5

Contents

Preface xv

Part I Overview of Systems 1

1	System-level Constraints on Fuel Cell Materials and Electrocatalysts 3 Elliot Padgett and Dimitrios Papageorgopoulos		
1.1	Overview of Fuel Cell Applications and System Designs 3		
1.1.1	System-level Fuel Cell Metrics 3		
1.1.2	Fuel Cell Subsystems and Balance of Plant (BOP) Components		
1.1.3	Comparison of Fuel Cell Systems for Different Applications 9		
1.2	Application-derived Requirements and Constraints 10		
1.2.1	Fuel Cell Performance and the Heat Rejection Constraint 10		
1.2.2	Startup, Flexibility, and Robustness 13		
1.2.3	Fuel Cell Durability 14		
1.2.4	Cost 16		
1.3	Material Pathways to Improved Fuel Cells 18		
1.4	Note 19		
	Acronyms 20		
	Symbols 20		
	References 20		
2	PEM Fuel Cell Design from the Atom to the Automobile 23		
0.1	Andrew Haug and Michael Yandrasits		
2.1	Introduction 23		
2.2	The PEMFC Catalyst 27		
2.3	The Electrode 32		
2.4	Membrane 38		
2.5	The GDL 42		
2.6	CCM and MEA 46		

vi	Contents	
	2.7	Flowfield and Single Fuel Cell 50
	2.8	Stack and System 55
		Acronyms 57
		References 58
		Part II Basics - Fundamentals 69
	3	Electrochemical Fundamentals 71
		Vito Di Noto, Gioele Pagot, Keti Vezzù, Enrico Negro, and Paolo Sgarbossa
	3.1	Principles of Electrochemistry 71
	3.2	The Role of the First Faraday Law 71
	3.3	Electric Double Layer and the Formation of a Potential Difference at the
		Interface 73
	3.4	The Cell 74
	3.5	The Spontaneous Processes and the Nernst Equation 75
	3.6	Representation of an Electrochemical Cell and the Nernst
		Equation 77
	3.7	The Electrochemical Series 79
	3.8	Dependence of the E_{cell} on Temperature and Pressure 82
	3.9	Thermodynamic Efficiencies 83
	3.10	Case Study – The Impact of Thermodynamics on the Corrosion of Low-T FC Electrodes 85
	3.11	Reaction Kinetics and Fuel Cells 88
	3.11.1	Correlation Between Current and Reaction Kinetics 88
	3.11.2	The Concept of Exchange Current 89
	3.12	Charge Transfer Theory Based on Distribution of Energy States 89
	3.12.1	The Butler–Volmer Equation 96
	3.12.2	The Tafel Equation 100
	3.12.3	Interplay Between Exchange Current and Electrocatalyst Activity 101
	3.13	Conclusions 103
		Acronyms 104
		Symbols 104
		References 107
	4	Quantifying the Kinetic Parameters of Fuel Cell
		Reactions 111
		Viktoriia A. Saveleva, Juan Herranz, and Thomas J. Schmidt
	4.1	Introduction 111
	4.2	Electrochemical Active Surface Area (ECSA) Determination 114
	4.2.1	ECSA Determination Using Underpotential Deposition 115
	4.2.1.1	Hydrogen Underpotential Deposition (H _{UPD}) 116
	4.2.1.2	Copper Underpotential Deposition (Cu _{UPD}) 117
	4.2.2	ECSA Quantification Based on the Adsorption of Probe Molecules 118

