Contents

Part I Directed Evolution 1

1	Continuous Evolution of Proteins In Vivo 3
	Alon Wellner, Arjun Ravikumar, and Chang C. Liu
1.1	Introduction 3
1.2	Challenges in Achieving In Vivo Continuous Evolution 5
1.3	Phage-Assisted Continuous Evolution (PACE) 10
1.4	Systems That Allow In Vivo Continuous Directed Evolution 13
1.4.1	Targeted Mutagenesis in <i>E. coli</i> with Error-Prone DNA Polymerase I 13
1.4.2	Yeast Systems That Do Not Use Engineered DNA Polymerases for
	Mutagenesis 16
1.4.3	Somatic Hypermutation as a Means for Targeted Mutagenesis of
	GOIs 18
1.4.4	Orthogonal DNA Replication (OrthoRep) 20
1.5	Conclusion 22
	References 22
2	In Vivo Biosensors for Directed Protein Evolution 29
	Song Buck Tay and Ee Lui Ang
2.1	Introduction 29
2.2	Nucleic Acid-Based In Vivo Biosensors for Directed Protein
	Evolution 32
2.2.1	RNA-Type Biosensors 32
2.2.2	DNA-Type Biosensors 35
2.3	Protein-Based In Vivo Biosensors for Directed Protein Evolution 37
2.3.1	Transcription Factor-Type Biosensors 37
2.3.2	Enzyme-Type Biosensors 41
2.4	Characteristics of Biosensors for <i>In Vivo</i> Directed Protein Evolution 44
2.5	Conclusions and Future Perspectives 45
	Acknowledgments 46
	References 46

v

vi Contents

3	High-Throughput Mass Spectrometry Complements Protein
	Engineering 57
	Tona Si. Pu Xue. Kisurb Choe. Huimin Zhao. and Jonathan V. Sweedler
31	Introduction 57
3.2	Procedures and Instrumentation for MS-Based Protein Assays 59
3.2	Technology Advances Focusing on Throughput Improvement 62
2.4	Applications of MS Pased Protein Assays: Summary 62
5. 4 2.4.1	Applications of MS Based Assays: Brotein Applysis 64
5.4.1 2.4.2	Applications of MS-based Assays. Protein Analysis 64
3.4.2	Applications of MS-Based Assays: Protein Engineering 66
3.5	Conclusions and Perspectives 68
	Acknowledgments 68
	References 69
4	Percent Advances in Cell Surface Dignlay Technologies for
4	Recent Advances in Cell Surface Display Technologies for
	Directed Protein Evolution 81
	Maryam Raeeszadeh-Sarmazdeh and Wilfred Chen
4.1	Cell Display Methods 81
4.1.1	Phage Display 81
4.1.2	Bacterial Display Systems 83
4.1.3	Yeast Surface Display 84
4.1.4	Mammalian Display 85
4.2	Selection Methods and Strategies 86
4.2.1	High-Throughput Cell Screening 86
4.2.1.1	Panning 86
4.2.1.2	FACS 86
4.2.1.3	MACS 87
4.2.2	Selection Strategies 88
4.2.2.1	Competitive Selection (Counter Selection) 88
4.2.2.2	Negative/Positive Selection 89
4.3	Modifications of Cell Surface Display Systems 89
4.3.1	Modification of YSD for Enzyme Engineering 89
432	Yeast Co-display System 91
433	Surface Display of Multiple Proteins 91
4.4	Recent Advances to Expand Cell-Display Directed Evolution
	Techniques 03
4 4 1	uSCALE (Microcanillary Single Cell Analysis and Laser Extraction) 03
4.4.2	Combining Coll Surface Display and Next Concretion Sequencing 04
4.4.2	DACE (Deage Assisted Continuous Evolution) 04
4.4.5	PACE (Phage-Assisted Continuous Evolution) 94
4.5	Conclusion and Outlook 96
	References 97
5	Iterative Saturation Mutagenesis for Semi-rational Enzyme
5	Design 105
	Co Ou Thoutona Sun and Manfrod T Poots
5 1	UE Qu, Zhoulony Sun, unu Munjieu I. Reelz
5.1	IIIIIouuuuululi 103 Dagant Mathadalagu Davalanmanta in ISM Dagad Divested
5.2	Recent Methodology Developments in ISM-Based Directed
	Evolution 108

