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Vector Wave Equations

Introduction

Starting from the general Maxwell equations, we shall establish the
inhomogeneous vector wave equations for the case of dielectric media, which
normally constitute waveguides of light. For these materials, that admit neither
charge nor current, we shall deduce the homogeneous vector wave equations.
Furthermore, if the propagation medium is translation invariant, the solutions
to these equations describe the fields of the modes of light that are propagated
along the waveguides.

In the case of step-index waveguides, the mode fields can be expressed
analytically in terms of Bessel and modified Bessel functions. In the case of
one-dimensional waveguides, the solutions are expressed in terms of circular
and exponential functions. However, only numerical solutions are generally
admitted in the case of gradient-index profiles.

1.1
Maxwell Equations for Dielectric Media

In general, the electric field E and the magnetic field H of an electromagnetic
and monochromatic wave are written{

E(r, t) = E(x, y, z) exp(−iωt),

H(r, t) = H(x, y, z) exp(−iωt),
(1.1)

in Cartesian coordinates, or{
E(r, t) = E(r, φ, z) exp(−iωt),

H(r, t) = H(r, φ, z) exp(−iωt),
(1.2)

in cylindrical coordinates.
Dielectric media are characterized by a dielectric permittivity ε (r) = n2 (r) ε0

and a magnetic permeability µ. In practice, the magnetism is so weak that
the permeability is considered to be equal to that of the vacuum, thus µ = µ0.
The Maxwell equations that link the space derivatives of one field to the time
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derivatives of the other are [1, 2]:


∇ ∧ E = −µ0
∂H
∂t

= iωµ0H = i
√

µ0

ε0
kH,

∇ ∧ H = J + ε0n2 ∂E
∂t

= J − iωε0n2E = J − i
√

ε0

µ0
kn2E,

(1.3)

and the divergences are{∇ · (ε0n2E) = σ,

∇ · (µ0H) = 0,
(1.4)

where J is the current density, σ the charge density, and ω = 2 π c/λ =
k/

√
ε0µ0.

In the MKS system of units, ε0 = 107/4π c2 F m−1 and µ0 = 4π 10−7 H m−1.
The factor

√
µ0/ε0 has the units of an impedance and corresponds to 377 �,

the impedance of a vacuum.

1.2
Inhomogeneous Vector Wave Equations [3]

The vector wave equations can be expressed solely in terms of E or H by
eliminating either of these fields in the two equations of (1.3). These equations
are considered inhomogeneous since they still contain the current density
vector J. In order to establish them, we shall make use of the following vector
identities


∇ ∧ (∇ ∧ A) = ∇(∇ · A) − ∇2A,

∇ · (∇ ∧ A) = 0,

∇ ∧ (	A) = 	(∇ ∧ A) + ∇	 ∧ A,

(1.5)

where A is a vector, 	 a scalar, ∇ the gradient operator, and ∇2 the vector
Laplacian operator, which must not be confused with the scalar Laplacian
operator ∇2.

For the electric field, we apply the curl to the first equation of (1.3) and, by
substituting the second, we get

∇ ∧ (∇ ∧ E) = i

√
µ0

ε0
k ∇ ∧ H = i

√
µ0

ε0

{
k J − i

√
ε0

µ0
k2 n2E

}
.

With the help of the first identity (1.5), it follows that

∇(∇ · E) − ∇2E = i

√
µ0

ε0
k J + k2n2E, therefore

(∇2 + k2n2) E = ∇(∇ · E) − i

√
µ0

ε0
k J. (1.6)

By applying the second identity to ∇ ∧ H, we can now elaborate the ∇ · E
term

∇ · (∇ ∧ H) = ∇ · J − i

√
ε0

µ0
k ∇ · (n2E)

= ∇ · J − i

√
ε0

µ0
k n2∇ · E − i

√
ε0

µ0
k E · ∇n2 = 0,
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therefore

∇ · E = − i

k

√
µ0

ε0

∇ · J
n2

− E · ∇n2

n2
= − i

k

√
µ0

ε0

∇ · J
n2

− E · ∇ ln n2

and finally

∇(∇ · E) = − i

k

√
µ0

ε0
∇

(∇ · J
n2

)
− ∇(E · ∇ ln n2).

