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Figure 2.4 (a) Circuit with a voltage source for nodal anal-
ysis. (b) Transformed network for using nodal analysis using
matrix formulation.

But, V(s) = I1(s)R2. On substituting and bringing it to the left side, one gets[
R1 + R2 0
gmR2R3 R3

][
I1(s)

I2(s)

]
=
[
Vs(s)

0

]
(2.2)

Equation 2.2 is the loop matrix formulation for Figure 2.3a.

Example 2.2. Figure 2.4a shows a circuit with a voltage source. Develop the nodal
matrix formulation for the network.

Figure 2.4b shows the equivalent circuit redrawn after applying source trans-
formation to vS(t) and transforming the network using the representation for
a capacitor as shown in Figure 2.2b. Since admittances are to be used, letting
G = 1/R for the conductance, one can write[

G1 +G2 + sC 0
0 G3

][
V1(s)

V2(s)

]
=
[
Is(s)+ Cv1(0−)
−gmV1(s)

]
(2.3)

where Is(s) = G1VS(s). On substituting and bringing V1(s) to the left side, the final
formulation becomes[

G1 +G2 + sC 0
gm G3

][
V1(s)

V2(s)

]
=
[
Vs(s)G1

0

]
+
[
Cv1(0−)

0

]
(2.4)

It is observed that Eq. (2.4) is in the form W(s)X (s) = F(s)+ h(s).

2.4
Network Functions

If we study the relationships developed in connection with nodal and loop analyses,
we discover a general format, namely, W(s)X (s) = F(s)+ h(s), where W(s) can
be either an admittance or an impedance matrix, X (s) a nodal voltage vector
or a loop current vector, F(s) the vector of independent sources, and h(s) the
vector of initial conditions. Using this equation, one can easily arrive at X (s) =
W−1(s)F(s)+W−1(s)h(s). The first part of the solution on the right-hand side (RHS)
is the complete solution if the initial values were zero (i.e., h(s) = 0). This is called
the zero (initial)-state response. The second part of the solution on the RHS is the
complete solution if the forcing functions were zero (i.e., F(s) = 0). This is known
as the zero-input or natural response.
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V1

I1

y11

y12V2

y21V1
y22

+

−

V2

I2
+

−

Figure 2.7 Equivalent circuit model for
two-port admittance matrix.

2.5.2.2 Impedance Matrix Parameters
If V1 and V2 are chosen as the independent variables, then the two-port may be
characterized by[

z11 z12

z21 z22

] [
I1

I2

]
=
[
V1

V2

]

or

[z]
[
I1

I2

]
=
[
V1

V2

]
(2.7)

where the parameters z11, z12, z21, and z22 may be determined by the equations
z11 = [V1/I1]|I2=0, z12 = [V1/I2]|I1=0, z21 = [V2/I1]|I2=0, and z22 = [V2/I2]|I1=0.
Since I1 = 0, I2 = 0 implies open (to AC) circuit conditions, the parameters
z11, z12, z21, and z22 are called open circuit impedance parameters, and [z] the open
circuit impedance matrix (or simply, impedance matrix) of the two-port. It is obvious
from Eqs. (2.6) and (2.7) that

[y] = [z]−1 (2.8)

The AC equivalent circuit model is shown in Figure 2.8.

2.5.2.3 Chain Parameters (Transmission Parameters)
If we consider V2 and I2 as the independent variables, then we may write[

V1

I1

]
=
[
A B
C D

] [
V2

−I2

]
or
[
V1

I1

]
= [a]

[
V2

−I2

]
(2.9)

The matrix [a] is called the chain matrix or transmission matrix of the two-port. The
parameters A, B, C, and D are called the chain or transmission parameters. Note that
−I2 instead of I2 is used to imply a current flowing outward at port 2. It is seen that
the parameters A, B, C, and D may be defined as

1

A
= V2

V1

∣∣∣∣
I2=0

,
1

B
= −I2

V2

∣∣∣∣
V2=0

,
1

C
= V2

I1

∣∣∣∣
I2=0

,
1

D
= −I2

I1

∣∣∣∣
V2=0

(2.10)
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Figure 2.8 Equivalent circuit
model for two-port impedance
matrix.

