
1 Basic Physics

We will begin our study of fusion plasmas by considering the basic physics that ultimately
determines the properties of a thermonuclear plasma. The fusion process will be con-
sidered in the first section, and the conditions necessary for the achievement of fusion
reactions will be established. In the second section, we will examine some fundamental
properties of a plasma and will establish the criterion that determines when a collection
of charged particles may be treated as a plasma. The consequences of charged-particle
(Coulomb) collisions upon the particles that make up a plasma will be examined in the
third section. Finally, the basic equations of electromagnetic theory will be reviewed in the
fourth section.

1.1 Fusion
The actual mass of an atomic nucleus is not the sum of the masses .mp/ of the Z-protons
and the masses (mn/ of the A–Z neutrons of which it is composed. The stable nuclides
have a mass defect

� D ŒZmp C .A–Z/mn� �Amz (1.1)

This mass defect is conceptually thought of as having been converted to energy (E D �c2)
at the time that the nucleus was formed, putting the nucleus into a negative energy state.
The amount of externally supplied energy that would have to be converted to mass in
disassembling a nucleus into its separate nucleons is known as the “binding energy” of the
nucleus, BE D �c2. The binding energy per nucleon (BE/A) is shown in Fig. 1.1.

Any process which results in nuclides being converted to other nuclides with more
binding energy per nucleon will result in the conversion of mass into energy. The combi-
nation of low A-nuclides to form higher A-nuclides with a larger BE=A is the basis for the
fusion process for the release of nuclear energy. The splitting of very high A-nuclides to
form intermediate A-nuclides with a larger BE/A is the basis of the fission process for the
release of nuclear energy.

The fusion of two light nuclei to form a compound nucleus in an excited state that then
decays into reaction products, with an attendant conversion of mass into kinetic energy, is
represented schematically by

aC b !

�
compound

nucleus

��
! c C d (1.2)

The mass difference

�m D .ma Cmb/ � .mc Cmd/ > 0 (1.3)
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Figure 1.1. Binding energy per nucleon

is converted into kinetic energy according to Einstein’s celebrated formula

�E D .�m/c2 (1.4)

In order for the fusion reaction to take place, the two nuclei must overcome the long-
range Coulomb repulsion force and approach sufficiently close that the short-range nuclear
attraction forces can lead to the formation of a compound nucleus. From the observation
that hydrogen, deuterium, helium, and so on, do not fuse spontaneously under normal con-
ditions, we conclude that the electrostatic repulsion between positively charged nuclei pre-
vents nuclei approaching each other sufficiently close for the short-range attractive nuclear
forces to become dominant. For fusion to occur as a result of random encounters between
atomic nuclei, the nuclei must be made sufficiently energetic to overcome the Coulomb
repulsive force. We will see that energies of the order of 10 keV to 100 keV are required,
which corresponds to temperatures of 108 K to 109 K. At these thermonuclear temper-
atures, which are comparable to those of the sun’s interior, light atoms are completely
stripped of their orbital electrons. This macroscopically neutral gas of positively charged
light atomic nuclei and electrons is a thermonuclear plasma.

The rate at which fusion reactions take place between atomic nuclei of species 1 and 2
in a thermonuclear plasma is

n1n2 h��if � n1n2

Z
v1v2

f1.�1/f2.�2/j�1 � �2j�f .j�1 � �2j/ d3�1 d3�2 (1.5)

where n1 is the density, �1 is the velocity, and f1 is the velocity distribution function,
respectively, of species 1, and �f is the fusion cross section. The velocity distributions of
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Figure 1.2. Fusion reaction rates

ions in a plasma can be represented in many cases by a Maxwellian distribution

fmax D

�
mi

2�Ti

� 3
2

e�.mi�
2/2Ti (1.6)

where Ti and mi are the temperature and mass, respectively, and k is the Boltzmann con-
stant. We will see that Coulomb collisions will cause all light ion species in a plasma to
have about the same velocity distribution, so that the parameter h��if in Eq. (1.5) can be
evaluated as a function of a single temperature T D T1 D T2.

Fusion reaction rates for the three reactions of primary interest for thermonuclear plas-
mas are shown in Fig. 1.2. At temperatures below the threshold value shown in Fig. 1.2
the reaction rates are negligible. As is apparent from this figure, and from Table 1.1, the
reaction rate which becomes significant at the lowest temperature is for deuterium (D)–
tritium (T) fusion. Table 1.1 also gives the amount of thermonuclear energy produced by
a fusion event and indicates the part of that energy that is the kinetic energy of a neutron.
The two branches shown for the D–D reaction occur with about equal probability. There
are many other possible fusion reactions, but they generally have even higher threshold
energies.

