Contents

Preface XV

1	Introduction and Review of Electronic Technology 1
1.1	Introduction: Functions of Electronic Technology 6
1.1.1	Review of Electronic Devices 6
1.1.2	Sources of Current and Voltage: DC 6
1.1.2.1	Batteries: Lithium Ion, Ni-Cd, NiMH, and "Supercapacitors" 6
1.1.2.2	Thermionic Emitters 10
1.1.2.3	Field Emitters 13
1.1.2.4	Ferroelectric and Pyroelectric Devices 15
1.1.3	Generators of Alternating Current and Voltage: AC 16
1.1.3.1	Faraday Effect Devices 16
1.1.3.2	Crystal Oscillators 17
1.1.3.3	Gunn Diode Oscillators 18
1.1.3.4	Esaki Diodes 19
1.1.3.5	Injection Lasers 20
1.1.3.6	Organic Light Emitting Diodes 21
1.1.3.7	Blackbody Emission of Radiation 22
1.1.4	Detectors 23
1.1.4.1	Photomultiplier and Geiger Counter 24
1.1.4.2	Photodetector, Solar Cell, and pn Junction 25
1.1.4.3	Imaging Detector, CCD Camera, and Channel Plate 26
1.1.4.4	SQUID Detector of Magnetic Field and Other Quantities 26
1.1.5	Two-Terminal Devices 27
1.1.5.1	Semiconductor pn Junction (Nonohmic) 27
1.1.5.2	Metal-Semiconductor Junction and Alternative Solar Cell 29
1.1.5.3	Tunnel Junction (An Ohmic Device) 30
1.1.5.4	Josephson Junction 30
1.1.5.5	Resonant Tunnel Diode (RTD, RITD) 33
1.1.5.6	Spin-Valve and Tunnel-Valve GMR Magnetic Field Detectors 33
1.1.6	Three-Terminal Devices 34

VIII	Contents	
	1.1.6.1	Field Effect Transistor 35
	1.1.6.2	Bipolar Junction Transistors: npn and pnp 37
	1.1.6.3	Resonant Tunneling Hot-Electron Transistor (RHET) 37
	1.1.7	Four-Terminal Devices 38
	1.1.7.1	Thyristors: npnp and pnpn 38
	1.1.7.2	Dynamic Random Access Memory 38
	1.1.7.3	Triple-Barrier RTD (TBRTD) 38
	1.1.8	Data Storage Devices 38
	1.1.8.1	Optical Memory Devices 38
	1.1.8.2	Electrical Computer Memory Devices 39
		References 40
	2	From Electronics to Nanoelectronics: Particles, Waves, and Schrödinger's Equation 41
	2.1	Transition from Diffusive Motion of Electron Fluid to Quantum Behavior of Single Electrons 41
	2.1.1	Vacuum Triode to Field Effect Transistor to Single Electron Transistor 42
	2.1.2	Crystal Detector Radio to Photomultiplier and Gamma Ray Detector 45
	2.2	Particle (Quantum) Nature of Matter: Photons, Electrons, Atoms,
		and Molecules 46
	2.2.1	Photons 46
	2.2.2	Electrons 47
	2.2.3	Atoms, Bohr's Model 48
	2.2.3.1	Quantization of Angular Momentum and Orbit Energy 49
	2.2.3.2	Light Absorption and Emission Lines 50
	2.2.3.3	Magnetic Moments of Orbiting Electrons 50
	2.2.3.4	Stern–Gerlach Experiment and Electron Spin 51
	2.3	Particle–Wave Nature of Light and Matter, De Broglie Formulas $\lambda = h/p$, $E = hv$ 52
	2.3.1	Wavefunction ψ , Probability Density $\psi^*\psi$, Traveling and
		Standing Waves 53
	2.4	Maxwell's Equations 54
	2.5	The Heisenberg Uncertainty Principle 57
	2.6	Schrödinger Equation, Quantum States and Energies, Barrier Tunneling 58
	2.6.1	Schrödinger Equations in One Dimension 59
	2.6.2	The Trapped Particle in One Dimension 60
	2.6.3	Reflection and Tunneling at a Potential Step 64
	2.6.4	Penetration of a Barrier 66
	2.6.5	Trapped Particles in Two and Three Dimensions: Quantum Dot 66
	2.7	The Simple Harmonic Oscillator 67
	2.8	Fermions, Bosons, and Occupation Rules 69
	2.9	A Bose Particle System: Thermal Radiation in Equilibrium 70 References 72