suffix 2 should change to suffix 1



Practice Problems 37

R2

R1

r2

r1
C2C1

+

+

−

−

A

+

−

A

A

R

Io
Va

Vb

r

Ii1
Ii2

Vo

Figure P2.10

−

−+

+gm1 gm2

−

+

−

+

−

+

gm3

gm4gm5

C1

C2

Vo

VC
VBVA

Figure P2.11

Io
Ii2
=

− 1

rR

1
rR2

+
(

1
Ar
+
(

1+ 1
A

)(
1
R1
+sC1

))
⎛
⎜⎜⎜⎜⎜⎜⎝

sC2

r1

1
r2
+

1

r2
+ sC2

A

+
1

r1
+ 1

r2
A

⎞
⎟⎟⎟⎟⎟⎟⎠

2.11 Using the ideal small signal model for each OTA in Figure P2.11, derive
that

Vo = gm2gm5VA − sgm4C1VB + s2C1C2VC
s2C1C2 + sgm3C1 + gm1gm2

2.12 Figure P2.12 shows a twin-Tee network frequently used in connection with
design of equalizers. Write a subset of two-port parameters which could be
used very easily to derive the overall two-port parameters of the system.
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I1
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V2

−

Figure 3.2 An LC filter with a normalized load resistance of 1�.
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Figure 3.3 The LC filter corresponding to that of Figure 3.2 for a load of 100�.

The system function given by V2/I1 = Z21 is

Z21 = 1

s3C1L2C3 + s2L2C1 + s (C1 + C3)+ 1
= 1

2s3 + 2s2 + 2s+ 1

To obtain the filter corresponding to a 100 � resistance at the load we perform the
following scaling:

R∗i = 100Ri = 100 �, L∗2 = 100L2 = 200 H,C∗1 = C∗2 =
1

100
F

Hence,

Z∗21 = 100Z21 = 100

2s3 + 2s2 + 2s+ 1

The scaled circuit is shown in Figure 3.3.

3.3
Dual and Inverse Networks

3.3.1
Dual and Inverse One-Port Networks

It is well known that if two one-port RLC networksN1 andN2 have their impedances
z1 and z2 related by

z1z2 = K (3.7)

200
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3.7
Frequency Scaling

Consider a general LTI network N. If we change the complex frequency s to s/b, b
being a constant, it is clear that in any of the system functions, whether it be the TIF
Z21(s), the TAF Y21(s), the VTF TV (s), or the CTF TI(s), the frequency s is changed
to s/b. Hence, whatever was the magnitude or phase of a system function F(s) at a
frequency ω, the new system function F(s/b) would have the same magnitude and
phase at the frequency ω/b, that is, the frequency has been scaled by a factor 1/b.
Such an operation is called frequency scaling by the factor 1/b. As a consequence of
the frequency scaling, it is clear that an inductance of value L and a capacitor of value
C would now have reactances of sL/b and 1/(sC/b), respectively. Thus, these will
become, respectively, an inductor of value L/b and a capacitor of value C/b, while
a resistor will remain unchanged. It is also seen that the ideal controlled sources
also remain unaltered. Frequency scaling is used to obtain the response of a given
filter in a given frequency band scaled up or down to a different frequency band.

Example 3.4. The Sallen and Key structure of Figure 3.1 realizes the LP TF

V2

V1
= TV (s) = 2.9/4

s2 + 0.05s+ 0.25

According to the standard notations for a second-order filter, namely,

TV (s)
∣
∣
LP =

HLP �
2
p

s2 + (ωp/Qp)s+ ω2
p

the above filter has a pole frequency ωp =
√

0.25 = 0.5.
(a) Find the TF if ωp is to be 1000 rad s−1.
(b) If in addition, we want to use 1 K resistors in the circuit, how is the TF altered.

Also, how do the values of the components change in the LP structure?
Solution: (a) The frequency scaling factor is b = 1000/0.5 = 2000. Hence, s is

changed to s/2000 in the expression for TV (s), giving the new TF to be

T ′V (s) =
(2.9/4)(2000)2

s2 + 0.05(2000)s+ 0.25(2000)2

This does not alter the values of the resistors, but the capacitance values become
0.001.