By substituting this result into (1.6), we obtain the following expression for E:

(∇2 + k2n2) E = −∇(E · ∇ ln n2) − i

√
µ0

ε0

{
k J + 1

k
∇

(∇ · J
n2

)}
· (1.7)

For the magnetic field, we apply the curl to the second equation of (1.3) and,
by substituting the first, we get

∇ ∧ (∇ ∧ H) = ∇ ∧ J − i

√
ε0

µ0
k ∇ ∧ n2E.

From the second and third identities (1.5) it follows that,

∇(∇ · H) − ∇2H = ∇ ∧ J − i

√
ε0

µ0
k {n2∇ ∧ E + ∇n2 ∧ E},

and by substituting the expression for ∇ ∧ E given by the first equation of (1.3)

∇(∇ · H) − ∇2H = ∇ ∧ J + k2n2H − i

√
ε0

µ0
k ∇n2 ∧ E.

Therefore, with ∇ · H = 0,

(∇2 + k2n2)H = −∇ ∧ J + i

√
ε0

µ0
k ∇n2 ∧ E. (1.8)

Isolating E from the second equation of (1.3) and substituting it into (1.8)

(∇2 + k2n2)H = −∇ ∧ J + ∇n2

n2
∧ (J − ∇ ∧ H)

= −∇ ∧ J + ∇ ln n2 ∧ (J − ∇ ∧ H).

Then, by reversing the order of the last vector product, we finally obtain the
following for H

(∇2 + k2n2)H = (∇ ∧ H) ∧ ∇ ln n2 − ∇ ∧ J − J ∧ ∇ ln n2. (1.9)
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1.3
Homogeneous Vector Wave Equations

In the absence of current, the current density J is zero and the two
inhomogeneous equations (1.7) and (1.9) are reduced to two homogeneous
vector wave equations. These new equations only have terms which contain
the refractive index n2 and E or H, thus{

(∇2 + k2n2)E = −∇(E · ∇ ln n2),

(∇2 + k2n2)H = (∇ ∧ H) ∧ ∇ ln n2,
(1.10)

and these fields must satisfy the following boundary conditions, where n̂ is a
unit vector normal to the boundary,

{
continuity of the normal components n̂ · (n2E) and n̂ · (H),

continuity of the tangential components n̂ ∧ E and n̂ ∧ H.
(1.11)

In the case of a homogeneous medium, the right-hand sides of (1.10) are
null because the index n is everywhere constant. With the identity ∇2A = ∇2A
in Cartesian components, these equations reduce to the Helmholtz scalar wave
equation [4]

(∇2 + k2n2) 	(x, y, z) = 0, (1.12)

where 	(x, y, z) is the amplitude of E or H, since both are proportional to
each other.

1.4
Translation-invariant Waveguides and Propagation Modes

For a waveguide that is invariant from −∞ < z < ∞, the refractive index
profile n is z-independent. The electric and magnetic fields can thus be
expressed with a superposition of fields written in a separable form; in
Cartesian components the fields are written



E(x, y, z) = e(x, y) exp(iβz),

e(x, y) = et + ẑez = x̂ex + ŷey + ẑez,

H(x, y, z) = h(x, y) exp(iβz),

h(x, y) = ht + ẑhz = x̂hx + ŷhy + ẑhz,

(1.13)

and in cylindrical polar components


E(r, φ, z) = e(r, φ) exp(iβz),

e(r, φ) = et + ẑez = r̂er + ϕ̂eφ + ẑez,

H(r, φ, z) = h(r, φ) exp(iβz),

h(r, φ) = ht + ẑhz = r̂hr + ϕ̂hφ + ẑhz.

(1.14)

E and H, given by (1.13) and (1.14), define the electric and magnetic fields of
a propagation mode characterized by the propagation constant β along the z-axis
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and the amplitudes e and h which are invariant in z. These are inhomogeneous
plane waves in the sense that surfaces of the same phase are planar.

Since the refractive index n and the fields e and h are not z-dependent:
• The gradient operator ∇ can be written

∇ = ∇t + ẑ
∂

∂z
= ∇t + iβẑ,

where ∇t is the transverse gradient operator.
• The vector Laplacian operator ∇2, when applied to E (or H), gives

∇2E = ∇2
t E + ∂2E

∂z2
= ∇2

t E − β2E,

where ∇2
t is the transverse vector Laplacian.

• ∇ ln n2 reduces to ∇t ln n2 and E · ∇ ln n2 to Et · ∇t ln n2.