4.2.2.1	CO Stripping 118
4.2.2.2	NO ₂ /NO Sorption 119
4.2.3	Double-layer Capacitance Measurements and Other Methods 120
4.2.4	ECSA Measurements in a PEFC: Which Method to Choose? 120
4.3	H ₂ -Oxidation and Electrochemical Setups for the Quantification of
	Kinetic Parameters 121
4.3.1	Rotating Disc Electrodes (RDEs) 122
4.3.2	Hydrogen Pump (PEFC) Approach 124
4.3.3	Ultramicroelectrode Approach 125
4.3.4	Scanning Electrochemical Microscopy (SECM) Approach 125
4.3.5	Floating Electrode Method 127
4.3.6	Methods Summary 128
4.4	ORR Kinetics 129
4.4.1	ORR Mechanism Studies with RRDE Setups 129
4.4.2	ORR Pathway on Me/N/C ORR Catalysts 130
4.4.3	ORR Kinetics: Methods 132
4.4.3.1	Pt-based Electrodes 132
4.4.3.2	Pt-free Catalysts: RDE vs. PEFC Kinetic Studies 133
4.5	Concluding Remarks 133
	Acronyms 134
	Symbols 134
	References 135
5	Adverse and Beneficial Functions of Surface Layers Formed
	on Fuel Cell Electrocatalysts 149
	Shimshon Gottesfeld
5.1	Introduction 149
5.2	Catalyst Capping in Heterogeneous Catalysis and in
	Electrocatalysis 151
5.3	Passivation of PGM/TM and Non-PGM HOR Catalysts and Its Possible
	Prevention 156
5.4	Literature Reports on Fuel Cell Catalyst Protection by Capping 161
5.4.1	Protection of ORR Pt catalysts Against Agglomeration by an Ultrathin
	Overlayer of Mesoporous SiO ₂ or Me–SiO ₂ 161
5.4.2	Protection by Carbon Caps Against Catalyst Detachment and Catalyst
	Passivation Under Ambient Conditions 162
5.5	Other Means for Improving the Performance Stability of Supported
	Electrocatalysts 166
5.5.1	Replacement of Carbon Supports by Ceramic Supports 166
5.5.2	
	Protection of Pt Catalysts by Enclosure in Mesopores 167
5.6	Protection of Pt Catalysts by Enclosure in Mesopores 167 Conclusions 170
5.6	

Part III	State	of the	Art	175
----------	-------	--------	-----	-----

6	Design of PGM-free ORR Catalysts: From Molecular to the State of the Art 177
	Naomi Levy and Lior Elbaz
6.1	Introduction 177
6.2	The Influence of Molecular Changes Within the Complex 179
6.2.1	The Role of the Metal Center 179
6.2.2	Addition of Substituents to MCs 183
6.2.2.1	Beta-substituents 184
6.2.3	Meso-substituents 186
6.2.4	Axial Ligands 187
6.3	Cooperative Effects Between Neighboring MCs 190
6.3.1	Bimetallic Cofacial Complexes – "Packman" Complexes 191
6.3.2	MC Polymers 191
6.4	The Physical and/or Chemical Interactions Between the Catalyst and Its
0.1	Support Material 193
6.5	Effect of Pyrolysis 194
0.5	Acronyms 196
	References 196
	1,0101011010
7	Recent Advances in Electrocatalysts for Hydrogen Oxidation
	Reaction in Alkaline Electrolytes 205
	Indra N. Pulidindi and Meital Shviro
7.1	Introduction 205
7.2	Mechanism of the HOR in Alkaline Media 206
7.3	Electrocatalysts for Alkaline HOR 212
7.3.1	Platinum Group Metal HOR Electrocatalysts 212
7.3.2	Non-platinum Group Metal-based HOR Electrocatalysts 214
7.4	Conclusions 220
,	Acronyms 221
	References 221
	References 221
8	Membranes for Fuel Cells 227
	Paolo Sgarbossa, Giovanni Crivellaro, Francesco Lanero, Gioele Pagot,
	Afaaf R. Alvi, Enrico Negro, Keti Vezzù, and Vito Di Noto
8.1	Introduction 227
8.2	Properties of the PE separators 228
8.2.1	Benchmarking of IEMs 229
8.2.2	Ion-exchange Capacity (IEC) 229
8.2.3	Water Uptake (WU), Swelling Ratio (SR), and Water Transport 231
8.2.4	Ionic Conductivity (σ) 233
8.2.5	Gas Permeability 234
8.2.6	Chemical Stability 235
8.2.7	Thermal and Mechanical Stability 237
3.4.7	Thermal and Meenanical Stability 23/