(b) If all the resistors have to be 1K, we have to scale all the impedances
by the factor a = 1000. Since impedance scaling does not alter a VTF, the TF
remains T ′V (s). However, the new values of the components are R1 = R2 = 1000 �
and C1 = C2 = 1 pF, with the gain K = 2.9 of the voltage amplifier remaining
unchanged.

3.8
Types of Filters

Filters are categorized depending on the type of filtering function that they perform.
If the primary consideration is the magnitude or attenuation characteristic, then

micro-farad
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we classify them as LP, high-pass (HP), band-pass (BP), and bandstop (BS) or
band-reject (BR). However, if our main concern is the phase or delay specification,
then the type of filters are all-pass (AP) and delay equalizers. In all these cases, the
TF to be realized is of the form

H(s) = N(s)

D(s)
= k

sm + · · · + a1s+ a0

sn + · · · + b1s+ b0
, m ≤ n (3.28)

An LP filter is to pass low frequencies from DC to a desired frequency ωc, called
the cutoff frequency, and to attenuate frequencies beyond the cutoff. An ideal LP
filter would have a magnitude for H

(
jω

)
that is constant from zero to ωc and zero

beyond ωc. The frequency band from DC to ωc is called the passband. However,
such a brick-wall characteristic is impossible to realize in practice, and the LP filter
specifications are always given in terms of its cutoff frequency ωc, an SB frequency
ωs, maximum loss (Ap) allowed in the PB, and minimum SB attenuation (As). The

20 log10
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Figure 3.9 Typical specifications of (a) an LP filter,
(b) an HP filter, (c) a BP filter, and (d) a BR filter.
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Figure 3.12 Magnitude response of the normalized CHEB
filter for n = 2 and 3 with ε = 0.5089.

Given the parameter Ap in decibels, we can find the ripple factor ε using

ε =
√

100.1Ap − 1 (3.49)

Also, at the edge of the SB, that is ωs, the loss in decibels is As. Hence,

−As = 10 log 1/[1+ ε2C2
n(ωs)]

Using Eqs. (3.47) and (3.49), we get the order of the filter, n, to be the lowest integer
when

n ≥ cosh−1√
η

cosh−1
ωs

(3.50a)

where

η = 100.1As − 1

100.1Ap − 1
(3.50b)

An alternate approximate expression is (Schaumann, Ghausi, and Laker, 1990)

n ≥ ln
√

4(100.1As − 1)/ε2

ln(ωs +
√
ω2

s − 1)
(3.51)

3.9.2.1 CHEB Filter Transfer Function
Just as in the case of the MFM approximation, we start with

D(s)D(−s) = 1+ ε2C2
n(ω)

where ω = s/j, and obtain the roots of 1+ ε2C2
n(ω) = 0, and associate the LH plane

roots with those of the poles of D(s). The above equation can be rewritten as

cos{n cos−1(−js)} = ± j/ε (3.52)

[
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3.11.1
Phase Characteristics of a Transfer Function

The phase function associated with a signal is easily recognized by considering
the phasor representation for a time-varying signal. Thus, in polar coordinates
V = VM exp(−jϕ) represents a signal of magnitude VM having a phase delay of ϕ
radians. For a system, such as a filter, the frequency-dependent TF can be similarly
expressed in polar form with a magnitude part and a phase part. The magnitude
approximation problem discussed earlier is associated with this magnitude part.
An understanding about the phase part can be obtained by writing the TF in the
form

H( jω) = N( jω)
D( jω)

= m1( jω)+ jn1( jω)
m2( jω)+ jn2( jω)

(3.74)

where m1 and n1 are the even and odd parts (i.e., terms involving even and
odd powers in ω) of N(ω), and m2 and n2 are the even and odd parts of D(ω).

The magnitude of H(jω) is given by
√

(m2
1 + n2

1)/(m2
2 + n2

2), while the phase angle
is given by φ( jω) = arctan(n1/m1) – arctan(n2/m2). Using basic trigonometric
identities, φ( jω) can be expressed as

φ( jω) = arctan
[
n1m2 − n2m1

m1m2 + n1n2

]
(3.75)

In phase approximation problems, this phase function φ( jω) will be required to
have a desirable characteristic.

