WHSV) 321, 345	y yields alkylation 523 atmospheric distillation column 105 backblending 105 continuous catalyst regeneration reforming 337, 341, 348 fluid catalytic cracking 287, 291 hydrocracking 447 vacuum distillation unit 167