3	Quantum Description of Atoms and Molecules 75
3.1	Schrödinger Equation in Spherical Polar Coordinates 75
3.1.1	The Hydrogen Atom, One-Electron Atoms 75
3.1.2	Positronium and Excitons 79
3.1.3	Magnetization M, Magnetic Resonance, and Susceptibility χ 81
3.1.4	Electric Dipole Emission Selection Rules for Atoms 82
3.1.5	Spontaneous and Stimulated Emission of Light 83
3.2	Indistinguishable Particles and Their Exchange Symmetry 87
3.2.1	Symmetric and Antisymmetric Wavefunctions 87
3.2.2	Orbital and Spin Components of Wavefunction 88
3.2.3	Pauli Principle and Periodic Table of Elements 89
3.2.3.1	Filled Atomic Shells 89
3.2.3.2	Qualitative Aspects of Smallest Atoms 90
3.2.3.3	Alkali Atoms, Filled Core Plus One Electron 90
3.2.4	Carbon Atom ${}^{12}_{6}$ C $1s^22s^22p^2 \sim 0.07 \text{ nm}$ 91
3.2.5	Cu, Ni, Xe, Hf 93
3.3	Molecules 95
3.3.1	Ionic Molecules 96
3.3.2	Covalent Bonding in Simple Molecules 97
3.3.2.1	Hydrogen Molecule Ion H ₂ ⁺ 97
3.3.2.2	Hydrogen Molecule 99
3.3.2.3	Methane CH_4 , Ethane C_2H_6 , and Octane C_8H_{18} 101
3.3.2.4	Ethylene C_2H_4 , Acetylene C_2H_2 , and Benzene C_6H_6 102
3.3.2.5	Benzene Delocalized Orbitals, Diamagnetism 104
3.3.2.6	Diamagnetic Susceptibility of Benzene 107
3.3.2.7	Modeling Delocalized Electrons in a Ring 110
3.3.2.8	Other Ring Compounds, Electronic Polarizability 120
3.3.3	C ₆₀ Buckyball Molecule 124
	References 127
4	Metals, Semiconductors, and Junction Devices 129
4.1	Metals 129
4.1.1	Electronic Conduction 130
4.1.1.1	Resistivity, Mean Free Path 130
4.1.1.2	Hall Effect, Magnetoresistance 131
4.1.2	Metals as Boxes of Free Electrons 131
4.1.2.1	Fermi Level, DOS, Dimensionality 131
4.2	Energy Bands in Periodic Structures 136
4.2.1	Model for Electron Bands and Gaps, Electrons and Holes 138
4.2.2	Si, GaAs, and InSb 142
4.2.3	Semiconductors and Insulators: Electron Bands
	and Conduction 142
4.2.4	Hydrogenic Donors and Excitons in Semiconductors,
405	Direct and Indirect Bandgaps 145
4.2.5	Carrier Concentrations in Semiconductors, Metallic Doping 146