3.11.2
The Case of Ideal Transmission

For digital/video signals, the goal of signal processing is very different from the
concept of frequency-selective filtering (i.e., rejection of certain frequencies relative
to other frequencies). The signal transmission has to be ideal, that is, the magnitude
can be changed only by a constant factor K irrespective of the frequency, and there
can only be a constant delay in time so that the relative timing (phase) among the
various frequency contents of the signal remains unchanged. Analytically, if f (t)
is a given signal, the processed signal can be f (t) = K f (t− to), where to is a fixed
delay. Taking Laplace transform and setting s = jω, the processed signal would
be F′( jω) = K F ( jω)exp(−jωto). Thus the transfer characteristic of the processing
function is required to be H( jω) = F′( jω)/F( jω)= K exp(−jωt0). Since exp (−jωto)
represents only a delay, the TFH( jω) has a magnitude equal to K, which implies an
AP characteristic in the frequency domain. The phase ϕ = −ωto implies a constant
delay τ = to. The phase is a linear function of frequency ω leading to a constant
delay in the time domain.

read (jw) as (w)
only, i.e.,

For m1,n1,m2,n2

instead of m1(jw)
read m1(w)..

Read N(w) as

N(jw)
Read D(w) as

D(jw)
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3
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3
s+ 1

1

6
s

(4.10)

The above ZLC(s) may be realized in the Cauer-I form as shown in Figure 4.1a.
The Cauer-II form is obtained by CF expansion of ZLC(s) around s = 0 and is given
below.

2s+ s3) 4 + 5s2 + s4 (2/s ←− capacitor,C = 1/2F

4 + 2s2

3s2 + s4) 2s+ s3
(2

3
s ←− inductor, L = 3/2H

2s+ 2

3
s3

1
3
s3
)

3s2 + s4
(9
s

←− capacitor,C = 1/9F

3s2

s4
) 1

3
s3
(1

3
s ←− inductor, L = 1/3H

1
3
s3

−−
Hence,

ZLC(s) = 2

s
+ 1

2

3

1

s
+ 1

9
s

+ 1
1

3

1

s

(4.11)

ZLC(s) ZLC(s)

(a) (b)

1/3 F 3/2 H 3 H1/6 F

1 H 9/2 H ½ F 1/9 F

Figure 4.1 Realization of ZLC(s) of Example 4.1: (a) Cauer-I form and (b) Cauer-II form.

3

3
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Figure 4.4 Realization of H(s) of Example 4.2 when (a) RL = 1 � and (b) RL = 100 �.

Hence, the realization of H(s) is as shown in Figure 4.4a. At s = 0, all the
inductors are short circuits and the capacitors are open circuits, and hence,
V2/V1 = 1 = H(0) = (k/2); thus k = 2. Since the given termination is 100 �, we
now scale all the impedances by 100 �, which of course will not alter the transfer
function. The scaled network is shown in Figure 4.4b.

Example 4.3. The function H(s) = k

s3 + 2s2 + 2s+ 1
represents a third-order nor-

malized LP Butterworth filter function. RealizeH(s) by a singly terminated network
when the network is driven (a) by an ideal voltage source and (b) by an ideal
current source, the terminating load resistance being 1 �. (c) If the load resistance
is 100 � and the cutoff frequency of the filter is 100 rad s−1, find the corresponding
realizations.

(a) In this case, m(s) = 2s2 + 1 and n(s) = s3 + 2s. Since the degree of m(s) < the
degree of n(s), we have to perform the CF expansion on n(s)/m(s) around s = ∞ to
realize (1/y22). The CF expansion is as follows:

2s2 + 1) s3 + 2s
( s

2
←− inductor, L = 1

2
H

s3 + 1

2
s

3

2
s
)

2s2 + 1
(4

3
s ←− capacitor,C = 4

3
F

2s2

1
) 3

2
s
(3

2
s ←− inductor, L = 3

2
H

3

2
s

−
The realization of H(s) as a VTF with RL = 1 � is shown in Figure 4.5a. The

value of k = 1, since H(0) = 1.
(b) As discussed in Section 4.1, we may now realize the given H(s) at the TIF,

Z21(s), of a singly terminated network driven by an ideal current source by simply
replacing the network N by ND, and the corresponding realization is shown in
Figure 4.5b.

