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1.1 Basic Concepts and Laws of Thermal Conduction

1.1.1 Description of Temperature Field

The difference in temperature drives the heat transfer from the high-temperature
zone to the low-temperature zone; it is therefore important to understand the tem-
perature distribution of the object for studying the heat transfer. The temperature
distribution can be expressed in mathematical equations and image forms using a
scalar temperature field, which is a function of time (t) and space coordinates (x, y, z):

T = f (t, x, y, z) (1.1)

According to the temperature variation with time, the temperature field can be
divided into steady temperature field and unsteady temperature field. In the steady-
state temperature field, the temperature of the object is only related to space but not
to time change. It can be expressed by

T = f (x, y, z), 𝜕T
𝜕t

= 0 (1.2)

According to the dimensional correlation with the spatial coordinates, the tem-
perature field can be divided into one-dimensional, two-dimensional, and three-
dimensional temperature fields, that is, the object temperature is only related to one,
two, or three coordinates of space. For example, one-dimensional steady tempera-
ture field can be expressed by

T = f (x), 𝜕T
𝜕y

= 𝜕T
𝜕z

= 𝜕T
𝜕t

= 0 (1.3)

When the temperature field is described by an image, the image formed by con-
necting the same points of temperature is called an isothermal surface. By analogy,
a cluster of curves is formed in the two-dimensional temperature field, which is
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Figure 1.1 Temperature field and
temperature gradient.

called an isotherm. As shown in Figure 1.1, there is no temperature difference on
an isotherm, so heat can only transfer between different isotherms.

1.1.2 Temperature Gradient

As shown in Figure 1.1, the temperature difference between isotherms is the same.
However, the ratio limit of the temperature difference to the distance of a point in
different directions is different. The limit of the ratio of the temperature difference
to the distance in the normal direction of the point is the maximum. The maximum
limit value is defined as the temperature gradient, which is recorded as ∇T, it is a
vector whose direction points to the direction of temperature rise along the isotherm
normal and can be expressed by

∇T = lim
Δn→∞

(ΔT
Δn

)
(1.4)

1.1.3 Fourier’s Law

In 1882, French scholar Fourier proposed the basic law of heat conduction process,
namely Fourier’s law. The expression is [1]

q = −k∇T (1.5)

where q is the heat flow density in W/m2 and k is the thermal conductivity in W/m K.
Formula (1.5) shows that q is a vector, and its direction lies on the same normal of the
temperature gradient isotherm, pointing to the direction of temperature reduction.

1.1.4 Heat Flux Density Field

In the space coordinate system, the heat flux expression is

q = qx x + qy y + qzz (1.6)

where x, y, z are unit vectors in x-, y-, z-directions, respectively. The heat flux distri-
bution inside the object constitutes a heat flux field, which is a vector field. As shown
in Figure 1.2, the solid line represents the isotherm, and the dotted line represents
the isochore. Isothermal streamline is a set of curves perpendicular to the isotherm
everywhere. The heat flux density on the isothermic streamline is equal everywhere,
the direction of the heat flux density at any point is always tangent to the isothermic
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Figure 1.2 Isotherms and heat flux.

T+ ΔT

T–ΔT

T

q

n

streamline, and the heat flux transmitted between two adjacent dotted lines is equal
everywhere.

1.1.5 Thermal Conductivity

According to Formula (1.5),

k = −
q
∇T

= Q ⋅ d
S ⋅ t ⋅ ΔT

=
q ⋅ d

S ⋅ ΔT
(1.7)

where S is the area, Q is the heat transferred through the area S in t time, and d is
the distance of heat transfer. Thermal conductivity is a proportional coefficient in
Fourier’s law, which reflects the thermal conductivity of an object, that is, the heat
flow that can be transferred through a unit area under the action of a unit tempera-
ture gradient.

The thermal conductivity of object usually varies with temperature. When the
temperature range of the objective is small, the thermal conductivity is linearly
related to the temperature:

k = k0(1 + bT) (1.8)

where k0 is the thermal conductivity under a certain reference state and b is the con-
stant determined experimentally. Due to the difference of heat conduction mecha-
nism, the thermal conductivity of object in different forms is quite different. The heat
conduction of objects is the collision and transfer of microscopic particles, includ-
ing the thermal movement of molecules, the phonon movement formed by lattice
vibration, and the movement of free electrons. Generally, the thermal conductivity
of solid is the highest, while that of gas is the lowest.