We can identify the principal challenges of fusion research from these data. The plasma
must be heated to thermonuclear temperature (108 K to 109 K) and confined sufficiently
long that the thermonuclear energy produced significantly exceeds the energy required to
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Table 1.1. Fusion reactions of primary interest

Reaction Thermonuclear energy release Threshold energy
MeV K keV

DC T! 4HeC n .14:1MeV/ 17.6 4:5 � 107 4

DC D!
�

TC p 4.0 4:0 � 108 35
4HeC n .14:1MeV/ 3.25

DC 3He! 4HeC p 18.2 3:5 � 108 30

heat the plasma. A simple energy balance (which ignores many important effects),
�
1
4
n2h��ifEf

�
�E > 3nT (1.7)

which states that the product of the fusion energy production rate and the energy confine-
ment time, �E , must exceed the amount of energy required to heat n ions per unit volume
(n1 D n2 D

1
2
n) and n electrons to temperature T , may be used to derive a break-even

criterion for the scientific feasibility of fusion power. Using physical constants typical of a
D–T plasma, Eq. (1.7) can be rearranged to write the criterion

nT �E >
12k

h��if

T 2

Ef ' 3 � 1021 keV � s�1m�3 (1.8)

The quantity h�vif
T 2 is approximately constant around 10 keV for the D–T reaction.

No conceivable material could confine a plasma at thermonuclear temperatures. Plas-
mas at these temperatures coming into direct contact with a material wall would produce
wall vaporization, which would quickly destroy the wall and quench plasma due to the
radiation produced by the ions of the wall material in the plasma. Thus, means other than
wall confinement are necessary.

Two basically different approaches to achieving energy break-even are being pursued.
In the first approach, use is made of the fact that charged particles spiral about magnetic
field lines to create magnetic field configurations which confine plasmas in a magnetic trap.
The goals of magnetic confinement research are to achieve plasma densities of� 1020 m�3

to 1022 m�3 and energy confinement times of � 10�1 s to 101 s. Magnetically confined
plasmas are to be heated to thermonuclear temperatures by a number of different possible
means.

In the second approach, known as inertial confinement, a 1mm to 10mm D–T pellet
is compressed to densities of 1027 m�3 to 1028 m�3 and heated to thermonuclear tempera-
tures by lasers or fast ion beams. In the 10 ns to 100 ns required for explosive disassembly,
fusion takes place at a prodigious rate.

The fusion criterion is plotted against the central temperature for a number of magnetic
and inertial confinement concepts in Fig. 1.3, with the years in which different values of
the fusion criterion were achieved indicated. The Q–contours indicate the value of the ratio
of the fusion power produced in the plasma to the supplemental input power to the plasma
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(a) (b)

Figure 1.3. Progress in plasma confinement

necessary to maintain the temperature against radiative and transport losses. Fig. 1.3(a)
is for deuterium plasmas in which the fusion power was produced by the D–D reaction,
and Fig. 1.3(b) is for deuterium plasmas with a small admixture of tritium in which the
fusion power was produced by the D–T reaction. The solid ovals indicate values achieved
and the open ovals indicate anticipated values for existing experiments. As can be seen,
the leading tokamak confinement concept has achieved values of the fusion criterion very
close to what is needed for a reactor.

One D–T fusion yields 17:6MeV, or 7:83�10�19 kWh, of thermonuclear energy. (The
ultimate heat energy may be 20% greater because of exothermic neutron reactions in the
surrounding material.) The estimated worldwide lithium resources contain of the order
of 6 � 1016 kWh of thermal energy based upon the D–T reaction, or roughly one third
this amount of electrical energy. This number is comparable to the energy content of the
estimated worldwide fossil fuel resources and to the accessible energy content of the esti-
mated worldwide uranium resources, based on the fission reaction. (The accessible energy
content of uranium resources can be increased substantially by breeding-neutron capture
and subsequent radioactive decay of fissionable isotopes from the otherwise nonfission-
able isotope of uranium.)
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1.2 Plasma
A plasma is a collection of charged particles which is macroscopically neutral over a vol-
ume that is small compared to its dimensions. In principle, the motion of each particle can
be determined from Newton’s second Law and the electrostatic force that each particle
exerts on all other particles. This is impractical in practice, because there might be some
1020 particles in a cubic meter of magnetically confined plasma, so other means of describ-
ing the plasma must be found. The fact that the electrostatic potential � D e=.4�	0r/ that
a particle of charge e produces at a distance r is shielded by the presence of nearby charged
particles can be exploited to develop a computationally tractable approximation.