(c) If the terminating resistance is changed to 100 �, we shall use impedance
scaling. Thus scale all L → 100L and all C → C/100.

If the cutoff frequency is 100 rad s−1, that is, ωc = 2π × 100 rad s−1, then fre-
quency scale all L → L/(2π × 100), and all C → C/(2π × 100).

a

r0 r
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5.1
Some Basic Building Blocks using an OA

In Chapter 2, we discussed how an OA could be used as a summer or integrator.
There are a number of other simple building blocks, including bilinear filters,
which are useful in the study of higher-order filters using OAs. These are tabulated
in Table 5.1; these may be easily derived using the model of an ideal OA introduced
in Chapter 2 and are left to the reader to derive them.

5.2
Standard Biquadratic Filters or Biquads

A second-order transfer function of the form

H(s) = N(s)

D(s)
= b2s2 + b1s+ b1

s2 + a1s+ a0
(5.1)

is called a biquadratic function. Even though, in general, the poles and zeros may
lie on the negative real axis, we will assume them to be complex conjugates, since
poles and zeros on the negative real axis can be realized using passive-RC circuits
(Van Valkenburg, 1960). In such a case, we may express

H(s) = N(s)

D(s)
= H0

(s+ z)(s+ z∗)
(s+ p)(s+ p∗) = H0

s2 + (ωz/Qz)s+ ω2
z

s2 + (ωp/Qp)s+ ω2
p

(5.2)

where

ω2
z = (Re z)2 + (Im z)2,Qz = ωz/2Re(z) (5.3a)

ω2
p = (Re p)2 + (Im p)2,Qp = ωp/2Re(p) (5.3b)

and H0 could be positive or negative. ωp and Qp are called the pole frequency and
pole Q ; sometimes ωp is called the undamped natural frequency since there will be
resonance at s = jωp, if the s-term is not present in the denominator of Eq. (5.2).
The poles are given by

p1,2 = −
ωp

2Qp
± j ωp

Qp

√
4Q2

p − 1 (5.4)

It is clear that, in order to have complex poles, Qp> 0.5. For a highly selective
filter, Qp should be large, that is, the real part of the poles should tend to zero, and
hence the poles will be close to the imaginary axis. The following properties can be
observed from Eqs. (5.2) and (5.3):

1) The dc gain is [H0(ω2
z/ω

2
p)].

2) The gain at ω = ∞ is |H0|.
3) The maximum value of |H( jω)| occurs approximately at ωp if Qp � 1. This is

particularly true if ωz � ωp or ωz � ωp; otherwise, it is slightly moved away
from ωp.

4) The minimum value occurs at approximately ω = ωz for Qz � 1.

suffix 'zero'
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IC technology, it is easier to maintain ratios of capacitors or resistors more
accurately than to maintain their absolute values precisely. However, the
disadvantage is that the spread in the resistor value is rather large for large
Qp, since the ratio of the resistors is Q2

p. Also, observe that gain at ω = 0 is
always 2. Let us consider an example.

Example 5.1. Design an LP filter with a pole Q of 4 and a pole frequency of 104 rad
s−1, using the above design procedure.

The transfer function of the LP filter is given by

HLP(s) = H0

ω2
p

s2 +
(

ωp
Q

)
s+ ω2

p

(5.16)

where the values of ωp and Qp are given by ωp = 104 rad s−1 and Qp = 4, respec-
tively. From Eq. (5.15), we see that R1 = 16R3,C = 1

{4(104)R3}
,K = 2, and hence

H0 = 2. Assuming R3 = 1 �, we get R1 = 16 � and C = 25 μF. Impedance scaling
by 1000, we have the component values as

R3 = 1 k�,R1 = 16 k�,C1 = C2 = 0.025 μF, and K = 2.

Case 2: Equal-resistor and equal-capacitor design
Let R1 = R3 = R and C2 = C4 = C. This leads to the design equations

C = 1/(Rω2
p) and K = 3− (1/Qp) (5.17)

The advantage of this design is the resistor as well as the capacitors are of
equal value, but it should be noted that the value of the gain K is dependent
on Qp.