With these simplifications, the homogeneous equations (1.10) become the
modal vector wave equations [3]

{
(∇2

t + k2n2 − β2)e = −(∇t + iβẑ)(et · ∇t ln n2),

(∇2
t + k2n2 − β2)h = {(∇t + iβẑ) ∧ h} ∧ ∇t ln n2,

(1.15)

the solutions of which give β, and the expressions for e and h fields of the
propagation modes.

We must now separately consider the cases of cylindrical components
(r̂, ϕ̂, ẑ) and Cartesian components (x̂, ŷ, ẑ).

1.4.1
Cylindrical Polar Components

The system of cylindrical polar coordinates is particularly well adapted for the
case of standard optical fibers that have circular symmetry. This symmetry
implies that the refractive index profile only depends on r, thus n(r). The field
components are{

e(r, φ) = et + ẑez = r̂er(r, φ) + ϕ̂eφ(r, φ) + ẑez(r, φ),

h(r, φ) = ht + ẑhz = r̂hr(r, φ) + ϕ̂hφ(r, φ) + ẑhz(r, φ).

Coupled differential equations
The transverse vector Laplacian operator ∇2

t yields



∇2
t e = r̂

{
∇2

t er − 2

r2

∂eφ

∂φ
− er

r2

}
+ ϕ̂

{
∇2

t eφ + 2

r2

∂er

∂φ
− eφ

r2

}
+ ẑ∇2

t ez,

∇2
t h = r̂

{
∇2

t hr − 2

r2

∂hφ

∂φ
− hr

r2

}
+ ϕ̂

{
∇2

t hφ + 2

r2

∂hr

∂φ
− hφ

r2

}
+ ẑ∇2

t hz,
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where ∇2
t is the transverse scalar Laplacian operator

∇2
t = 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂φ2
= ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂φ2
.

Since n is only a function of r, the transverse gradient operator ∇t gives us

∇t = r̂
∂

∂r
+ ϕ̂

r

∂

∂φ
, ∇t ln n2 = r̂

d ln n2

dr
and et · ∇t ln n2 = er

d ln n2

dr
,

and it follows that, with ∂/∂z = iβ, we obtain

(∇t + iβẑ) ( et · ∇t ln n2) = r̂
∂

∂r

(
er

d ln n2

dr

)
+ ϕ̂

r

(
∂er

∂φ

d ln n2

dr

)

+ i ẑ β er
d ln n2

dr
.

Next, with

(∇t + iβẑ) ∧ h = r̂
(

1

r

∂hz

∂φ
− i β hφ

)
+ ϕ̂

(
i β hr − ∂hz

∂r

)

+ ẑ
r

(
∂(rhφ)

∂r
− ∂hr

∂φ

)
,

we obtain

{(∇t + iβẑ) ∧ h} ∧ ∇t ln n2 = ϕ̂
1

r

d ln n2

dr

(
∂(rhφ)

∂r
− ∂hr

∂φ

)

+ ẑ
d ln n2

dr

(
∂hz

∂r
− i β hr

)
.

Upon expanding the terms in the equations (1.15), and collecting the terms
in r̂, ϕ̂ and ẑ, there results two systems of coupled differential equations [3] which,
respectively, link the three components of e and h. Thus for the electric field
we have


∇2
t er − 2

r2

∂eφ

∂φ
− er

r2
+ {n2k2 − β2}er + ∂

∂r

{
er

d ln n2

dr

}
= 0,

∇2
t eφ + 2

r2

∂er

∂φ
− eφ

r2
+ {n2k2 − β2}eφ + 1

r

d ln n2

dr

∂er

∂φ
= 0,

∇2
t ez + {n2k2 − β2}ez + iβer

d ln n2

dr
= 0,

(1.16)

and for the magnetic field


∇2
t hr − 2

r2

∂hφ

∂φ
− hr

r2
+ {n2k2 − β2}hr = 0,

∇2
t hφ+ 2

r2

∂hr

∂φ
− hφ

r2
+ {n2k2 − β2}hφ + 1

r

d ln n2

dr

(
∂hr

∂φ
− ∂(rhφ)

∂r

)
=0,

∇2
t hz + {n2k2 − β2}hz + d ln n2

dr

(
iβhr − ∂hz

∂r

)
= 0.

(1.17)
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Relations between the components of e and h
We isolate the field E from the second Maxwell equation

E = i

√
µ0

ε0

1

kn2
∇ ∧ H.