Although a plasma is macroscopically neutral, it is locally nonneutral on some suffi-
ciently small microscopic scale. Consider a macroscopically neutral plasma with a uniform
ion distribution of density n0 and a locally nonuniform electron distribution which varies
according to the Maxwell–Boltzmann distribution

ne D n0 exp
�
e�

Te

�
� n0

�
1C

e�

Te

�
(1.9)

where je�j � jTej. The local electrostatic potential, �, arises from local nonuniformities
in the electron distribution which lead to a local charge density e.n1 � ne/ D e.n0 � ne/.
The potential satisfies Poisson’s equation

r2� D
e.ne � n0/

	0
D

1


2e
� (1.10)

where we have used Eq. (1.9) in the last step and defined the electron Debye length


e �

�
	0Te

n0e2

� 1
2

(1.11)

We know that the solution of Poisson’s equation for an isolated point charge is e=.4�	0r/.
Accordingly, we search for a solution to Eq. (1.10) which approaches this form as r ! 0

and which vanishes as r ! 1. The appropriate solution, satisfying these boundary con-
ditions, is

�.r/ D
e

4�	0r
exp

�
�

r


e

�
(1.12)

Equation (1.12) describes a Coulomb potential at small r , (r � 
e) but decreases much
more rapidly than a Coulomb potential for r & 
e. Thus, the electrostatic potential arising
from a microscopic nonuniformity in density – for example, the location of a charged
particle – is shielded by a cloud of other charged particles within a distance 
e . In order
for this argument to be valid, the number of particles inside a sphere of radius 
e must be
large

n� �
4
3
�
3en0 D

4
3
�

�
	0Te

n0e2

� 3
2

n0 � 1 (1.13)

(Note that the Debye length is the same for singly charged ions and electrons at the same
temperature.) Equation (1.13) defines the criterion that must be satisfied in order for the
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Figure 1.4. Debye length and number of particles in a Debye sphere

collection of charged particles to be a plasma. As can be seen from Fig. 1.4, plasmas exist
over a wide range of densities (including solids) and temperatures.

In plasmas for which condition (1.13) is satisfied, the forces acting on a charged par-
ticle may be separated into two types for the purpose of developing a tractable computa-
tion approximation. The interaction of a given charged test particle with all other charged
particles separated from it by 
e or more may be treated by calculating the electric and
magnetic fields produced by these other particles at the position of the test particle and the
associated forces. The interactions of the test particle with all charged particles within less
than 
e of the test particle may be treated as two-body scattering interactions governed by
the Coulomb electrostatic force acting between the two particles. The unshielded Coulomb
potential � D e=4�	0r is used in the latter calculation. Thus, the equation of motion of
the test particle may be written

m

�
d�
dt

�
D e.E C � �B/C Fsc (1.14)

where E and B are the electric and magnetic fields caused by other charges and currents
due to the plasma particles and to external sources, and Fsc is the force on the test particle
due to the two-body scattering interactions with the other particles within 
e of it.

The Debye length prescribes a lower limit on the macroscopic dimensions (L) of a
plasma, by definition. For L 	 
e, the medium would behave as a collection of free
charges dominated by mutual two-body interactions. For plasmas of thermonuclear inter-
est, 
e � 10�5 m to 10�3 m, N� � 1, and L � 1m.
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A considerable amount can be learned about plasmas and their confinement by inves-
tigating the consequences of Eq. (1.14). First, it is necessary to calculate E , B and Fsc,
which is the purpose of the next two sections.