Example 5.2. Design an LP filter for the same specifications as those in Example
5.1 using the above design equations.

Using Eq. (5.17), we get

C2 = C4 = C = 1/(108R),K = 3− (
1
4

) = 2.75

Choosing R = 100 �, we get the component values to be

R1 = R3 = 100 �,C2 = C4 = 100 pF and K = 2.75

Case 3: Unity-gain design
Hence, K = 1. Let

m = C4/C2 and n = R3/R1. (5.18a)
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and Qp of the filters are related to the network components as follows:

ωp =
√

R6/R5

R1R2C1C2
(5.37)

1

Qp
= 1+ R6/R5

1+ R4/R3

√
R5R2C2

R6R1C1
(5.38)

However, the value of H0 for the three filters is different and is given by

H0(LP) = 1+ R6/R5

1+ R3/R4

R5

R6
(at ω = 0) (5.39a)

H0(BP) = −R4

R3
(at ω = ωp) (5.39b)

H0(HP) = 1+ R6/R5

1+ R3/R4
(at ω = ∞) (5.39c)

Example 5.5. Design a BP filter with Qp = 10 and ωp = 103 rad s−1, using the
KHN biquad structure.

Equations (5.34), (5.37), (5.38), and (5.39b) show that there are eight variables
(Ri, i = 1, . . . , 6 and C1, C2), while there are only two specifications. Hence, we
have sufficient flexibility in assigning arbitrary values to six of the components. An
examination of Eqs. (5.37) and (5.34) reveals that the ratio R4/R3 occurs only in
the expression for Qp. Therefore, we determine this to satisfy the value of specified
Qp. We now assume that R1 = R2 = R,C1 = C2 = C, and R5 = R6 = Rx . Then we
have two simple expressions for ωp and Qp:

ωp = 1
RC �⇒ R = 1

ωpC
(5.40)

1
Qp
= 2

1+(R4/R3) �⇒ R4 = (2Qp − 1)R3 (5.41)

Assuming C = 1 F, we get R = 10−3 �. Impedance scaling by 10−8, we have
C = 0.01 μF,R1 = R2 = R = 100 k�. Further, since for R3,R4,R5, and R6, only
the ratio (R6/R5) = 1 and (R4/R3) = 19 are important, we can choose them to be
R5 = R6 = R3 = 1 k�, and R4 = 19 k�. The value of H0, given by Eq. (5.39b), is
H0 = −(R4/R3) = −19. It is noted that the same circuit gives LP and HP outputs
at Vo1 and Vo3 for which H0 = (2Qp − 1)/Qp, that is, H0 = 1.9.

5.6.2
Tow–Thomas Biquad

If one examines the KHN biquad, one finds that the signal is fed at only one node
of the system, while filters of different characteristics (viz., LP, HP, and BP) are
obtained at distinct output nodes. Such a system is commonly referred to as a
single-in, multi-out (SIMO) system. In contrast, there could be a system where the
input signal is fed to several nodes in the system while only one node delivers the
desired output. Filters of different characteristics are obtained by special choice of

values are are

power +8
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Figure 5.19 (a) A universal biquad filter using five OTAs and (b) equivalent circuit of (a).

and

Qp = 1
gm3

√
gm1gm2C2

C1
(5.75b)

On examining Eq. (5.74), it is obvious that, by appropriately choosing the signal
voltages VA,VB, or VC, we can realize different transfer functions. Thus

For an LP filter: choose VB = VC = 0 (5.76)

For an HP filter: choose VA = VB = 0 (5.77)

For a BP filter: choose VA = VC = 0 (5.78)

For a notch filter: choose VB = 0,VA = VC (5.79)

For an AP filter: choose VA = VB = VC = Vi, gm1 = gm5, and gm2 = gm4.