Contents	
4.3	pn Junctions, Diode <i>I–V</i> Characteristic, Photodetector, and Injection Laser 150
4.3.1	Radiative Recombination of Electron–Hole Pairs, Emission of Light 151
4.3.2	pn Junction Injection Laser 153
4.3.2.1	Increasing Radiative Efficiency η of the Injection Laser 155
4.3.2.2	VCSEL: Vertical Cavity Surface Emitting Laser 157
4.4	Semiconductor Surface: Schottky Barrier 158
4.5	Ferromagnets 159
4.5.1	The Exchange Interaction 159
4.5.2	Magnetization and Critical Temperature 160
4.5.3	Smallest Magnetic Domain: Superparamagnet 162
4.5.4	Separate Bands for Spin-Up and Spin-Down 163
4.5.5	Hard and Soft Ferromagnets 164
4.5.6	Spin-Dependent Scattering, Resistivities of Spin-Up versus Spin-Down 164
4.6	Piezoelectrics, Pyroelectrics, and Superconductors 166
4.6.1	Cooperative Distortions and Internal Fields 166
4.6.2	Piezoelectrics 166
4.6.3	Ferroelectrics and Pyroelectrics 167
4.6.4	Superconductors: Large-Scale Coherent Quantum Systems 167
4.6.4.1	Superconductivity: a Macroscopic Quantum State 168
4.6.4.2	The Superconducting Magnetic Flux Quantum 168
4.6.4.3	Josephson Junctions and the Superconducting Quantum
	Interference Detector (SQUID) 170
	References 173
5	Some Newer Building Blocks for Nanoelectronic Devices 175
5.1	The Benzene Ring, a Conceptual Basis 176
5.2	The Graphene sheet, a Second Conceptual Basis 177
5.2.1	Electronic Conduction in Graphene 177
5.2.2	Electronic Conduction in Epitaxial Bilayer Graphene 182
5.2.3	Device Potential for Graphene 184
5.3	Carbon Nanotubes and Related Materials 187
5.3.1	Rules and Nomenclature for Nanotubes 187
5.3.2	Physical Properties, Current Capacity 188
5.3.3	Electric Field Effects Based on Carbon Nanotubes 191
5.3.4	Ferromagnetic Nanotubes Controlled by Electron or Hole Doping 192
5.4	Gold, Si, and CdS Nanowires and a Related Device 193
5.4.1	Rules for One-Dimensional Conductors 193
5.4.2	Gold Atom Nanowire Conductors 194
5.4.3	Proposed Benzene-Vanadium Ferromagnetic Nanowire 195
5.4.4	Single-Nanowire Electrically Pumped CdS Laser 196

5.5	"Endohedral" C_{60} Buckyballs ${\sim}0.5$ nm and Related Fullerene
	Molecules 198
5.6	Quantum Dots 199
5.7	Quantum Wells and the Two-Dimensional Electron Gas
	Metal (2DEG) 205
5.7.1	Quantum Well Infrared Photodetector 205
5.7.2	Two-Dimensional Metallic Electron Gas (2DEG) 206
5.8	Photonic Crystals 210
5.9	Organic Molecules and Conductive Polymers 213
5.9.1	Metallic Polymers 214
5.9.2	Semiconducting Polymers in Organic Light-Emitting Diodes 217 References 221
6	Fabrication and Characterization Methods 223
6.1	Introduction 223
6.2	Surface Structuring 223
6.2.1	Nanopore Arrays in Polycarbonate 224
6.2.2	Dendritic Growths: Anapore Al ₂ O ₃ and TiO ₂ Nanotube Arrays 224
6.2.3	Completely Absorbing Nanostructured Surfaces 226
6.3	Specialized Vapor Deposition Processes 228
6.3.1	Chemical Vapor Deposition Methods 228
6.3.1.1	Nanowire Growth by Laser-Assisted Chemical Vapor Deposition 229
6.3.1.2	Carbon Nanotube Growth 230
6.3.2	Vapor Growth of Conducting Organic Single Crystals 232
6.4	Silicon Technology: The INTEL–IBM Approach to Nanotechnology 233
6.4.1	Patterning, Masks, and Photolithography 233
6.4.2	Etching Silicon 234
6.4.3	Depositing Highly Conducting Electrode Regions 236
6.4.4	Methods of Deposition of Metal and Insulating Films 236
6.5	Advanced Patterning and Photolithography 239
6.5.1	Ultraviolet and X-Ray Lithography 239
6.5.2	Electron Beam Lithography 240
6.5.3	Sacrificial Layers, Suspended Bridges, Single-Electron
	Transistors 241
6.6	Use of DNA Strands in Guiding Self-Assembly of
	Nanometer-Size Structures 243
6.7	Scanning Probe Sensing and Fabrication Methods 245
6.7.1	Moving Au Atoms, Making Surface Molecules 247
6.7.2	Assembling Organic Molecules with an STM 248
6.7.3	Atomic Force Microscope Arrays 249
	References 250
7	The Field Effect Transistor: Size Limits 251
7.1	Metal-Oxide-Silicon Field-Effect Transistor 251
7.1.1	Operating Principles of MOSFET 251