As an example of the collective treatment of a plasma, which also introduces the impor-
tant concept of plasma frequency, consider a uniform plasma slab. Assume that at t D 0

all the electrons in the interval x1 < x < x0 are displaced to the left of x1, as shown
in Fig. 1.5. Further assume that the ions are fixed. The excess charge to the left of x1,
is �n0e.x0 � x1/. From Gauss’ law, this produces a field at x1, in the �x–direction of
magnitude

E.x1/ D
n0e

	0
.x0 � x1/

This field exerts a force on the electrons at x1, the equation of motion for which is

me Rx1 D eE.x1/ D
e2n0

	0
.x0 � x1/ (1.15)

In terms of the relative displacement,

� � x0 � x1 (1.16)

this equation may be written

d2�
dt2
C

�
e2n0

me	0

�
� D 0 (1.17)

This is the harmonic oscillator equation, with solution

� .t/ D Aei!pet C Be�i!pet (1.18)

where

!pe �

�
e2n0

me	0

� 1
2

(1.19)

is the electron plasma frequency. A similar definition for the ion plasma frequency is

!pi �

�
z2e2n0

mi	0

� 1
2

(1.20)

where z is the ion charge.
Thus we see that the plasma frequency is a natural frequency of oscillation for each

species in the plasma. As is well known from the theory of harmonic oscillators, the oscil-
lations can be excited in response to an external stimulus with frequency less than or equal
to the natural frequency. Thus each plasma species can respond to an internal perturbation
with frequency ! < !p. Because

!pi D z

r
me

mi
!pe (1.21)
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Figure 1.5. Plasma slab at t D 0

electrons are able to respond to much higher frequency perturbations than are ions. In MKS
units, Eq. (1.19) is

!pe D 56:4
p
n0 rad=s (1.22)

so that for a typical thermonuclear plasma density of n0 � 1020 m�3,!pe � 5�1011 rad=s.

1.3 Coulomb Collisions
Although most electrostatic interactions among particles in a plasma take place over dis-
tances that are large compared to a Debye length and can be treated collectively by fields,
a smaller number of interactions take place over distances comparable to or less than a
Debye length. These interactions, although relatively few in number, have important effects
upon the properties of a plasma. These close encounters are treated separately, as scatter-
ing events, and take place on a time scale that is very short compared to most other plasma
phenomena so that they may be considered to take place instantaneously.

The geometry of the scattering process is illustrated in Fig. 1.6. A particle of mass m1

and initial velocity �1, approaches a stationary particle of mass m2. Assuming a repulsive
electrostatic force (the final results are independent of the sign, although the trajectories
are not) and defining the relative position vector

r � r1 � r2

and relative velocity vector

� � �1 � �2
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Figure 1.6. Particle trajectories in the laboratory and center of mass (prime indicates after collision)

the equations of motion can be combined to obtain

d2r
dt2
D

m1 Cm2

m1m2

e1e2r

4�	0jrj3
�

m�1r e1e2r

4�	0jrj3
(1.23)

The solution of Eq. (1.23) is

1

r
D

s
1C

e2
1
e2
2

x2�4
cos.�c C ˛/ �

e1e2

mr�2x2
(1.24)

where �c is the scattering angle in the center-of-mass (CM) system, ˛ is a constant, and x

is the impact parameter defined in Fig. 1.6.
Working out the kinematics of an elastic collision (conservation of energy and momen-

tum) yields an expression for the scattering angle in the CM system.

tan
�
�c

2

�
D

je1e2j

mr�2x4�	0
(1.25)

and the relationship between the scattering angle in the lab and CM systems

cot �L D

�
m1

m2

�
csc �c C cot �c (1.26)

Some special cases of Eq. (1.26) are of interest.8̂<
:̂
m1 � m2 ; �L � �c

m1 D m2 ; �L D
1
2
�c

m1 � m2 ; �L �
m2

m1
sin �c

(1.27)

We have seen in Fig. 1.6 that the scattering event takes place in a plane. Actually, all
particles of type 1 incident in the annular ring between x and x C dx from the axis will
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scatter into angles between �c and �cC d�c or, equivalently, between �L and �LC d�L. For
unit incident particle flux, the particle flux, d� , scattered into the differential solid angle
d˝ D 2� sin �c d�c is equal to the cross sectional area of the annulus between x and
x C dx

d� D �.�c/ d˝ D �.�c/2� sin �c d�c D 2�x dx (1.28)

where �.�c/ is the Rutherford scattering cross section

�.�c/ �
2�x dx

2� sin �c d�c
D

.e1e2/
2

�
8�	0mr�2 sin2 �c

2

�2 (1.29)

Now, we will use these results to investigate the deflection of particles by Coulomb
collisions. In particular, it will be shown that deflection through large angles (e.g., 90°) is
much more probable as the result of multiple small-angle deflections than as the result of
a single large-angle collision. This result has important consequences for our subsequent
treatment of collision phenomena in plasmas.