8.2.8	Cost of the IEMs 239				
8.3	Classification of Ion-exchange Membranes 240				
8.3.1	Cation-exchange Membranes (CEMs) 240				
8.3.1.1	Perfluorinated Membranes 240				
8.3.1.2	Nonperfluorinated Membranes 245				
8.3.2	Anion-exchange Membranes (AEMs) 246				
8.3.2.1	Functionalized Polyketones 247				
8.3.2.2	Poly(Vinyl Benzyl Trimethyl Ammonium) (PVBTMA) Polymers 248				
8.3.2.3	Poly(sulfones) (PS) 249				
8.3.3	Hybrid Ion-exchange Membranes 249				
8.3.3.1	Hybrid Membranes with Single Ceramic Oxoclusters $[P/(M_xO_y)_n]$ 250				
8.3.3.2	Hybrid Membranes Comprising Surface-functionalized Nanofillers 254				
8.3.3.3	Hybrid Membranes Doped with hierarchical "Core-Shell"				
	Nanofillers 254				
8.3.4	Porous Membranes 257				
8.3.4.1	Porous Membranes as Host Material 257				
8.3.4.2	Porous Membranes as Support Layer 258				
8.3.4.3	Porous Membranes as Unconventional Separators 259				
8.4	Mechanism of Ion Conduction 259				
8.5	Summary and Perspectives 268				
	Acronyms 271				
	Symbols 272				
	References 272				
_					
9	Supports for Oxygen Reduction Catalysts: Understanding and				
	Improving Structure, Stability, and Activity 287				
0.1	Iwona A. Rutkowska, Sylwia Zoladek, and Pawel J. Kulesza				
9.1	Introduction 287				
9.2	Carbon Black Supports 288				
9.3	Decoration and Modification with Metal Oxide Nanostructures 289				
9.4	Carbon Nanotube as Carriers 291				
9.5	Doping, Modification, and Other Carbon Supports 293				
9.6	Graphene as Catalytic Component 293				
9.7	Metal Oxide-containing ORR Catalysts 296				
9.8	Photodeposition of Pt on Various Oxide–Carbon Composites 299				
9.9	Other Supports 301				
9.10	Alkaline Medium 302				
9.11	Toward More Complex Hybrid Systems 303				
9.12	Stabilization Approaches 306				
9.13	Conclusions and Perspectives 307				
	Acknowledgment 308				
	Acronyms 308				
	References 308				