- 5.2.1 Choosing Reduced Amino Acid Alphabets Properly 109
- 5.2.1.1 Limonene Epoxide Hydrolase as the Catalyst in Hydrolytic Desymmetrization *109*
- 5.2.1.2 Alcohol Dehydrogenase TbSADH as the Catalyst in Asymmetric Transformation of Difficult-to-Reduce Ketones *110*
- 5.2.1.3 P450-BM3 as the Chemo- and Stereoselective Catalyst in a Whole-Cell Cascade Sequence *112*
- 5.2.1.4 Multi-parameter Evolution Aided by Mutability Landscaping 115
- 5.2.2 Further Methodology Developments of CAST/ISM 117
- 5.2.2.1 Advances Based on Novel Molecular Biological Techniques and Computational Methods *117*
- 5.2.2.2 Advances Based on Solid-Phase Chemical Synthesis of SM Libraries *118*
- 5.3 B-FIT as an ISM Method for Enhancing Protein Thermostability 120
- 5.4 Learning from CAST/ISM-Based Directed Evolution 121
- 5.5 Conclusions and Perspectives 121 Acknowledgment 124 References 124

Part II Rational and Semi-Rational Design 133

Data-driven Protein Engineering 135
Jonathan Greenhalgh, Apoorv Saraogee, and Philip A. Romero
6.1 Introduction 135

- 6.2 The Data Revolution in Biology 136
- 6.3 Statistical Representations of Protein Sequence, Structure, and Function 138
- 6.3.1 Representing Protein Sequences 138
- 6.3.2 Representing Protein Structures 140
- 6.4 Learning the Sequence-Function Mapping from Data 141
- 6.4.1 Supervised Learning (Regression/Classification) 141
- 6.4.2 Unsupervised/Semisupervised Learning 144
- 6.5 Applying Statistical Models to Engineer Proteins 145
- 6.6 Conclusions and Future Outlook 147 References 148
- 7 Protein Engineering by Efficient Sequence Space Exploration Through Combination of Directed Evolution and Computational Design Methodologies 153 Subrata Pramanik, Francisca Contreras, Mehdi D. Davari, and Ulrich
 - Schwaneberg
- 7.1 Introduction 153
- 7.2 Protein Engineering Strategies 154
- 7.2.1 Computer-Aided Rational Design 155
- 7.2.1.1 FRESCO 155
- 7.2.1.2 FoldX 157

viii Contents

7.2.1.3	CNA 158
7.2.1.4	PROSS 159
7.2.1.5	ProSAR 160
7.2.2	Knowledge Based Directed Evolution 161
7.2.2.1	Iterative Saturation Mutagenesis (ISM) 161
7.2.2.2	Mutagenic Organized Recombination Process by Homologous In Vivo
	Grouping (MORPHING) 161
7.2.2.3	Knowledge Gaining Directed Evolution (KnowVolution) 162
7.3	Conclusions and Future Perspectives 171
	Acknowledgments 171
	References 171
8	Engineering Artificial Metalloenzymes 177
	Kevin A. Harnden, Yajie Wang, Lam Vo, Huimin Zhao, and Yi Lu
8.1	Introduction 177
8.2	Rational Design 177
8.2.1	Rational Design of Metalloenzymes Using <i>De Novo</i> Designed Scaffolds <i>177</i>
8.2.2	Rational Design of Metalloenzymes Using Native Scaffolds 179
8.2.2.1	Redesign of Native Proteins 179
8.2.2.2	Cofactor Replacement in Native Proteins 181
8.2.2.3	Covalent Anchoring in Native Protein 184
8.2.2.4	Supramolecular Anchoring in Native Protein 187
8.3	Engineering Artificial Metalloenzyme by Directed Evolution in
	Combination with Rational Design 188
8.3.1	Directed Evolution of Metalloenzymes Using De Novo Designed
	Scaffolds 188
8.3.2	Directed Evolution of Metalloenzymes Using Native Scaffolds 189
8.3.2.1	Cofactor Replacement in Native Proteins 189
8.3.2.2	Covalent Anchoring in Native Protein 192
8.3.2.3	Non-covalent Anchoring in Native Proteins 194
8.4	Summary and Outlook 200
	Acknowledgment 201
	References 201
•	
9	Engineered Cytochromes P450 for Biocatalysis 207
0.1	Hanan Alwaseem ana kual Fasan
9.1	Cytochrome P450 Monooxygenases 20/
9.2	Engineered Bacterial P450s for Biocatalytic Applications 210
9.2.1	Uxylunctionalization of Small Organic Substrates 211
9.2.2	Late-Stage Functionalization of Inatural Products 220
9.2.3	Synthesis of Drug Metabolites 224
9.3	Engineering of Uk krid D450 Systems 220
9.4	Engineering of Hybrid P450 Systems 229
9.5	Engineered P450s with improved inermostability and Solubility 230