First, consider the probability that a single interaction will scatter a particle through an
angle & 90° in the CM system. Since the angle of scatter increases as the impact parameter,
x, decreases, this probability is just equal to the area of the cylinder surrounding the axis
with radius corresponding to the impact parameter which results in �c D 90°

�.�c 
 90°/ D �x2
90

The �c D 90° impact parameter can be determined from Eq. (1.25), so that

�.�c 
 90°/ D
.e1e2/

2

�.4	0mr�2/2
(1.30)

Now, consider a series of small-angle collisions. In the limit �c ! 0, Eq. (1.25) yields an
expression for the small-angle deflection in the CM system due to a single interaction

��c D
2je1e2j

4�	0mr�2x
(1.31)

The mean square deflection of a “test” particle that travels a distance L in a plasma
with scattering center density n2 is

.��c/2 D n2L

Z ��max

��min

.��c/
2�.�/.��c/2� sin.��c/ d.��c/

D n2L

Z xmax

xmin

.��c/
22�x dx

D
n2L

2�

�
e1e2

	0mr�2

�2 Z xmax

xmin

.��c/
dx
x

D
n2L

2�

�
e1e2

	0mr�2

�2

ln
�
xmax

xmin

�

(1.32)
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The limits .��max ! xmin; ��min ! xmax/ are related by Eq. (1.31). Since only encoun-
ters at distances of the order of the Debye length are treated as collisions because of the
screened Coulomb potential, we can choose

xmax D 
2 D

 
	0T2

n2e
2
2

! 1
2

(1.33)

For the minimum impact parameter, we take x90, the value leading to 90° collisions, which
is certainly an upper limit on scattering angles for “small” deflections:

xmin D
je1e2j

4�	0mr�2
(1.34)

With these limits, Eq. (1.32) becomes

.��c/2 D n2L

�
e1e2

	0mr�2

�2

ln 
 (1.35)

where the Coulomb logarithm is defined by

ln 
 � ln
�
xmax

xmin

�
D ln

2
412�

 
.	0T /

3

n2e
4
2
e2
1

! 1
2

3
5 (1.36)

and the assumption mr�
2 � 3T has been used.

The mean free path for 90° deflection by small-angle scattering .L D 
90/ can be
estimated from Eq. (1.35) by setting .��c/2 D 1. The corresponding cross section, �90,
can then be constructed

�90 �
1

n2
90
D

.e1e2/
2 ln 


2�.	0mr�2/2
(1.37)

Finally, the relative probabilities for a particle undergoing a 90° deflection due to mul-
tiple small-angle collisions and due to a single large-angle collision can be found from
Eqs. (1.37) and (1.30):

�90

�.�c > 90/
D 8 ln 
 (1.38)

The Coulomb logarithm is� 15 to 20 for thermonuclear plasmas. Thus, deflection through
large angles via multiple small-angle collisions is about two orders of magnitude more
probable than deflection via a single large-angle collision.

The characteristic time required for a 90° deflection in the CM system by multiple
small-angle collisions is

�90 �

90

�
D

2�	2
0
m2

r�
3

n2.e1e2/2 ln 

D

2�
p
mr	

2
0
.3T /

3
2

n2.e1e2/2 ln 

(1.39)
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For like-particle scattering (e.g., ions on ions or electrons on electrons), mr D m2 and

� ii
90

� ee
90

)
D

6�
p
3
p
mr	

2
0
.T /

3
2

ne4 ln 

(1.40)

where m D mi
me

�
and e4 ! z4e4 for � ii

90
.

For electrons on ions

�ei90 D
6
p
6�
p
me	

2
0
.T /

3
2

ni.ze2/2 ln 

(1.41)

and for ions on electrons the result is the same but with ni ! ne.
It follows from Eq. (1.27) that the deflection in the lab system is comparable to the

deflection in the CM system when m1 	 m2. Thus for like-particle scattering and for
the scattering of electrons on ions the above expressions are also good estimates of the
characteristic time for 90° deflection in the lab system.

However, for ions on electrons, ��L � me=mi��c. Thus the test particle must travel
approximately mi=me � 2 � 103 times the distance (
90) required for a 90° deflection
in the CM system before a 90° deflection occurs in the lab system. Consequently, the
characteristic time for a 90° deflection in the lab is about mi=me times the characteristic
time for a 90° deflection in the CM system. Thus

� ie90 �

�
mi

me

�
�ei90 (1.42)

From Eq. (1.39) we discover the ordering

�ee90 � �
ei
90 �

�
me

mi

� 1
2

� ii90 �

�
me

mi

�
� ie90 (1.43)

In a typical thermonuclear plasma (n � 1020 m�3, T D 10 keV), �ee
90
� �ei

90
� 10�4 s,

� ii
90
� 10�2 s, and � ie

90
� 1 s.