ı		
XII	Contents	
•	7.1.2	Constant Electric Field Scaling 253
	7.1.3	Drain Currents at Present Limits of Scaling 255
	7.2	Small Size Limits for the MOSFET 255
	7.2.1	Nano-FET Drive Current I 256
	7.2.2	Nano-FET Drive Current II 257
	7.3	Present Status of MOSFET Fabrication and Performance 258
	7.3.1	Working n- and p- MOSFET Devices with 5 nm Channel
		Length 259
	7.4	Alternative to Bulk Silicon: Buried Oxide BOX 261
	7.5	Alternative to Bulk Silicon: Strain Engineering 262
	7.6	The Benzene Molecule as a Field Effect Transistor 263
		References 265
	8	Devices Based upon Electron Tunneling: Resonant Tunnel Diodes 267
	8.1	Introduction 267
	8.2	Physical Basis of Tunneling Devices 267
	8.2.1	Barrier Penetration and Trapped Particles 268
	8.2.2	Escape Time from a Finite Well 270
	8.2.3	Resonant Tunneling Diode 272
	8.2.4	Time for Tunneling and Device Speed 272
	8.2.5	Esaki Diode 275
	8.3	Resonant Tunneling Diodes and Hot Electron Transistors 275
	8.3.1	Three-Terminal Resonant Tunneling Device 276
	8.3.2	"Resonant Interband Tunnel Diode": A Relative of
		The Esaki Diode 277
	8.4	Superconducting (RSFQ) Logic/Memory Computer Elements 279
	8.5	Epitaxial MgO-Barrier Tunnel Junctions: Magnetic Field
		Sensors 285
		References 287
	9	Single-Electron Transistors, Molecular and Hybrid Electronics 289
	9.1	Introduction to Coulomb and Molecular Devices 289
	9.2	Single-Electron (Coulomb) Transistor SET 290
	9.2.1	Nanoscopic Source-Drain Channel: Two Tunnel Junctions
		in Series 290
	9.2.2	Single-Electron Transistor Model 292
	9.2.3	A Single-Electron Transistor Based on a Single C ₆₀ Molecule 294
	9.2.4	A Single-Electron Transistor Based on a Carbon Nanotube 294
	9.2.5	The Radio Frequency Single-Electron Transistor (RFSET):
		A Proven Research Tool 294
	9.3	Single Molecules as Active Elements in Electronic Circuits 297
	9.4	Hybrid Nanoelectronics Combining Si CMOS and Molecular
		Electronics: CMOL 301