11.7

Part IV Physical-Chemical Characterization 3.	19
---	----

10	Understanding the Electrocatalytic Reaction in the Fuel Cell		
	by Tracking the Dynamics of the Catalyst by X-ray Absorption		
	Spectroscopy 321		
	Ditty Dixon, Aiswarya Bhaskar, and Aswathi Thottungal		
10.1	Introduction 321		
10.2	A Short Introduction to XAS 323		
10.3	Application of XAS in Electrocatalysis 325		
10.3.1	Ex Situ Characterization of Electrocatalyst 325		
10.3.2	Operando XAS Studies 330		
10.4	$\Delta \mu$ XANES Analysis to Track Adsorbate 334		
10.5	Time-resolved Operando XAS Measurements in Fuel Cells 338		
10.6	Fourth-generation Synchrotron Facilities and Advanced		
	Characterization Techniques 340		
10.6.1	Total-reflection Fluorescence X-ray Absorption Spectroscopy 341		
10.6.2	Resonant X-ray Emission Spectroscopy (RXES) 341		
10.6.3	Combined XRD and XAS 342		
10.7	Conclusions 342		
	Acronyms 343		
	References 344		
	Part V Modeling 240		
	Part V Modeling 349		
11	Part V Modeling 349 Unraveling Local Electrocatalytic Conditions with Theory and		
11	-		
11	Unraveling Local Electrocatalytic Conditions with Theory and		
11 11.1	Unraveling Local Electrocatalytic Conditions with Theory and Computation 351		
	Unraveling Local Electrocatalytic Conditions with Theory and Computation 351 Jun Huang, Mohammad J. Eslamibidgoli, and Michael H. Eikerling		
11.1	Unraveling Local Electrocatalytic Conditions with Theory and Computation 351 Jun Huang, Mohammad J. Eslamibidgoli, and Michael H. Eikerling Local Reaction Conditions: Why Bother? 351		
11.1 11.2	Unraveling Local Electrocatalytic Conditions with Theory and Computation 351 Jun Huang, Mohammad J. Eslamibidgoli, and Michael H. Eikerling Local Reaction Conditions: Why Bother? 351 From Electrochemical Cells to Interfaces: Basic Concepts 352		
11.1 11.2 11.3	Unraveling Local Electrocatalytic Conditions with Theory and Computation 351 Jun Huang, Mohammad J. Eslamibidgoli, and Michael H. Eikerling Local Reaction Conditions: Why Bother? 351 From Electrochemical Cells to Interfaces: Basic Concepts 352 Characteristics of Electrocatalytic Interfaces 355		
11.1 11.2 11.3	Unraveling Local Electrocatalytic Conditions with Theory and Computation 351 Jun Huang, Mohammad J. Eslamibidgoli, and Michael H. Eikerling Local Reaction Conditions: Why Bother? 351 From Electrochemical Cells to Interfaces: Basic Concepts 352 Characteristics of Electrocatalytic Interfaces 355 Multifaceted Effects of Surface Charging on the Local Reaction		
11.1 11.2 11.3 11.4	Unraveling Local Electrocatalytic Conditions with Theory and Computation 351 Jun Huang, Mohammad J. Eslamibidgoli, and Michael H. Eikerling Local Reaction Conditions: Why Bother? 351 From Electrochemical Cells to Interfaces: Basic Concepts 352 Characteristics of Electrocatalytic Interfaces 355 Multifaceted Effects of Surface Charging on the Local Reaction Conditions 356		
11.1 11.2 11.3 11.4	Unraveling Local Electrocatalytic Conditions with Theory and Computation 351 Jun Huang, Mohammad J. Eslamibidgoli, and Michael H. Eikerling Local Reaction Conditions: Why Bother? 351 From Electrochemical Cells to Interfaces: Basic Concepts 352 Characteristics of Electrocatalytic Interfaces 355 Multifaceted Effects of Surface Charging on the Local Reaction Conditions 356 The Challenges in Modeling Electrified Interfaces using First-principles		
11.1 11.2 11.3 11.4	Unraveling Local Electrocatalytic Conditions with Theory and Computation 351 Jun Huang, Mohammad J. Eslamibidgoli, and Michael H. Eikerling Local Reaction Conditions: Why Bother? 351 From Electrochemical Cells to Interfaces: Basic Concepts 352 Characteristics of Electrocatalytic Interfaces 355 Multifaceted Effects of Surface Charging on the Local Reaction Conditions 356 The Challenges in Modeling Electrified Interfaces using First-principles Methods 358		
11.1 11.2 11.3 11.4 11.5	Unraveling Local Electrocatalytic Conditions with Theory and Computation 351 Jun Huang, Mohammad J. Eslamibidgoli, and Michael H. Eikerling Local Reaction Conditions: Why Bother? 351 From Electrochemical Cells to Interfaces: Basic Concepts 352 Characteristics of Electrocatalytic Interfaces 355 Multifaceted Effects of Surface Charging on the Local Reaction Conditions 356 The Challenges in Modeling Electrified Interfaces using First-principles Methods 358 Computational Hydrogen Electrode 359		
11.1 11.2 11.3 11.4 11.5	Unraveling Local Electrocatalytic Conditions with Theory and Computation 351 Jun Huang, Mohammad J. Eslamibidgoli, and Michael H. Eikerling Local Reaction Conditions: Why Bother? 351 From Electrochemical Cells to Interfaces: Basic Concepts 352 Characteristics of Electrocatalytic Interfaces 355 Multifaceted Effects of Surface Charging on the Local Reaction Conditions 356 The Challenges in Modeling Electrified Interfaces using First-principles Methods 358 Computational Hydrogen Electrode 359 Unit-cell Extrapolation, Explicit Solvated Protons, and Excess		
11.1 11.2 11.3 11.4 11.5 11.5.1 11.5.2	Unraveling Local Electrocatalytic Conditions with Theory and Computation 351 Jun Huang, Mohammad J. Eslamibidgoli, and Michael H. Eikerling Local Reaction Conditions: Why Bother? 351 From Electrochemical Cells to Interfaces: Basic Concepts 352 Characteristics of Electrocatalytic Interfaces 355 Multifaceted Effects of Surface Charging on the Local Reaction Conditions 356 The Challenges in Modeling Electrified Interfaces using First-principles Methods 358 Computational Hydrogen Electrode 359 Unit-cell Extrapolation, Explicit Solvated Protons, and Excess Electrons 360		
11.1 11.2 11.3 11.4 11.5 11.5.1 11.5.2	Unraveling Local Electrocatalytic Conditions with Theory and Computation 351 Jun Huang, Mohammad J. Eslamibidgoli, and Michael H. Eikerling Local Reaction Conditions: Why Bother? 351 From Electrochemical Cells to Interfaces: Basic Concepts 352 Characteristics of Electrocatalytic Interfaces 355 Multifaceted Effects of Surface Charging on the Local Reaction Conditions 356 The Challenges in Modeling Electrified Interfaces using First-principles Methods 358 Computational Hydrogen Electrode 359 Unit-cell Extrapolation, Explicit Solvated Protons, and Excess Electrons 360 Counter Charge and Reference Electrode 361		