By explicitly writing all the components of E and H, and with ∂/∂z = iβ, we
get

r̂er + ϕ̂ eφ + ẑez = i

√
µ0

ε0

1

kn2

1

r

∣∣∣∣∣
r̂ rϕ̂ ẑ

∂/∂r ∂/∂φ iβ
hr rhφ hz

∣∣∣∣∣ ,

thus

r̂er + ϕ̂ eφ + ẑez = i

√
µ0

ε0

1

kn2

{
r̂

(
1

r

∂hz

∂φ
− i β hφ

)
+ ϕ̂

(
i β hr − ∂hz

∂r

)

+ ẑ
1

r

(
∂(rhφ)

∂r
− ∂hr

∂φ

)}
.

We repeat the same procedure using H from the first Maxwell equation

H = −i

√
ε0

µ0

1

k
∇ ∧ E,

and by ordering the terms we obtained the desired equations that link the
components of e and h




er =
√

µ0

ε0

1

kn2

(
1

r

∂ihz

∂φ
+ βhφ

)
,

eφ = −
√

µ0

ε0

1

kn2

(
βhr + ∂ihz

∂r

)
,

iez = −
√

µ0

ε0

1

kn2r

(
∂(rhφ)

∂r
− ∂hr

∂φ

)
.




hr = −
√

ε0

µ0

1

k

(
1

r

∂iez

∂φ
+βeφ

)
,

hφ =
√

ε0

µ0

1

k

(
βer + ∂iez

∂r

)
,

ihz =
√

ε0

µ0

1

kr

(
∂(reφ)

∂r
− ∂er

∂φ

)
.

(1.18)

Constructing the transverse components from the longitudinal components ez

and hz [5]
In the equations (1.18) we successively replace
• hφ in er and isolate er ,
• hr in eφ and isolate eφ ,
• eφ in hr and isolate hr ,
• and er in hφ from which we isolate hφ .
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We are thus able to express the four transverse components only in terms of
the derivatives of the longitudinal components iez and ihz

er = 1

n2k2 − β2

{
β

∂iez

∂r
+

√
µ0

ε0

k

r

∂ihz

∂φ

}
,

eφ = 1

n2k2 − β2

{
β

r

∂iez

∂φ
−

√
µ0

ε0
k
∂ihz

∂r

}
,

hr = 1

n2k2 − β2

{
β

∂ihz

∂r
−

√
ε0

µ0

kn2

r

∂iez

∂φ

}
,

hφ = 1

n2k2 − β2

{
β

r

∂ihz

∂φ
+

√
ε0

µ0
kn2 ∂iez

∂r

}
.

(1.19)

These equations allow for the reconstruction of the transverse field
components if we know the derivatives of the longitudinal components with
respect to r and φ – this is the basis for all numerical vector calculations for fibers.

Coupled differential equations between the longitudinal components ez and hz

Substituting the expressions of (1.19) for er and hr into the third equations
of (1.16) and (1.17), we find the coupled equations between ez and hz.

∇2
t ez+{n2k2−β2}ez − d ln n2

dr

β

(n2k2 − β2)

{
β

∂ez

∂r
+

√
µ0

ε0

k

r

∂hz

∂φ

}
= 0,

∇2
t hz+{n2k2−β2}hz − d ln n2

dr

n2k2

(n2k2 − β2)

{
∂hz

∂r
− β

kr

√
ε0

µ0

∂ez

∂φ

}
= 0.

(1.20)

This system of coupled differential equations can be solved numerically if
the index profile n2(r) is known, along with the values ez and hz (as well as
their derivatives) at r = 0. Afterwards, the transverse components (1.19) can
be calculated from the values of the longitudinal components.

1.4.2
Cartesian Components

The field components now depend on x and y
{

e(x, y) = et + ezẑ = ex(x, y)x̂ + ey(x, y)ŷ + ez(x, y)ẑ,

h(x, y) = ht + hzẑ = hx(x, y)x̂ + hy(x, y)ŷ + hz(x, y)ẑ,

but here the index profile n(x, y) does not necessarily have rotation symmetry;
the results of the following section will thus be more general than those of the
previous section.
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In this system of components, the vector Laplacian operator ∇2 can
be replaced by the scalar Laplacian operator ∇2 in the homogeneous
equations (1.15) thanks to the identity

∇2A = ∇2A = x̂ (∇2Ax) + ŷ (∇2Ay) + ẑ (∇2Az),

with

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
= ∇2

t + ∂2

∂z2
= ∇2

t − β2.