1.2 Heat Conduction Differential Equation and Finite
Solution

1.2.1 Heat Conduction Differential Equation

Figure 1.3 shows a cube element with side lengths of dx, dy, dz. Here, the density 𝜌,
specific heat Cp, and thermal conductivity k are constants.

According to the law of conservation of energy, the sum of the net heat flowing
into the cube unit in a certain time ΔQi and the heat generated by the cube unit itself
ΔQp is equal to the increase in the enthalpy ΔE of the infinitesimal cube.
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Figure 1.3 Cube element.

During d𝜏 time, the total net inflow heat in the x-, y-, z-directions is

ΔQi = k
(
𝜕2T
𝜕x2 + 𝜕2T

𝜕y2 + 𝜕2T
𝜕z2

)
dx dy dz d𝜏 (1.9)

The heat generated by the heat source in the cube unit in time d𝜏 is

ΔQp = q1dx dy dz d𝜏 (1.10)

where q1is the calorific value of the heat source per unit time and volume, and the
unit is W/m3.

The increase in enthalpy of the heat source of the cube unit in time d𝜏 is

ΔE = 𝜌c𝜕T
𝜕𝜏

dx dy dz d𝜏 (1.11)

According to the conservation of energy,

𝜌c𝜕T
𝜕𝜏

= k
(
𝜕2T
𝜕x2 + 𝜕2T

𝜕y2 + 𝜕2T
𝜕z2

)
+ q1 (1.12)

It can also be written as
𝜕T
𝜕𝜏

= 𝛼

(
𝜕2T
𝜕x2 + 𝜕2T

𝜕y2 + 𝜕2T
𝜕z2

)
+

q1

𝜌c
= ∇2T +

q1

𝜌c
(1.13)

where ∇2 is Laplace operator, and 𝛼 is the thermal diffusion coefficient with unit of
m2/s. Formulas (1.12) and (1.13) are the differential equations of heat conduction,
which describes the variation of temperature field in the heat conduction system
with time and space.

Thermal diffusion coefficient (𝛼 = k/𝜌c) is a physical parameter related to the type
of material, and the value depends on the thermal conductivity, density, and specific
heat of the object. It reflects the ability of the object to transmit temperature changes.

For the steady-state temperature field with constant thermal conductivity, the
thermal conductivity differential equation becomes

0 = 𝜕2T
𝜕x2 + 𝜕2T

𝜕y2 + 𝜕2T
𝜕z2 +

q1

k
= ∇2T +

q1

𝜌c
(1.14)
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For steady-state temperature field with constant thermal conductivity and no
internal heat source, the thermal conductivity differential equation is expressed as

0 = 𝜕2T
𝜕x2 + 𝜕2T

𝜕y2 + 𝜕2T
𝜕z2 (1.15)

The above equation is called Laplace equation, which is the most basic differential
equation for studying the steady-state temperature field.

1.2.2 Definite Conditions

The differential equation of heat conduction is a universal equation for heat conduc-
tion problems. For specific heat conduction problems, the eigenvalue conditions of
the corresponding problem must be given. These conditions include initial condi-
tions (initial state of heat conduction system) and boundary conditions (interface
characteristics, relationship between system and environment), where the initial
condition expression is

T = f (x, y, z, 0) (1.16)

If the initial temperature is uniform and constant (T = Ti), the initial condition is
not required for the steady-state heat conduction problem. There are three common
types of boundary problems.