Case Study: Oxygen Reduction at Pt(111) 364

Outlook 367 11.8 Acronyms 367 Symbols 368 References 368

Part VI Protocols 375

12	Quantifying the Activity of Electrocatalysts 377		
	Karla Vega-Granados and Nicolas Alonso-Vante		
12.1	Introduction: Toward a Systematic Protocol for Activity		
	Measurements 377		
12.2	Materials Consideration 378		
12.2.1	PGM Group 378		
12.2.2	Low PGM and PGM-free Approaches 379		
12.2.3	Impact of Support Effects on Catalytic Sites 381		
12.3	Electrochemical Cell Considerations 382		
12.3.1	Cell Configuration and Material 382		
12.3.2	Electrolyte 385		
12.3.2.1	Purity 385		
12.3.2.2	Protons vs. Hydroxide Ions 386		
12.3.2.3	Influence of Counterions 388		
12.3.3	Electrode Potential Measurements 388		
12.3.4	Preparation of Electrodes 391		
12.3.5	Well-defined and Nanoparticulated Objects 395		
12.4	Parameters Diagnostic of Electrochemical Performance 396		
12.4.1	Surface Area 396		
12.4.2	Hydrogen Underpotential Deposition Integration 397		
12.4.2.1	Surface Oxide Reduction 398		
12.4.2.2			
12.4.2.3	Underpotential Deposition of Metals 401		
12.4.2.4	Double-layer Capacitance 402		
12.4.3	Electrocatalysts Site Density 402		
12.4.4	Data Evaluation (Half-Cell Reactions) 404		
12.4.5	The $E_{1/2}$ and $E(j_{Pt}$ (5%)) Parameters 405		
12.5	Stability Tests 407		
12.6	Data Evaluation (Auxiliary Techniques) 409		
12.6.1	Surface Atoms vs. Bulk 410		
12.7	Conclusions 411		
	Acknowledgments 412		
	Acronyms 412		
	Symbols 413		
	References 414		