Carbon Nanotube Crossbar Arrays for Ultradense, Ultrafast,

Nonvolatile Random Access Memory 302

9.5

9.6	Carbon Nanotube-Based Electromechanical Switch Arrays for
	Nonvolatile Random Access Memory 306
9.7	Proposed 16-bit Parallel Processing in a Molecular Assembly 307
	References 309
10	Devices Based on Electron Spin and Ferromagnetism for
	Storage and Logic 311
10.1	Hard and Soft Ferromagnets 312
10.2	The Origins of Giant Magnetoresistance 313
10.2.1	Spin-Dependent Scattering of Electrons 314
10.2.2	The GMR Spin Valve, a Nanoscale Magnetoresistance Sensor 315
10.2.3	The Tunnel Valve, a Better (TMR) Magnetic Field Sensor 316
10.3	Magnetic Random Access Memory 319
10.4	Hybrid Ferromagnet–Semiconductor Nonvolatile Hall Effect
	Gate Devices 320
10.5	Spin Injection: The Johnson–Silsbee Effect 321
10.5.1	Apparent Spin Injection from a Ferromagnet into a Carbon
	Nanotube 323
10.6	Imaging a Single Electron Spin by a Magnetic Resonance AFM 323
10.7	Magnetic Logic Devices: A Majority Universal Logic Gate 327
10.8	Magnetic Domain Wall Racetrack Memory 329
	References 332
11	Qubits Versus Binary Bits in a Quantum Computer 333
11.1	Introduction 333
11.1.1	Binary Bits and Qubits 333
11.2	Electron and Nuclear Spins and Their Interaction 337
11.3	A Spin-Based Quantum Computer Using STM 340
11.4	Double-Well Potential Charge Qubits 341
11.4.1	Coherent Bonding and AntiBonding States in Artificial Structure 341
11.4.2	Silicon-Based Quantum Computer Qubits 344
11.4.3	Experimental Approaches to the Double-Well Charge Qubit 345
11.4.4	Coupling of Two-Charge Qubits in a Solid-State (Superconducting)
	Context 349
11.5	Ion Trap on a GaAs Chip, Pointing to a New Qubit 351
11.6	Adiabatic Quantum Computation 353
11.6.1	An Example of an Optimization Problem 355
11.6.2	Demonstration of Adiabatic Quantum Computation 356
11.6.3	Flux Qubits as a Scalable Approach to Quantum Computation 357
	References 362
12	Applications of Nanoelectronic Technology to Energy Issues 365
12.1	
	Introduction 365
12.1.1 12.1.2	Introduction 365

XIV	Contents	
	12.1.3	Improving Performance of Energy Components via Nanoelectronic Technology 366
	12.1.4	Topics of Opportunity from Nanoelectronic Perspective 366
	12.2	Solar Energy and Its Conversion 367
	12.2.1	Photovoltaic Solar Cells 367
	12.2.2	Thin Film Solar Cells Versus Crystalline Cells 375
	12.2.3	CIGS (CuIn _{1-x} Ga _x Se ₂) Thin Film Solar Cells 375
	12.2.4	Dye-Sensitized Solar Cells 382
	12.2.5	Polymer Organic Solar Cells 385
	12.2.6	Comments on Cells and on Solar Power Versus Wind Power 389
	12.3	Hydrogen Production (Solar) for Energy Transport 390
	12.3.1	Economics of Hydrogen at Present 390
	12.3.2	Hydrogen as Potential Intermediate in US Electricity Distribution 391
	12.3.3	Efficient Photocatalytic Dissociation of Water into Hydrogen and Oxygen 393
	12.3.4	C-Doped TiO ₂ Nanotube Arrays for Dissociating H ₂ O by Light 401
	12.4	Storage and Transport of Hydrogen as a Potential Fuel 403
	12.5	Surface Adsorption as a Method of Storing Hydrogen
		in High Density 404
		References 407
	13	Future of Nanoelectronic Technology 411
	13.1	Silicon Devices 411
	13.1.1	Power Density and Power Usage 413
	13.1.2	Opportunity for Innovation in Large-Scale Computation 414
	13.2	Solar Energy Conversion with Printed Solar Cells 416
	13.2.1	Capital Costs per Unit Area for CIGS Cells 416
	13.3	Emergence of Nanoimprinting Methods 420
	13.4	Self-Assembly of Nanostructured Electrodes 421
	13.5	Emerging Methods in Nanoelectronic Technology 424
		References 426
		Exercises 429
		Abbreviations 439
		Some Useful Constants 443

Index 445