Thus the homogeneous equations (1.15) become
{

(∇2
t + n2k2 − β2)e = −(∇t + iβẑ)(et · ∇t ln n2),

(∇2
t + n2k2 − β2)h = {(∇t + iβẑ) ∧ h} ∧ ∇t ln n2,

(1.21)

where the vector operators ∇2
t of the left hand sides of (1.15) are replaced with

the scalar operators ∇2
t , and the transverse gradient operator is now written

∇t = x̂
∂

∂x
+ ŷ

∂

∂y
.

Coupled differential equations
With

∇t ln n2 = x̂
∂ ln n2

∂x
+ ŷ

∂ ln n2

∂y

and

et · ∇t ln n2 = ex
∂ ln n2

∂x
+ ey

∂ ln n2

∂y
,

we obtain

(∇t + iβẑ)(et · ∇t ln n2) =
{
x̂

∂

∂x
+ ŷ

∂

∂y
+ iβẑ

}{
ex

∂ ln n2

∂x
+ ey

∂ ln n2

∂y

}
.

Afterwards, with

(∇t + iβẑ) ∧ h = x̂
(
∂hz

∂y
−i β hy

)
+ ŷ

(
i β hx − ∂hz

∂x

)
+ ẑ

(
∂hy

∂x
− ∂hx

∂y

)
,

we obtain

{(∇t + iβẑ) ∧ h} ∧ ∇t ln n2

= −x̂
{(

∂hy

∂x
− ∂hx

∂y

)
∂ ln n2

∂y

}
+ ŷ

{(
∂hy

∂x
− ∂hx

∂y

)
∂ ln n2

∂x

}

+ ẑ
{(

∂hz

∂y
− iβhy

)
∂ ln n2

∂y
−

(
iβhx − ∂hz

∂x

)
∂ ln n2

∂x

}
.
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Each component of the homogeneous equations is expanded and the
terms in x̂, ŷ and ẑ are grouped together. There results two systems of
coupled differential equations, respectively, relating the three components of
e and h.

For the electric field we have




∇2
t ex + (n2k2 − β2)ex + ∂

∂x

{
ex

∂ ln n2

∂x
+ ey

∂ ln n2

∂y

}
= 0,

∇2
t ey + (n2k2 − β2)ey + ∂

∂y

{
ex

∂ ln n2

∂x
+ ey

∂ ln n2

∂y

}
= 0,

∇2
t ez + (n2k2 − β2)ez + iβ

{
ex

∂ ln n2

∂x
+ ey

∂ ln n2

∂y

}
= 0,

(1.22)

and for the magnetic field




∇2
t hx + (n2k2 − β2)hx +

(
∂hy

∂x
− ∂hx

∂y

)
∂ ln n2

∂y
= 0,

∇2
t hy + (n2k2 − β2)hy −

(
∂hy

∂x
− ∂hx

∂y

)
∂ ln n2

∂x
= 0,

∇2
t hz + (n2k2 − β2)hz −

(
∂hz

∂y
− iβhy

)
∂ ln n2

∂y

+
(

iβhx − ∂hz

∂x

)
∂ ln n2

∂x
= 0.

(1.23)

Relations between the components of e and h
We isolate the field E from the second Maxwell equation

E = i

√
µ0

ε0

1

kn2
∇ ∧ H.

By explicitly writing all the components, we get

x̂ ex + ŷ ey + ẑez = i

√
µ0

ε0

1

kn2

(
x̂

∂

∂x
+ ŷ

∂

∂y
+ i βẑ

)
∧ (x̂ hx + ŷ hy + ẑhz),

x̂ ex + ŷ ey + ẑez = i

√
µ0

ε0

1

kn2

{
x̂
(

∂hz

∂x
− i βhy

)
+ ŷ

(
i βhx − ∂hz

∂x

)

+ ẑ
(

∂hy

∂x
− ∂hx

∂y

)}
.
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By repeating the same procedure with H from the first Maxwell equation

H = −i

√
ε0

µ0

1

k
∇ ∧ E,

and by grouping the like terms, we obtain the desired relations between the
components of e and h




ex =
√

µ0

ε0

1

kn2

(
∂ihz

∂y
+ βhy

)
,

ey = −
√

µ0

ε0

1

kn2

(
βhx + ∂ihz

∂x

)
,

iez = −
√

µ0

ε0

1

kn2

(
∂hy

∂x
− ∂hx

∂y

)
.




hx = −
√

ε0

µ0

1

k

(
∂iez

∂y
+ βey

)
,

hy =
√

ε0

µ0

1

k

(
βex + ∂iez

∂x

)
,

ihz =
√

ε0

µ0

1

k

(
∂ey

∂x
− ∂ex

∂y

)
.