13	13 Durability of Fuel Cell Electrocatalysts and Methods for		
	Performance Assessment 429		
	Bianca M. Ceballos and Piotr Zelenay		
13.1	Introduction 429		
13.2	T T T T T T T T T T T T T T T T T T T		
	Applications 431		
13.3	PGM-free Electrocatalyst Degradation Pathways 432		
13.3			
13.3			
13.3	8		
13.3			
13.4	PGM-free Electrocatalyst Durability and Metrics 440		
13.4	Performance and Durability Evaluation in Air-supplied Fuel Cell		
	Cathode 440		
13.4	8 1 8		
13.4	3 Determination of Performance Loss upon Cycling Cathode Catalyst in		
	Nitrogen 443		
13.4	4 Recommendations for ORR Electrocatalyst Evaluation in RRDE in O		
	and in an Inert Gas 446		
13.4	5 Electrocatalyst Corrosion 447		
13.5	Low-PGM Catalyst Degradation 447		
13.5	1 Pt Dissolution 449		
13.5	2 Carbon Support Corrosion 452		
13.5	3 Pt Catalyst MEA Activity Assessment and Durability 454		
13.5	4 PGM Electrocatalyst MEA Conditioning in H ₂ /Air 454		
13.5	5 Accelerated Stress Test of PGM Electrocatalyst Durability 456		
13.6	Conclusion 457		
	Acronyms 459		
	References 460		
	Part VII Systems 471		
1.4	Madeline of Deliverer Floaturelyte Manchages Final Cells 472		
14	Modeling of Polymer Electrolyte Membrane Fuel Cells 473		
	Andrea Baricci, Andrea Casalegno, Dario Maggiolo, Federico Moro,		
111	Matteo Zago, and Massimo Guarnieri		
14.1	Introduction 473		
14.2	General Equations for PEMFC Models 474		
14.2	,		
14.2			
14.2	6		
14.2	1		
14.2	*		
14.2	1		
14.2	7 Examples of Fuel Cell Modeling 482		

14.3 14.4	Multiphase Water Transport Model for PEMFCs 483 Fluid Mechanics in PEMFC Porous Media: From 3D Simulations to 1D
	Models 488
14.4.1	From Micro- to Macroscopic Models 490
14.4.2	Porous Medium Anisotropy 491
14.4.3	Fluid-Fluid Viscous Drag 492
14.4.4	Surface Tension and Capillary Pressure 492
14.5	Physical-based Modeling for Electrochemical Impedance
	Spectroscopy 496
14.5.1	Experimental Measurement and Modeling Approaches 496
14.5.2	Physical-based Modeling 497
14.5.2.1	Current Relaxation 497
14.5.2.2	Laplace Transform 498
14.5.3	Typical Impedance Features of PEMFC 498
14.5.4	Application of EIS Modeling to PEMFC Diagnostic 500
14.5.5	Approximations of 1D Approach 501
14.6	Conclusions and Perspectives 502
	Acronyms 503
	Symbols 504
	References 507
15	Physics-based Modeling of Polymer Electrolyte Membrane
	Fuel Cells: From Cell to Automotive Systems 511
	Andrea Baricci, Matteo Zago, Simone Buso, Marco Sorrentino, and
	Andrea Casalegno
15.1	Polymer Fuel Cell Model for Stack Simulation 511
15.1.1	General Characteristics of a Fuel Cell System for Automotive
	Applications 511
15.1.2	Analysis of the Channel Geometry for Stack Performance Modeling 514
15.1.3	Analysis of the Air and Hydrogen Utilization for Stack Performance
	Modeling 516
15.1.4	Introduction to Transient Stack Models 518
15.2	Auxiliary Subsystems Modeling 519
15.2.1	Air Management Subsystem 519
15.2.2	Hydrogen Management Subsystem 521
15.2.3	Thermal Management Subsystem 522
15.2.4	PEMFC System Simulation 522
15.3	Electronic Power Converters for Fuel Cell-powered Vehicles 525
15.3.1	Power Converter Architecture 527
15.3.2	Load Adaptability 527
15.3.3	D
15221	Power Electronic System Components 528
15.3.3.1	Port Interface Converters 530
15.3.3.2	Port Interface Converters 530 The PEMFC Interface Converter 530
15.3.3.2 15.3.3.3	Port Interface Converters 530

xiv	Contents

15.3.3.5	Supervisory Control 531
15.4	Fuel Cell Powertrains for Mobility Use 532
15.4.1	Transport Application Scenarios 532
15.4.2	Tools for the Codesign of Transport Fuel Cell Systems and Energy
	Management Strategies 534
15.4.2.1	Automotive Case Study: Optimal Codesign of an LDV FCHV
	Powertrain 535
	Acronyms 540
	Symbols 541
	References 541
	Index 545