ERRATA

Author's note: Despite our best efforts, Quantum Nanoelectronics: An Introduction to Electronic Nanotechnology and Quantum Computing (Wiley-VCH 2009) is not free of errors. Below, we correct a few that we have found. We will be grateful to readers who bring additional errors to our attention (via Wiley-VCH, or email to ewolf@poly.edu).

Text book corrections Nanoelectronics E. L. Wolf 12/9/13
p. 14 Eq. (1.12) Reads: " $\lambda=h / p=h /(2 m V)^{1 / 2 ",}$

Should read " $\lambda=h / p=h /(2 m e V)^{1 / 2, "}$
p. 17 Eq. (1.16) Reads : " $=\mathrm{hc} / 2 \mathrm{e}=", \quad$ Should read: $"=\mathrm{h} / 2 \mathrm{e}="$
p. 26 Eq. (1.30) Reads : " $=\mathrm{hc} / 2 \mathrm{e}=", \quad$ Should read: $"=\mathrm{h} / 2 \mathrm{e}="$
p 31 Line above Eq. (1.40), Reads: "A) is"

Should read: "A) is, here adopting cgs units (set c = 1 for SI units)"
p. 32 Line after Eq. (1.42) Reads: "where n is an integer."

Should read: "where n is an integer, with c entering in cgs units."
p. 58 Eq. (2.41) Reads: " $\mathrm{v}_{\mathrm{g}}=\partial \omega / \mathrm{k} "$

Should read: " $\mathrm{v}_{\mathrm{g}}=\partial \omega / \partial \mathrm{k} "$
p. 99 Eq. (3.37) Reads: ".... $\left(\nabla_{1}^{2}+\nabla_{1}^{2}\right) \ldots . "$

Should read: ".... $\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right) \ldots$ ".
p. 100 Eq. (3.43), Reads: "... $\varphi_{a}\left(x^{2}\right) \varphi_{b}\left(x_{1}\right) \ldots "$

Should read: "... $\varphi_{\mathrm{a}}\left(\mathrm{x}_{2}\right) \varphi_{\mathrm{b}}\left(\mathrm{x}_{1}\right) \ldots "$
p. 139 , line 10 Reads: "condition $\cos \mathrm{ka}=\cos \alpha \mathrm{a}$ "

Should read: "condition $\cos \mathrm{ka}=\cos \mathrm{qa}$ "
p. 147, Eq. (4.29) Reads:
$" N_{e}=\int_{E c} C(E-E C)^{1 / 2} \exp \left[-\left(E-E_{F}\right) / k_{B} T\right] d E=C_{e} \exp \left[-\left(E_{g}-E_{F}\right) / k_{B} T\right] \int_{0}^{\infty} x^{1 / 2} e^{-x} d x$. (4.29)"
Should read:
$" N_{e}=\int_{E_{c}} C_{e}\left(E-E_{C}\right)^{1 / 2} \exp \left[-\left(E-E_{F}\right) / k_{B} T\right] d E=C_{e}\left(k_{B} T\right)^{3 / 2} \exp \left[-\left(E_{C}-E_{F}\right) / k_{B} T\right] \int_{0}^{\infty} x^{1 / 2} e^{-x} d x$. (4.29)"
p. 150 line directly after Eq. (4.33)

Reads: ", $\mathrm{V}_{\mathrm{B}}-\mathrm{V}$ is the energy shift of the bands.."
Should read: ", $V_{B}-V$ is the voltage shift of the bands.."
p. 150 last line (in Fig. Caption), Reads: " interpretation see Fig. 4.9."

Should read: " interpretation see Fig. 4.10."
p. 164 , line 6 , reads "energy density $\mu_{0} B^{2} / 2$ "

Should read: "energy density B ${ }^{2} / 2 \mu_{0}$ "
p. 164, Eq. 4.43, reads " $B=B_{\text {app }}\left(1+\chi_{m}\right)=\kappa m B_{\text {app }}$

Should read : \quad " $B=B_{\text {app }}\left(1+\chi_{\mathrm{m}}\right)=\kappa_{\mathrm{m}} B_{\text {app }}$
p. 201, line 6, Reads: "Equations 4.56 and 4.57"

Should read: "Equations 4.5 and 4.6"
p. 280, line 8 , reads "multiple of $\Phi_{0}=\mathrm{hc} / 2 \mathrm{e}=2.07 \times 10^{-15} \mathrm{~W}$ "

Should read "multiple of $\Phi_{0}=\mathrm{h} / 2 \mathrm{e}=2.07 \times 10^{-15} \mathrm{~W}$ "
p. 280, line 9, reads " h is Planck's constant, c the speed of light, e the electron charge," Should read: " h is Planck's constant, e the electron charge,"
p. 282 bottom line, Reads: "dj/dt = $(2 \mathrm{e} / \hbar) \mathrm{V}(\mathrm{t})$ " Should read: " $\mathrm{d} \varphi / \mathrm{dt}=(2 \mathrm{e} / \hbar) \mathrm{V}(\mathrm{t})$ "
p. 291 Eq. (9.2) Reads: ${ }^{U} U\left(n_{s}, n_{d}\right)=\left(C_{s} C_{d} V^{2}+Q^{2}\right) / C_{\text {tot }}+e V\left(C_{\text {snd }}+C_{\text {dns }}\right) / C_{\text {tot }}$ " Should read: " $U\left(n_{s}, n_{d}\right)=\left(C_{s} C_{d} V^{2}+Q^{2}\right) / 2 C_{\text {tot }}+e V\left(C_{s} n_{d}+C_{d} n_{s}\right) / C_{\text {tot }}$ "
p. 291 Eq. (9.5) Reads: " $\Delta \mathrm{U}_{\mathrm{s}, \mathrm{d}}=\left(\mathrm{e}^{2} / 2 \mathrm{C}_{\mathrm{tot}}\right) \mp \mathrm{eV} \mathrm{C}_{\mathrm{d}, \mathrm{s}} / \mathrm{C}_{\text {tot }} "$

Should read: " $\Delta \mathrm{U}_{\mathrm{s}, \mathrm{d}}=-\left(\mathrm{e}^{2} / 2 \mathrm{C}_{\text {tot }}\right) \mp \mathrm{eV} \mathrm{C} \mathrm{C}_{\mathrm{d}, \mathrm{s}} / \mathrm{C}_{\text {tot }}$ "
(insert minus sign).
p. 292 Eq. (9.7) Reads: " $\Delta \mathrm{I}=\mathrm{e} / \mathrm{C}_{\text {tot }} R \mathrm{t}$ "

Should read: " $\Delta \mathrm{I}=\mathrm{e} / \mathrm{C}_{\text {tot }} \mathrm{R}_{\mathrm{t}}$ "
p. 313, $5^{\text {th }}$ line of Sect. 10.2, Reads: "effective mass, see (4.22c))"

Should read: "effective mass, see (4.25))"
p. 314, 3d line above Eq. (10.2): Reads: "Sections 4.1.1 and 4.4.1)"

Should read: "Sections 4.1.1 and 4.5.6)"
p. 368, line 7 and line 10 , Read: " $\ldots=\mathrm{Ge}(\mathrm{W}+\ldots$ "

Should read (both cases): " $=-\mathrm{Ge}(\mathrm{W}+\ldots$,
(Insert minus sign before G in each case, line 7 and line 10.)
p. $443\left(9^{\text {th }}\right.$ line from the bottom) reads "flux quantum, hc/2e"
should read "flux quantum, $h / 2 e$ "