The first boundary condition is that the boundary temperature distribution of the
system is known:

T = f (x, y, z, 0) (1.17)

The second boundary condition is that the heat flux distribution on the boundary
is known:

q = q(x, y, z) (1.18)

The third boundary condition is that the convective heat transfer coefficient and
fluid temperature between the object and the surrounding fluid are known:

−k𝜕T
𝜕n

= 𝛼(T − T∞) (1.19)

1.3 Heat Conduction Mechanism and Theoretical
Calculation

The heat transfer of gases relies on the thermal motion and collision of molecules
and atoms. The heat transfer in liquids relies on irregular elastic vibrations (or simi-
lar gases). In solids, heat energy is transferred through electrons and lattice vibra-
tions. In metal solids, heat conduction is mainly realized by the interaction and
collision of electrons. On the contrary, in dielectric solids including semiconduc-
tors and insulators, heat is mainly transferred through quantized lattice vibration.
Among these heat conduction mechanisms, the speed of heat transfer through elec-
tron collision is the highest, while the one by molecular or atomic collision is the
lowest.
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1.3.1 Gases

The heat conduction mechanism of gases involves the heat transfer caused by the
thermal movement of molecules and the collision between molecules. According
to the theory of ideal gas molecular motion, the mathematical expression of
molecular heat conduction mechanism can be deduced as [1]

k = 1
3

Cvvl (1.20)

where k is the thermal conductivity, Cv is the heat capacity per unit volume of gas, v is
the average velocity of gas molecules, and l is the average free path of gas molecules.
Because the heat capacity of the gas and the average speed of molecular motion
increase with the increase in temperature, the thermal conductivity of the gas also
increases with the increase in temperature.

Chapman and Cowling [2] associate the thermal conductivity of simple gas with
viscosity and specific heat at constant volume, and the expression is

k = f𝜂Cv (1.21)

where f is constant, 2.5 for smooth spherically symmetric molecules and 2.522 for
rigid elastic spheres; 𝜂 is the kinematic viscosity with a unit of kg/(m s); and cv is the
specific heat of constant volume with a unit of W/(kg K).

Eucken [3] correlated the thermal conductivity of monatomic gas with viscosity
and specific heat at atmospheric pressure and 0 ∘C:

k = 9r − 5
4

⋅ 𝜂 ⋅ cv × 420(W∕(m K)) (1.22)

Hirschfelder et al. [4] later modified the Euken equation:

k =
(H

v

)
𝜂∕M(cv + 9R∕4) (1.23)

where H and v are the complex interaction coefficients between molecular pairs, M
is the molecular weight, and R is the ideal gas constant.

1.3.2 Solids

The lattice in solid is fixed and can only vibrate slightly near its equilibrium posi-
tion. The heat conduction in solids is mainly realized by the lattice wave of lattice
vibration and the movement of free electrons. According to quantum theory, the
energy of lattice vibration is quantized, and the quantum of lattice vibration is usu-
ally called phonon [5]. Therefore, phonons can be regarded as free “gas” particles by
analogy with gas heat conduction [6]. The contribution of phonons or electrons to
heat conduction varies greatly depending on the type of solid.

1.3.2.1 Metals
There are a large number of unbound free electrons with light mass in metals.
The electrons move like “electron gas.” The interaction or collision between
electrons is the main mechanism of metal heat conduction, that is, electronic
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heat conduction. Metals are also crystals; hence, lattice vibration (phonon) also
contributes to the heat transfer in metals. Therefore, the thermal conductivity k of
metal can be expressed by the following formula:

k = ke + kp (1.24)

where ke is the thermal conductivity representing the contribution of free electrons,
and kp is the thermal conductivity representing the contribution of phonon.

Based on the results of the kinetic theory of gas molecules, the mathematical
expression of ke is

ke =
1
3

Cve ⋅ Ve ⋅ le =
1
3

Cve ⋅ V
2
e ⋅ 𝜏 (1.25)

where Cve is the heat capacity of electrons per unit volume, V e is the average velocity
of electrons, and le is the average free path of the electron.

Free electrons in metals serve as both the carrier of heat and the carrier of electric-
ity, so metal heat conduction and conductivity are closely related. The relationship
between thermal conductivity and conductivity of metals follows Wiedman–Franz
law:

k
𝜎T

=
𝜋2kB

2

3e2 (1.26)

where 𝜎 is the electrical conductivity, e is the absolute value of electronic charge,
and kB is the Boltzmann constant. The law shows that the thermal conductivity of
metal is proportional to the electrical conductivity.

The law of electron heat conduction in metal changing with temperature is shown
in Figure 1.4. At very low temperatures, the electron thermal conductivity increases
linearly with temperature; at medium temperatures, the electron thermal conduc-
tivity is almost constant and does not change with temperature; and at very high
temperatures, the electron thermal conductivity decreases slightly with the increase
in temperature.