The energy transferred from particle 1 to particle 2 in a collision can be found from
the collision kinematics (conservation of energy and momentum). For an initial energy of
E0, for particle l, the energy transferred, �E, is

�E

E0

D
4m1m2

.m1 Cm2/2
sin2

�c

2
(1.44)

Multiple small-angle collisions that produce a 90° deflection in the CM system would
cause an energy loss that can be estimated from Eq. (1.44) with �c D 90°:

�E

E0

�
2m1m2

.m1 Cm2/
2

(1.45)

Thus like-particle collisions result in the transfer of about half of the initial energy in
a 90° deflection time. For electrons scattering on ions or ions scattering on electrons, the
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fractional energy transfer in a 90° deflection is only about me=mi. Hence the characteristic
time for energy transfer, �e, is related to the 90° deflection time as

�eee � �
ee
90 � �

ei
90

� iie � �
ii
90 �

�
mi

me

� 1
2

�ei90

�eie �
mi

me
�eie

� iee �
mi

me
�ei90

(1.46)

A number of important conclusions follow immediately from Eq. (1.46). The electrons
in a thermonuclear plasma exchange energy with each other and reach an equilibrium
distribution – equilibrate – on a very short time scale, about 10�4 s. The ions equilibrate
with themselves on a time scale that is longer by a factor of � 40. The electrons transfer
energy to ions, or vice versa, on a time scale that is mi=me � 2 � 103 times longer than
the time scale required for the electrons to equilibrate with themselves.

Collisions have a randomizing effect on particle motion in a plasma. Consider the case
of electrons drifting under the influence of an external electric field. Collisions tend to
disorder the directed drift motion, which otherwise would be in the field direction. The
equation of motion is

me
d�e

dt
D �eE �

me�e

�ei
90

D �eE �
e4ne ln 

2�	2

0
mev2e

(1.47)

where the last term describes the rate of dissipation of ordered momentum due to colli-
sions.

The first term on the right accelerates electrons (in the minus-direction for a positive E)
and the second term acts to oppose the acceleration. Since the second term decreases with
increasing ve, electrons with velocity greater than the Dreicer velocity

�eD D

 
e3ne ln 

2�me	

2
0
E

! 1
2

(1.48)

are accelerated indefinitely and become runaway electrons. When n � 1020 m�3 and
E D 10V �m�1, electrons with energy greater than 5 keV are runaway electrons.

Defining the current density

j � �ene�e (1.49)

and assuming that the drift velocity, ve, is much less than the random thermal velocity, uth,
Eq. (1.47) becomes

me

e2ne

dj
dt
D E � �j (1.50)
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Figure 1.7. Fusion and Coulomb scattering cross sections (1 barn = 10�24 cm2)

where

� �

p
meze

2 ln 


12
p
3�	2

0
.T /

3
2

(1.51)

is the plasma resistivity. Note that Eq. (1.50) is of the form of an Ohm’s law for the plasma.
The cross sections for ion–ion Coulomb collisions and for fusion are plotted in Fig. 1.7.

From this figure, we conclude that an ion will suffer a large number of collisions, on
average, before it undergoes fusion. Thus, the effects of collisions on the plasma are quite
important.

1.4 Electromagnetic Theory
Much of the theory of plasmas is concerned with electric and magnetic fields. Such fields
arise from external sources and from net charge and current distributions in the plasma.
Recall that the long-range interactions among the charged particles that constitute a plasma
are treated collectively in terms of fields. In this section, we review the basic laws of
electromagnetism and discuss some useful properties of fields.

Gauss’ law states that the normal outward component of the electric displacement, D,
integrated over the surface bounding any volume is equal to the net charge contained within
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that volumeZ
s
D � ds D

Z
�

� d3r (1.52)

where � is the charge density. Using the divergence theorem on the LHS of Eq. (1.52) and
requiring that the resulting equation be valid for arbitrary volumes leads to

r �D D � (1.53)

The magnetic field is divergence free – there is no magnetic equivalent of p. The
normal outward component of the magnetic field, B , integrated over any closed surface is
zero: Z

s
B � ds D 0 (1.54)

Using the divergence theorem and the arbitrary volume argument leads to

r �B D 0 (1.55)

