ERRATA

Nanophysics and Nanotechnology, 2nd edition

- p. 8, 3d line should read "10¹² bits/m² (one Tb/m²)".
- p. 17 line 4, should read "is exactly two seconds".
- p. 17 line 8 should read "generate a 500 Hz tone".
- p. 18, last sentence in the text box, should read: "In the case of the pendulum, if $x \ll L$ is the horizontal displacement of the mass m, then $F/m \approx -gx/L$ and $\omega = (g/L)^{1/2}$."
- p. 18, 2^{nd} line after the text box, replace " $\omega \propto \alpha \; L^{\text{-}1}$ " by " $\omega \propto L^{\text{-}1}$ ".
- p. 18 line 11, should read "LF/YA=0.11 µm=110 nm".
- p. 18 line 8, should read "This frequency is nearly in the ultrasonic range."
- p. 20, 3d line in Section 2.2 should read: " $m \propto L^3$ and $K \propto L$, so $\omega = (K/m)^{1/2} \propto L^{-1}$ "
- p. 20, 3d paragraph from bottom of page: The spring constant K is defined as $K = F/\Delta L = AY/L$, so $K \propto L^{-1}$. The last line in this par. should read: "constant K = AY/L, $\propto L^{-1}$ ".
- p. 21, 1^{st} line, replace " $v \propto L^0$ " by " $v \propto L^0$ " and " $\omega \propto L^{-1}$ " by " $\omega \propto L^{-1}$ ".
- p. 21, 2^{nd} line, replace "a α L⁻¹" by "a \propto L⁻¹".
- p. 21, 9^{th} line, replace " $\alpha \omega U$ " by " $\propto \omega U$ ".
- p. 30, 3rd line, reads "order of 100 pW" should read "order of 1 nW"
- p. 127, 10^{th} line should read: "E = 2.5 V/nm, τ is extremely long, estimated as 6 x 10^{35} s or 1.9 x 10^{28} y. This latter ..."
- p. 217, the symbol A (the Hamaker constant) was omitted and should appear in the numerator of Eq. 9.3a. Eq. 9.3a should read " $E_{vdW} = -AS/(12\pi s^2)$ ".
- p. 269, line 13, part A. of Exercise 5.12 (this is fairly far down in the text explaining this exercise) there is a missing exponent $\frac{1}{2}$ on the square bracket term at the end of the line. The correct statement is "A. Solve the quadratic $-E_0 = -ke^2/x eEx$, show that $\Delta x = [(E_0/e)^2 4keE]^{1/2}/E$." The square bracket term at the end of the line correctly has exponent $\frac{1}{2}$.
- p. 269, last three lines before Exercise 5.13, should read "The lifetime is about 6.04×10^{35} s or about 1.91 x 10^{28} y. (The famous result of Oppenheimer is a lifetime of $(10^{10})^{10}$ s for E = 1000 V/m.)" This is the corrected estimate of the lifetime of the H atom against field ionization in an applied field of 2.5 V/nm. The exponent -118.8 is correctly given in the problem statement.
- p. 271, 2nd line, "Table 5.1" should be replaced by "Table 5.2".
- p. 275, "Some Useful Constants", left column halfway down words "Permittivity of Space" should read "Permeability of Space".