Figure 1.4 Relationship between
metal thermal conductivity and
temperature.
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1.3.2.2 Inorganic Nonmetals
Crystal In dielectric crystals, heat energy is transferred by lattice vibration. There-
fore, the propagation of lattice waves is regarded as the movement of phonons. The
scattering encountered by lattice waves in the crystal is regarded as the collision
between phonons, phonons and grain boundaries, and lattice defects. The thermal
resistance in an ideal crystal is attributed to the collision between phonons.

According to Debye’s assumption, by analogy with gases, it is considered that the
mathematical expression of thermal conductivity in dielectric crystals should be the
similar to that in gases. Therefore, the expression of phonon thermal conductivity
can be expressed by

kpn = 1
3

Cvpn ⋅ V pn ⋅ lpn (1.27)

where Cvpn, V pn, and lpn are the volume heat capacity, average velocity, and average
free path of phonons, respectively.

According to the Klemens model, the lattice thermal conductivity of blocky solid
is given by

kpn = 1
3 ∫

𝜕Ei(q,T)
𝜕T

v2
i (q)𝜏i(q)dq (1.28)

where i is the index of phonons, v is the group velocity of phonons, 𝜏 is the relaxation
time, and q is the wave vector.

The curve of thermal conductivity of dielectric crystal changing with tempera-
ture is shown in Figure 1.5 [7]. At very low temperatures, the phonon-specific heat
capacity is proportional to T3. It means that heat conduction of crystal increases pro-
portionally with the third power of temperature [8]. At higher temperatures, on the
one hand, the phonon heat capacity does not change with temperature and is close
to a constant 3R. On the other hand, the mean free path of phonons decreases gradu-
ally with the increase in temperature, and the mean free path of phonons is inversely
proportional to the temperature (l∝ 1/T). Therefore, the thermal conductivity of the
dielectric crystal at a higher temperature decreases [9].
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Figure 1.5 Relationship between
thermal conductivity and temperature
of dielectric crystals.
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The formulas for calculating the theoretical thermal conductivity of dielectric
crystals are summarized below:

Debye formula

k = 1
16𝜋3 ⋅

3
3𝛼2 + 1

⋅
𝜌v5

x0v4 ⋅
C

kBT
(1.29)

where 𝜌 is the density, v is the propagation velocity of phonons, C is the heat capacity,
x0 is the compression coefficient, v is the frequency, kB is the Boltzmann constant,
T is the absolute temperature, and 𝛼 is the correlation coefficient.

Compton formula

k = bn2dRv
2 − C0Te−

𝛽v
2T

C0
2T

(1.30)

where b = 4m1m2/(m1 +m2), m is the mass of different atoms, n2 is the number of
atoms per unit area perpendicular to the heat flow, d is the atomic spacing parallel
to the heat flow, R is the gas constant of a single molecule, v is the atomic vibra-
tion frequency, C0 is the constant determined by thermal conductivity at a given
temperature, T is the absolute temperature, and 𝛽 is a constant.

Pell formula
1
k
= AT + ATBe−

𝛩

2T (1.31)

where 𝛩 is the Debye temperature, T is the absolute temperature, and A and B are
constants.

Papapecchu formula

k =
l0u0v
3V

(C
u
+ u

3RT2

)
(1.32)

where V is the gram atomic volume; l = l0u0/u is the average free path; R is the gas
constant; u = 3LE, E is the average energy of a wave and L is the Loschmidt constant;
v is the average propagation speed; C is the specific heat of gram atom; and T is the
absolute temperature.

Entuo formula

k = 3nk𝜋vNd
2

(
hv
kT

)2

⎡⎢⎢⎢⎢⎢⎣
e

hv
kBT(

e
hv

kBT − 1
) 3

2

⎤⎥⎥⎥⎥⎥⎦
(1.33)

where kB is the Boltzmann constant, n is a factor determined by the type of spatial
lattice, N is the number of atoms per unit area, d is the atomic spacing, R is the
gas constant, h is Planck constant, v is the natural vibration frequency, and T is the
absolute temperature.