9.6 Conclusions 231 Acknowledgments 232 References 232

Part III Applications in Industrial Biotechnology 243

10 Protein Engineering Using Unnatural Amino Acids 245

Yang Yu, Xiaohong Liu, and Jiangyun Wang

- 10.1 Introduction 245
- 10.2 Methods for Unnatural Amino Acid Incorporation 246
- 10.3 Applications of Unnatural Amino Acids in Protein Engineering 247
- 10.3.1 Enhancing Stability 248
- 10.3.2 Mechanistic Study Using Spectroscopic Methods 248
- 10.3.3 Tuning Catalytic Activity 250
- 10.3.4 Tuning Selectivity 252
- 10.3.5 Enzyme Design 252
- 10.3.6 Protein Engineering Toward a Synthetic Life 255
- 10.4 Outlook 256
- 10.5 Conclusions 258 References 258
- 11Application of Engineered Biocatalysts for the Synthesis of
Active Pharmaceutical Ingredients (APIs)265

Juan Mangas-Sanchez, Sebastian C. Cosgrove, and Nicholas J. Turner

- 11.1 Introduction 265
- 11.1.1 Transferases 266
- 11.1.1.1 Transaminases 266
- 11.1.2 Oxidoreductases 267
- 11.1.2.1 Ketoreductases 267
- 11.1.2.2 Amino Acid Dehydrogenases 271
- 11.1.2.3 Cytochrome P450 Monoxygenases 272
- 11.1.2.4 Baeyer–Villiger Monoxygenases 273
- 11.1.2.5 Amine Oxidases 274
- 11.1.2.6 Hydroxylases 276
- 11.1.2.7 Imine Reductases 276
- 11.1.3 Lyases 278
- 11.1.3.1 Ammonia Lyases 278
- 11.1.4 Isomerases 278
- 11.1.5 Hydrolases 279
- 11.1.5.1 Esterases 279
- 11.1.5.2 Haloalkane Dehalogenase 279
- 11.1.6 Multi-enzyme Cascade 281
- 11.2 Conclusions 282 References 287

x Contents

12	Directing Evolution of the Fungal Ligninolytic Secretome 295
	Javier Viña-Gonzalez and Miguel Alcalde
12.1	The Fungal Ligninolytic Secretome 295
12.2	Functional Expression in Yeast 297
12.2.1	The Evolution of Signal Peptides 297
12.2.2	Secretion Mutations in Mature Protein 300
12.2.3	The Importance of Codon Usage 301
12.3	Yeast as a Tool-Box in the Generation of DNA Diversity 302
12.4	Bringing Together Evolutionary Strategies and Computational
	Tools 305
12.5	High-Throughput Screening (HTS) Assays for Ligninase Evolution 306
12.6	Conclusions and Outlook 309
	Acknowledgments 309
	References 310
47	Function of the design of The second Street Designed and
15	Engineering Antibody-Based Therapeutics: Progress and
	Apportunities 317
12.1	Annalee W. Nguyen and Jennijer A. Maynara
13.1	Antihada Farmata 210
13.2	Anubody Formals 318
13.2.1	Antihada Drug Conjugates 210
13.2.2	Antibody-Drug Conjugates 319
13.2.3	Single Domain Antibodica 221
13.2.4	Chimaria Antigan Decentors 221
13.2.5	Antihody Discourse 222
13.3	Antibody Discovery 322
13.3.1	Concer and Autoimmuna Disease Terrate 222
13.3.1.1 12.2.1.2	Lafactions Disease Targets 222
12.2.2	Screening for Target Pinding Antibodios 224
13.3.2 12.2.2.1	Supervised Library Derived Antibodies 224
12222	Host Darived Antibodies 225
12222	Immunization 225
13.3.2.3	Pairing the Light and Heavy Variable Regions 226
13.3.2.4	Humanization 327
13.3.2.5	Hybrid Approaches to Antibody Discovery 328
13.3.2.0	Therapeutic Optimization of Antibodies 328
13.41	Serum Half.I ife 328
13411	Antibody Half-Life Extension 329
13412	Antibody Half-Life Reduction 331
13413	Effect of Half-Life Modification on Effector Functions 331
13.4.1.3	Encer of frain Enc modification on Enceror r unctions 551