(5.80)

5.10
Technological Implementation Considerations

In the early stages of active-RC filters, the filters were made using OAs and discrete
RC elements mounted together on a printed circuit board (PCB). As the impetus

3

insert
'minus'
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in z-domain can be written down from the transfer function of the RC-active
filter simply by replacing ‘‘s’’ by the function of ‘‘z,’’ as given by the s↔ z
transformation relation Eq. (6.10). It must also be understood that the output of
each SC integrator in the filter must be sampled and transferred to the following
stage in the filter, during the clock phase φ2, so that the transformation in Eq.
(6.10) is applicable. If, on the other hand, the output of each SC integrator in
the filter is sampled during clock phase φ1, the pertinent transformation will
be s↔ 1

T (z− 1). One can derive this transformation relation by comparing the
transfer function of Eq. (6.2) with the z-domain transfer function given by Eq.
(6.8b). Two other important s↔ z transformations can be derived by considering
an alternative implementation of a resistance by an SC network, while replacing an
RC integrator with an SC integrator. Table 5.2 presents the various s↔ z transfor-
mations. For more details regarding the various transformations, one may refer to
Mohan, Ramachandran, and Swamy (1982, 1995) and Allen and Sanchez-Sinencio
(1984).

6.2.2
Frequency Domain Characteristics of Sampled-Data Transfer Function

By now, it is clear that a given continuous-time transfer functionH(s), when imple-
mented using SC network, produces a transfer function H(z) in the discrete-time
domain. Corresponding to a given H(s), there could be more than one possible
H(z) because of the presence of more than one clock signal in the SC network.
For frequency domain characterization of H(z), we use the relation z = exp( j�T),
where � is the sampled-data angular frequency. This is identical with the real phys-
ical frequency used to test and simulate a sampled-data system. Since exp( j�T)
is a periodic function, it is obvious that H(z) will be a periodic function. This is
an important distinction between the continuous-time frequency domain transfer
functionH(s) and the sampled-data (i.e., discrete-time) frequency domain transfer
function H(z). One may visualize the situation as though the given H(s), when
implemented as an SC filter function, causes H(s) to be modulated in frequency
domain (multiplied in time domain) by the clock frequency fs = 1/T of the clock
signals. Thus, corresponding to an LP |H( jω)|, we get a periodic train for |H(e j�T )|,
which will consist of lobes of |H( jω)| around zero frequency (i.e., DC) and around
±2π fs,±4π fs, . . . ,±2nπ fs. This is illustrated in Figure 6.4, where fs = 1/T .

H(jw)

wB
w → ← −ΩT

4p −wB
Ω →
wB

H(jw) ↔ H(e j ΩT)

H(e j ΩT)s ↔ z

−
T
2p−

T
2p

T
4p

Figure 6.4 Sampling operation on |H( jω)| and the sampled spectrum |H(e j�T )|.

5e 5
6
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RLVs

−

+

Y1 Y3 Y5

L1 L3 L5

C2 C4 Z4Z2

Figure 7.16 Realization of a doubly terminated fifth-order
all-pole LC filter using the method of operational simulation.

structure discussed above. For this, we first identify the impedance and admittance
elements. The scaled VTFs (i.e., Y1R,Z2/R, . . .) assuming R = 1 are as follows:

T1(s) → Y1 = 1/L1

s+ Rs/L1

T2(s) → −Z2 = − 1

sC

T3(s) → Y3 = 1

sL3

T4(s) → −Z4 = − 1

sC4

T5(s) → Y5 = 1/L5

s+ RL/L5
(7.17)

Of the above transfer functions, T2 and T4 can be realized by conventional inverting
integrators. T3 can be implemented by a noninverting integrator as shown in
Figure 7.17a or a conventional integrator followed by an inverting amplifier of gain
unity. The transfer functions T1 and T5 can be implemented by noninverting lossy
integrators; the noninverting lossy integrator can be realized using an inverting
amplifier followed by an inverting lossy integrator, shown in Figure 7.17b.

In order to make the transfer function in Figure 7.17b to comply with T1,
for example, one has to equate the DC gains 1/Rs = Rx/R, giving Rx = R/Rs.
Similarly, 1/RxCx → Rs/L1, leading to Cx = L1/R. An implementation of the LP
filter of Figure 7.16 using the architecture of Figure 7.14 is shown in Figure 7.18.
In Figure 7.18, the noninverting integrator has been realized as a cascade of an
inverting amplifier and an inverting integrator.

7.2.3
Systematic Steps for Designing Low-Pass Leapfrog Filters

The design procedure for an LP leapfrog filter may be summarized as follows:

1) Design the normalized LP prototype either by using filter tables or by the
methods described in Chapter 4.