Noncrystal Inorganic amorphous materials have a long-range disorder and
short-range ordered structure. To analyze their heat conduction mechanism, they
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are generally treated as a “crystal” composed of very fine grains with only a few lat-
tices spacing sizes. Allen and Feldman [10] studied the heat transfer mechanism in
amorphous materials using lattice dynamics calculations and divided the vibration
modes into three different categories: plane wave propagator, diffuser, and locator.
The relative contribution of each mode determines the thermal conductivity of the
material, including its value, dependence on sample size, and temperature [11].
In 1911, Einstein [12], first proposed the “amorphous limit” model to predict the
minimum lattice thermal conductivity of amorphous solids. In 1979, Slack [13]
further developed the “amorphous Limit” model, which equates the minimum
mean free path of phonons with the wavelength of lattice waves and is called the
“minimum thermal conductivity” model.

Cahill–Pohl model [14] simulates the thermal conductivity of amorphous solids by
assuming that the average free path of each vibration mode is half of its wavelength.
Agne et al. [15] simplified the Cahill–Pohl model results to

k = 1.21kB
1
3
(2vT + vL)n2∕3 (1.34)

where kB is the Boltzmann constant, n is the atomic number density, vT is the lat-
eral propagation velocity, and vL is the longitudinal speed. In 1992, Cahill et al. [15]
further modified the “minimum thermal conductivity” model.

For the relationship between thermal conductivity and temperature of inorganic
amorphous, the contribution of photonic heat conduction should be considered
at higher temperatures, and it will be mainly determined by the relationship
between heat capacity and temperature in other temperature ranges. The thermal
conductivity of inorganic amorphous materials changes with temperature as shown
in Figure 1.6 [17]. At low temperatures, the thermal conductivity of inorganic
amorphous increases monotonously with the increase in temperature. At this
time, the change of phonon heat conduction with temperature is determined by
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Figure 1.6 Relationship between
thermal conductivity and
temperature of inorganic amorphous
solids. Source: Reproduced with
permission from Ref. [16]; ©1993
American Physical Society.
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the change rule of phonon heat capacity with temperature. As the temperature
increases, the phonon heat capacity increases, so the thermal conductivity of the
amorphous increases accordingly. From medium temperature to high temperature,
although the temperature increases, the phonon heat capacity no longer increases
but gradually becomes constant. Therefore, the phonon heat conduction no longer
varies with temperature, and the thermal conductivity curve presents a straight line
nearly parallel to the horizontal axis. Above the high temperature, the phonon heat
conduction changes little with the further increase in temperature. As the average
free path of photons increases significantly, the thermal conductivity of inorganic
amorphous is proportional to the third power of temperature.

1.3.3 Liquids

The heat conduction mechanism of liquids is still controversial. One view is that
the heat conduction mechanism of liquids is similar to that of gases. However, the
unreasonable thing is that the distance between liquid molecules is relatively close,
and the intermolecular force has a greater impact on the collision process than in
gases. Another point is that the heat conduction mechanism of liquid is similar to
that of non-metallic solids, mainly due to the effect of elastic waves.

The simplest equation applicable to all organic liquids is [18]

k = A
[
1 + B(1 − T∕Tc)1∕3 + C(1 − T∕Tc)2∕3 + D(1 − T∕Tc)

]
(1.35)

where Tc is the critical temperature, B, C, D are constants, A is the pseudo-critical
thermal conductivity.

Bridgman [19] provides a simple formula that can accurately calculate the thermal
conductivity of some liquids:

k =
2kBvs

d2 = 2kBvsn2∕3 (1.36)

where vs is the longitudinal speed of sound in a liquid, d is the mean distance
between the centers of molecules and can be calculated from d = n−1/3, and n is the
number density of molecules in the liquid.