- 13.4.2 Effector Functions 331
- 13.4.2.1 Effector Function Considerations for Cancer Therapeutics 332
- 13.4.2.2 Effector Function Considerations for Infectious Disease Prophylaxis and Therapy 333
- 13.4.2.3 Effector Function Considerations for Treating Autoimmune Disease 334
- 13.4.2.4 Approaches to Engineering the Effector Functions of the IgG1 Fc 334
- 13.4.3 Tissue Localization 335
- 13.4.4 Immunogenicity 335
- 13.4.4.1 Reducing T-Cell Recognition 336
- 13.4.4.2 Reducing Aggregation 336
- 13.5 Manufacturability of Antibodies 336
- 13.5.1 Increasing Antibody Yield 337
- 13.5.1.1 Codon Usage 337
- 13.5.1.2 Signal Peptide Optimization 337
- 13.5.1.3 Expression Optimization 338
- 13.5.2 Alternative Production Methods *338*
- 13.6 Conclusions 339 Acknowledgments 339 References 339
- 14 Programming Novel Cancer Therapeutics: Design Principles for Chimeric Antigen Receptors 353

Andrew J. Hou and Yvonne Y. Chen

- 14.1 Introduction 353
- 14.2 Metrics to Evaluate CAR-T Cell Function 354
- 14.3 Antigen-Recognition Domain 356
- 14.3.1 Tuning the Antigen-Recognition Domain to Manage Toxicity 356
- 14.3.2 Incorporation of Multiple Antigen-Recognition Domains to Engineer "Smarter" CARs 356
- 14.3.3 Novel Antigen-Recognition Domains to Enhance CAR Modularity 359
- 14.3.4 Engineering CARs that Target Soluble Factors 360
- 14.4 Extracellular Spacer *360*
- 14.5 Transmembrane Domain *362*
- 14.6 Signaling Domain *362*
- 14.6.1 First- and Second-Generation CARs 362
- 14.6.2 Combinatorial Co-stimulation 363
- 14.6.3 Other Co-stimulatory Domains: ICOS, OX40, TLR2 364
- 14.6.4 Additional Considerations for CAR Signaling Domains 364
- 14.7 High-Throughput CAR Engineering 366
- 14.8 Novel Receptor Modalities 367 References 369

Part IV Applications in Medical Biotechnology 377

15	Development of Novel Cellular Imaging Tools Using Protein
	Engineering 379
	Description Lineschul, Chi Mai Mar Qie Desc, Chasting Lu, and Vie suise M

- Praopim Limsakul, Chi-Wei Man, Qin Peng, Shaoying Lu, and Yingxiao Wang
- 15.1 Introduction 379
- 15.2 Cellular Imaging Tools Developed by Protein Engineering 380
- 15.2.1 Fluorescent Proteins 380
- 15.2.1.1 The FP Color Palette 380
- 15.2.1.2 Photocontrollable Fluorescent Proteins 381
- 15.2.1.3 Other Engineered Fluorescent Proteins 383
- 15.2.2 Antibodies and Protein Scaffolds 383
- 15.2.2.1 Antibodies 383
- 15.2.2.2 Antibody-Like Protein Scaffolds 384
- 15.2.2.3 Directed Evolution 384
- 15.2.3 Genetically Encoded Non-fluorescent Protein Tags 385
- 15.3 Application in Cellular Imaging 386
- 15.3.1 Cell Biology Applications 386
- 15.3.1.1 Localization 386
- 15.3.1.2 Cell Signaling 387
- 15.3.2 Application in Diagnostics and Medicine 390
- 15.3.2.1 Detection 390
- 15.3.2.2 Screening for Drugs 392
- 15.4 Conclusion and Perspectives *393* References *394*

Index 403