Since B is solenoidal (i.e., satisfies Eq. (1.55)), it follows that it can be derived from a
vector potential function, A:

B D r �A (1.56)

Faraday’s law states that a changing magnetic flux,˚ , produces an electromotive force
around a closed loop

I
E � dl D �

d
dt

Z
s
B � ds � �

d
dt
˚ (1.57)

where s is any arbitrary surface bounded by the loop of arbitrary shape. If we assume
that the loop and surface are fixed in time and make use of Stokes’s theorem and the
arbitrariness of the surface, Eq. (1.57) becomes

r �E D �
@B

@t
(1.58)

Using Eq. (1.56) in Eq. (1.58) leads to

r �

�
E C

@A

@t

�
D 0 (1.59)

from which we conclude that the quantity in brackets can be represented by the gradient
of a scalar potential. Thus the electric field can be written

E D �r� �
@A

@t
� E� CEA (1.60)
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When the electric field is linearly related to the electric displacement by the permittivity
	0 D 8:854 � 10�12 F �m�1,

D D 	0E� (1.61)

Eqs. (1.53) and (1.61) can be combined to obtain Poisson’s equation for the electrostatic
potential,

r2� D �
�

	0
(1.62)

The solution of Eq. (1.62) is

�.r/ D
1

4�	0

Z
�.r 0/

jr 0 � r 0j
d3r 0 (1.63)

Thus the electrostatic contribution to the electric field can be determined from Eqs. (1.63)
and (1.60), for a given charge distribution.

Ampere’s law states that the normal component of the current plus the normal com-
ponent of the time-rate-of-change of the electric displacement integrated over an arbitrary
open surface produces a magnetomotive force around the closed loop bounding that sur-
face: I

H � dl D
Z

s
j � ds C

d
dt

Z
s
D � ds (1.64)

where H is the magnetic intensity and j is the current density. Using Stoke’s theorem and
the arbitrariness of the surface leads to

r �H D j C
@D

@t
(1.65)

for a fixed surface.
Equations (1.52), (1.54), (1.57) and (1.64) are based on experimental observation and

are sometimes referred to as the integral form of Maxwell’s equations. Equations (1.53),
(1.55), (1.58) and (1.65) are the familiar, differential forms of Maxwell’s equations for a
stationary medium. (We will be interested later in the counterparts of Eqs. (1.58) and (1.65)
in a moving medium.)

Now, reconsider the vector potential, A. Assume that the magnetic field and the mag-
netic intensity are linearly related through the permeability, �0 D 1:257 � 10�6 H �m�1,

B D �0H (1.66)

Substitute Eq. (1.56) into Eq. (1.65) and use Eq. (1.60) to obtain

r � .r �A/ D r.r �A/ � r2A D �0j � �0	0r
@�

@t
C �0	0

@2A

@t2
(1.67)

Substitute Eq. (1.60) into Eq. (1.53) to obtain

r2� Cr �
@A

@t
D �

�

	0
(1.68)
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Note that A is determined by Eq. (1.56) only within an arbitrary additive gradient of a
scalar function, R.r �rR � 0/. It is convenient to choose the scalar function, R, so that

r �A C 	0�0

@�

@t
D 0 (1.69)

Equation (1.69) is known as the gauge condition on the vector potential. This choice of
gauge condition reduces Eq. (1.68) to

r2� � 	0�0

@2�

@t2
D �

�

	0
(1.70)

and reduces Eq. (1.67) to

r2A � 	0�0

@2A

@t2
D ��0j (1.71)

The solution to the time-independent version of Eq. (1.71) is

A.r/ D
�0

4�

Z
j .r 0/

jr � r 0j
d3r 0 (1.72)

The vector potential can be computed from the current distribution, in direct anal-
ogy with a computation of the scalar potential from the charge distribution according to
Eq. (1.63). Knowing the scalar and vector potentials, one can compute the electrostatic and
magnetic fields from Eq. (1.60) and Eq. (1.56), respectively. Thus electromagnetic theory
provides the means for representing the collective, long-range interactions among the par-
ticles in a plasma in terms of fields.