Chapman–Enskog [20] gives the thermal conductivity of liquids as follows:

k =
k0

g(D)

[
1 + 2

5
𝜋𝜌D3g(D)

]2
+

3kB

2m
II (1.37)

where D is the effective diameter of the molecule, m is the mass of a liquid molecule,
𝜌 is the density of the liquid (kg/m3), and T is the absolute temperature.

van Elk vet al. [21] developed an equation for the correlation between the compo-
nents of binary mixed liquids and thermal conductivity, and verified various types
of mixed liquids:

km = w1k1 + w2k2 − 0.72w1w2(k2 − k1) (1.38)

The components are so selected that k2 ≥ k1; the constant 0.72 may be replaced by
an adjustable parameter when k2 < k1.
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In 1974, Saksena and Harminder [22, 23] also successively proposed and improved
the calculation formula for thermal conductivity of binary mixed liquids; Jamieson
suggested that the thermal conductivity of binary mixture can be calculated by the
following formula:

k = w1k1 + w2k2 − 𝛼(k2 − k1)
⌈
1 − (w2)1∕2⌉w2 (1.39)

The components are so selected that k2 ≥ k1; 𝛼 is an adjustable parameter
that is set equal to unity if mixture data are unavailable for regression purposes.
Equation (1.39) enables one to estimate m within about 7% for all types of binary
mixtures with or without water.

In 1982, Rowley Method [24] proposed the thermal conductivity equation for
multi-component mixed liquids using the two liquid theory modeling:

km =
n∑

i=1
wi

n∑
j=1

wjikji (1.40)

where km is the liquid mixture thermal conductivity, W/(m K); wi is the weight
fraction of component; wji is the local weight fraction of component j relative to
a central molecule of component i; and kji is the characteristic parameter for the
thermal conductivity that expresses the interactions between j and i, W/(m K).

In 1976, Li [25] provided a new idea for the calculation of thermal conductivity of
multi-component mixed liquids:

km =
n∑

i=1

n∑
j=1

𝜑i𝜑jkji (1.41)

kji = 2
(

ki
−1 + kj

−1)−1

𝜑i =
XiVi∑n
j=1XiVj

where Xi is the mole fraction of component i and𝜑i is the superficial volume fraction
of i. V i is the molar volume of the pure liquid.

1.4 Factors Affecting Thermal Conductivity of Inorganic
Nonmetals

1.4.1 Temperature

After summarizing the measurement results of the thermal conductivity of a large
number of dielectric crystals and amorphous solids, Eueken [26] concluded that
(i) the thermal conductivity of single crystals increases with the decrease of tem-
perature, while the thermal conductivity of amorphous solids shows inverse trend;
(ii) the thermal conductivity is inversely proportional to the absolute temperature of
the crystal; and (iii) the thermal conductivity of amorphous solids is roughly propor-
tional to the specific heat.
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Except for lead oxide, the thermal conductivity of inorganic non-metallic crys-
tals is almost proportional to the reciprocal of absolute temperature above room
temperature [10]:

k = A
T
; k = A

T
+ B (1.42)

where T is the absolute temperature, and A and B are constants determined
experimentally.

For inorganic amorphous, the thermal conductivity increases approximately in
direct proportion to the temperature [27]:

k = CT (1.43)

where T is the absolute temperature, and C is the constant determined
experimentally.

For the mixture of inorganic crystal and amorphous, the relationship between
thermal conductivity and temperature can be expressed as

k = 1
AT + B + C∕T

(1.44)

1.4.2 Pressure

Under pressure, the correlation between thermal conductivity and pressure can be
divided into increasing, decreasing, independent, and abnormal trends.

For example, the thermal conductivity of an object can increase sharply under
pressure. This is because the strain generated by pressure enhances the atomic
interaction and compresses the bond, changing the phonon dispersion, thus greatly
increasing the propagation speed of phonons. Such enhancement is nonlinear in
some cases, which can be attributed to the combined effect of decreasing phonon
relaxation time and increasing phonon group velocity [28].

In addition, the thermal conductivity of the object can also be reduced under pres-
sure, because phonon anharmonicity and phonon softening induced by pressure
increase [29]. The first-principle calculation shows that the reduced thermal con-
ductivity under pressure is mainly due to the stronger cubic anharmonic interaction,
large mass ratio, and significant acousto-optic frequency gap [30].

In some cases, the thermal conductivity is independent of the pressure, which may
be caused by the strong electron correlation effect driven by the electronic topologi-
cal transition [31].