2) Select one of the general system diagrams from Figure 7.14 or 7.15.

In Fig.7.16

R=1, in Fig.

7.17 the R

is a diff.

resistance,

not equal

to 1!
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Figure 7.19 (a) A third-order low-pass LC filter and
(b) operational simulation of the filter in (a).

7.2.4
Leapfrog Band-Pass Filters

The leapfrog technique discussed above is also applicable to BP filters with zeros at
the origin and at infinity. This includes, for example, a series resonance network in
the series arm and/or a parallel resonance network in the shunt arm of the ladder
filter. Figures 7.20a and 7.20b show these two cases with the corresponding Y andZ
functions. In the intermediate locations of the ladder, we haveRi → 0 andRj → ∞.

Thus, instead of first-order RC transfer function networks, as was in the case of
an LP filter, we have to use second-order RC-active filter sections in this case to
implement the normalized admittance and impedance functions. The second-order
RC network must have the capability to produce Qp → ∞ as will be required for
Ri → 0 or Rj → ∞. A Tow–Thomas network with the summing capability at the
input, which will also afford this special condition (namely, Qp → ∞), is shown in
Figure 7.21.

The condition Ri → 0 in Yi(s), and Rj → ∞ in Zj(s) can be realized from this
network by setting R1 = ∞, that is, an open circuit. The leapfrog realization of a
prototype BP filter (Figure 7.22a), using the above biquad as a building block, is
illustrated in Figure 7.22b.

Cj

Ci

Zj (s)  =
(1/Cj )s

s2 + (1/RjCj )s + 1/LjCj

Lj

Li

Rj

Ri

(a) (b)

Yi (s)  =
(1/Li)s

s2 + (Ri /Li)s + 1/Li Ci

Figure 7.20 (a) A third-order low-pass LC filter and
(b) operational simulation of the filter in (a).

Figure 7.20 (a) The admittance function of a series RLC-circuit, and (b) 
admittance function of a shunt RLC-circuit 
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Figure 7.29 Alternative FLF realization of the fourth-order LP filter given by Eq. (7.27).

Comparing Eq. (7.30) with the all-pole LP transfer function given by Eq. (7.26), we
have

fn−1 = bn−1 − nα

fn−2 = bn−2 − (n− 1)αfn−1 − {n(n− 1)/2}α2

...

f0 = b0 − αf1 − α2f2 − · · · − αn−1fn−1 − αn (7.31)

We may choose a suitable value for α, and find the feedback coefficients
fn−1, fn−2, . . . , f1, and f0, successively from Eq. (7.31), in terms of bn−1,
bn−2, . . . , b1, b0, and α. We can now realize Eq. (7.30) using the structure of
Figure 7.26, wherein the function Ti(s) = 1/(s + α) is realized using lossy integra-
tors. Since we will be using inverting integrators, we have to associate proper signs
to fn−1, fn−2, . . . , f1, and f0 in realizing Eq. (7.30). We illustrate this case for a Butter-
worth filter of order 3. The same procedure could be used for a higher-order filter.

Example 7.7. Realize the third-order LP filter given by

H(s) = V2

V1
= K

s3 + 2s2 + 2s+ 1
(7.32)

using lossy integrators of the type −1/(s+ 1).
Using Eq. (7.31), we have

f2 = 2 − 3 = 1, f1 = 2 − 4 + 3 = 1 and f0 = 1 − 2 + 2 − 1 = 0

Hence, the given transfer function can be written as

V2

V1
= K

[(s+ 1)3 − (s+ 1)2 + (s+ 1)]

minus 1


	ch2_corr_p1
	ch2_corr_p2
	ch2_corr_p3
	ch3_corr.pdf
	ch3_corr_p1
	ch3_corr_p2
	ch3_corr_p3
	ch3_corr_p4
	ch3_corr_p5

	ch4_corr.pdf
	ch4_corr_p1
	ch4_corr_p2

	ch5_corr.pdf
	ch5_corr_p1
	ch5_corr_p2
	ch5_corr_p3
	ch5_corr_p4

	ch7_corr.pdf
	c07_corr_p1
	c07_corr_p2
	c07_corr_p3