The linear relationships of Eqs. (1.61) and (1.66) are only valid for an isotropic medium.
More general constitutive relationships are frequently needed for plasmas, in which the
magnetic field defines a unique set of directions in terms of which many phenomena are
not isotropic. In general,

D˛ D
X
ˇ

	˛ˇEˇ and B˛ D
X
ˇ

�˛ˇHˇ (1.73)

where ˛ and ˇ refer to the cartesian coordinates.
The concepts of electromagnetic energy density and electromagnetic stress associ-

ated with the fields follow directly from the manipulation of Eq. (1.73). Dotting H into
Eq. (1.58) and E into Eq. (1.65), subtracting, and using the vector identity

H � r �E �E � r �H D r � .E �H /

leads to

r � .E �H /C
@

@t

�
E �D

2
C

H �B

2

�
CE � j D 0 (1.74)

Integrating Eq. (1.74) over an arbitrary volume and using the divergence theorem to con-
vert the first term into a surface integral of the normal outward component of S D E �H
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(the Poynting vector) over the closed surface bounding the volume leads to
Z

s
.E �H / � ds C

@

@t

Z �
E �D

2
C

H �B

2

�
d3r C

Z
E � j d3r D 0 (1.75)

The first term represents the rate at which electromagnetic energy escapes across the sur-
face. The first part of the integrand of the second term is the electrostatic energy density,
which is equal to the work done to arrange the charges to create the electrostatic field. The
second part of the integrand is the magnetic energy density, which is equal to the work
done to establish the currents that create the magnetic field. The final term is the resistive
work done by the electrostatic field on the charges within the volume.

Taking the cross product of Eq. (1.65) �D and Eq. (1.58) �B , subtracting, and using
Eqs. (1.53) and (1.55) yields

�E C j �B D
X
˛

On˛
X
ˇ

@T˛ˇ

@xˇ
� 	0�0

@S

@t
(1.76)

The quantities T˛ˇ are the components of the electromagnetic stress tensor, and On˛ is the
unit vector. In xyz coordinates

Txx D ExDx C BxHx �
1
2
.E �D CB �H /

Txy D ExDy C BxHy

Txz D ExDz C BxHz

Tyx D EyDx C ByHx

Tyy D EyDx C ByHx �
1
2
.E �D CB �H /

Tyz D EyDz C ByHz

Tzx D ExDx C BzHx

Tzy D EzDy C BzHy

Tzz D EzDz C BzHz �
1
2
.E �D CB �H /

(1.77)

Integrating Eq. (1.76) over an arbitrary volume and using the divergence theorem on the
stress tensor term leads toZ

.�E C j �B/ d3r D
X
˛

On˛
X
ˇ

Z
T˛ˇ dsˇ �

Z
	0�0

@S

@t
d3r (1.78)

The first term in Eq. (1.78) represents the force exerted on the charge and currents within
the volume by the electrostatic and magnetic fields, respectively. The second term repre-
sents the stresses integrated over the surface bounding the volume. The final term repre-
sents the change in momentum density within the volume.

As a special example, consider the case in which E D 0 and B is aligned along the
z-axis. Then all the “off-diagonal” elements of the stress tensor vanish and

Txx D Tyy D �Tzz D �
B2

2�0

(1.79)
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Thus B2=.2�0/ is the magnetic pressure in this case. We will make use of this subse-
quently when we consider the balancing of magnetic and kinetic pressures to establish a
plasma equilibrium.

Problems for Chapter 1
1. Calculate the energy release in the fusion of 1 g of deuterium.

2. Calculate the deuterium and electron Debye lengths in a plasma with T D 10 keV and
nD D ne D 5 � 1019 m�3.

3. Calculate the number of plasma ions and electrons within a sphere of radius the Debye
length for problem 2.

4. Calculate and plot the electrostatic potential due to a single deuteron located at r D 0

for the plasma of problems 2 and 3.

5. Calculate the Coulomb repulsive force between two deuterons that are separated by two
nuclear radii.

6. Calculate the deuteron and electron plasma frequencies for the plasma of problem 2.

7. Calculate the Rutherford scattering cross section between deuterons and electrons for
scattering events of 1°, 10° and 90° in the CM system for the plasma of problem 2.

8. Calculate the 90° multiple collision deflection times for ions and electrons scattering
with ions and electrons for the plasma of problem 2.

9. Calculate the characteristic energy transfer times for a deuterium ion to other deuterium
ions and to electrons for the plasma of problem 2.

10. Calculate the Dreicer runaway electron velocity for the plasma of problem 2 in electric
fields of 1V �m�1, 5V �m�1 and 10V �m�1.

11. Calculate the plasma resistivity for the plasma of problem 2.

12. Calculate the kinetic pressure of the plasma of problem 2.

13. Calculate the magnetic pressure of fields of B D 1T and 10T.