Several mechanisms have been proposed to understand abnormal thermal con-
ductivity changes under pressure. The abnormal decrease of thermal conductivity
of some materials under pressure can be ascribed to the large phonon frequency gap
of materials under high pressure. The contribution of the inherent three-phonon
scattering process is smaller than that of other cases, and the complex scattering pro-
cess between more phonons dominates and increases the overall phonon scattering
[32]. In the case of another non-monotonic behavior, the thermal conductivity first
increases and then decreases with the increase in pressure. The possible mechanism
of this behavior is the competitive scattering process of three phonons interacting
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with four phonons under high pressure [33] or the interaction between group veloc-
ity and phonon relaxation time under pressure [34]. When some rare earths show
different pressure dependences of thermal conductivity, the pressure dependence is
determined by the competition between the enhancement of phonon group velocity
and the reduction of phonon relaxation time [35].

1.4.3 Crystal Structure

The more complex the crystal structure, the lower the thermal conductivity. For
example, the structure of magnesia alumina spinel (MgAl2O4) is similar to that of
alumina (Al2O3) and magnesium oxide (MgO), and their thermal solubility, thermal
expansion coefficient, and elastic modulus are similar. However, due to the complex
structure of the former, its thermal conductivity is much lower than the latter two.
In addition, the mean free path of phonons of materials with complex structures is
easy to approach or reach its minimum limit value, that is, the lattice size value, at
high temperatures to obtain lower thermal conductivity.

The structural integrity and regularity of polycrystals are worse than that of single
crystals. In addition, the influence of impurities and distortion on the grain bound-
ary increases the phonon scattering, which is more significant at higher tempera-
tures. In different crystal axis directions, the thermal conductivity of single crystals is
also different, with anisotropy, and the phonon scattering is different. The difference
of thermal conductivity of single crystals in different crystal axis directions decreases
with the increase in temperature, because anisotropic crystals tend to improve or
enhance their symmetry with the increase in temperature.

1.4.4 Thermal Resistance

As we all know, the smaller the thermal resistance, the greater the thermal conduc-
tivity. The main factor affecting thermal resistance is Debye temperature. The Debye
temperature is closely related to atomic weight, theoretical density, and compress-
ibility. The total thermal resistance in the crystal is

r = ATm(
e

𝛩

2T − 1
) + BNTn + 1∕(VLT3) (1.45)

where A is the atomic weight,𝛩 is the Debye temperature, 𝜌 is the theoretical density,
and X is the compression coefficient. Generally, the smaller the theoretical density is,
the greater the Debye temperature is. The greater the Debye temperature, the smaller
the thermal resistance. Therefore, lighter substances usually have higher thermal
conductivity. The smaller the compression coefficient or the larger the Young’s mod-
ulus, the higher the Debye temperature. The higher the Debye temperature, the
smaller the thermal resistance. Therefore, materials with higher binding energy usu-
ally have higher thermal conductivity. The smaller the atomic weight, the higher
the Debye temperature. Therefore, materials with large atomic weights have high
thermal conductivity.
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1.4.5 Others

Defects and impurities have a great influence on the thermal conductivity of mate-
rials, which is determined by the phonon heat conduction mechanism of dielec-
tric crystals [10]. They are the center of phonon scattering, which will reduce the
mean free path and thermal conductivity of materials [7]. Because the thermal con-
ductivity of gas in the porosity is far lower than that of materials, porosity always
reduces the thermal conductivity of the materials. Peierls-Boltzmann [36] revealed
the process of strain affecting thermal conductivity and found the power law scaling
relationship between thermal conductivity and temperature and strain. Strain first
affects the speed of phonon propagation and then affects the relaxation time, while
temperature only affects the relaxation time.

The experimental work of Krupskii and Manzhelli on the unconstrained argon
sample revealed that the thermal conductivity has a deviation in addition to the
inverse temperature dependence predicted theoretically [37]. They attributed the
bias to the higher-order four-phonon interaction, while Clayton and Batchelder
attributed it to the thermal expansion effect [38]. Dugdale and MacDonald assumed
that micro-area lattice expansion would occur due to thermal expansion resulting
from the temperature gradient [39]. For example, for a material with a positive
thermal expansion coefficient, the relative expansion of the hotter region and the
compression of the cooler region produces additional heat transfer sources, which
further reduce the thermal conductivity.
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