(1.24)

Constructing the transverse components from the longitudinal components ez

and hz [5]
In (1.24) we successively replace
• hy in ex and isolate ex,
• hx in ey and isolate ey,
• ey in hx and isolate hx,
• and ex into hy from which we isolate hy.

We thus obtain the transverse components only in terms of the derivatives of
the longitudinal components iez and ihz

ex = 1

n2k2 − β2

{
β

∂iez

∂x
+

√
µ0

ε0
k
∂ihz

∂y

}
,

ey = 1

n2k2 − β2

{
β

∂iez

∂y
−

√
µ0

ε0
k
∂ihz

∂x

}
,

hx = 1

n2k2 − β2

{
β

∂ihz

∂x
−

√
ε0

µ0
kn2 ∂iez

∂y

}
,

hy = 1

n2k2 − β2

{
β

∂ihz

∂y
+

√
ε0

µ0
kn2 ∂iez

∂x

}
.

(1.25)

Coupled differential equations between the longitudinal components ez and hz

By substituting the expressions of (1.25) for ex, hx, ey, and hy into the
third equations of (1.22) and (1.23), we find the coupled equations for ez
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and hz

∇2
t ez + pez − β

p

{
∂ ln n2

∂x

(
β

∂ez

∂x
+

√
µ0

ε0
k
∂hz

∂y

)

+ ∂ ln n2

∂y

(
β

∂ez

∂y
−

√
µ0

ε0
k
∂hz

∂x

)}
= 0,

∇2
t hz + phz − n2k2

p

{
∂ ln n2

∂y

(
∂hz

∂y
+ β

k

√
ε0

µ0

∂ez

∂x

)

+ ∂ ln n2

∂x

(
∂hz

∂x
− β

k

√
ε0

µ0

∂ez

∂y

)}
= 0,

with p = n2k2 − β2.

(1.26)

1.5
TE and TM modes

In general, the vector modes will have six non-vanishing components
(er, eφez, hr, hφhz) or (ex, ey, ez, hx, hy, hz). However, there exist two families
of modes for which one of the two longitudinal components is null. Thus the
transverse electric modes (TE modes) have ez = 0 and the transverse magnetic
modes (TM modes) have hz = 0. Their properties will depend on the symmetry
and the geometry of the guides.

It should be noted that this nomenclature holds a different meaning from
that of the two eigen-states of polarization, also referred to as TE and TM
waves, that are encountered in the case of the reflection and refraction of a
plane-polarized wave on a diopter [6]. In this latter case, the electric field E of
the TE wave is perpendicular to the plane of incidence yz, hence Ey = Ez = 0.
Furthermore, the TM wave has its magnetic field H perpendicular to the plane
of incidence, hence Hy = Hz = 0. Sometimes the TE wave is referred to as
the s wave, and the TM wave as the p wave. Note, however, that these TE and
TM waves are not guided modes; therefore they do not have the properties of
guided modes.

1.5.1
The case of y and z Invariant Planar Waveguides

For these waveguides, x is the only variable that intervenes – e, h and n are
only functions of x and everything is invariant in y and z. The previous
equations (1.22) and (1.23) simplify considerably [7]:
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


d2ex

dx2
+ (n2k2 − β2)ex + d

dx

{
ex

d ln n2

dx

}
= 0,

d2ey

dx2
+ (n2k2 − β2)ey = 0,

d2ez

dx2
+ (n2k2 − β2)ez + iβex

d ln n2

dx
= 0,

(1.27)




d2hx

dx2
+ (n2k2 − β2)hx = 0,

d2hy

dx2
+ (n2k2 − β2)hy − d ln n2

dx

dhy

dx
= 0,

d2hz

dx2
+ (n2k2 − β2)hz + d ln n2

dx

(
iβhx − dhz

dx

)
= 0.

(1.28)

and the equations (1.24), grouped into triplets of components (ey, hx, ihz) and
(ex, hy, iez), become




ey = −
√

µ0

ε0

1

kn2

(
βhx + dihz

dx

)
,

hx = −
√

ε0

µ0

β

k
ey,

ihz =
√

ε0

µ0

1

k

dey

dx
.




ex =
√

µ0

ε0

β

kn2
hy,

hy =
√

ε0

µ0

1

k

(
βex + diez

dx

)
,

iez = −
√

µ0

ε0

1

kn2

dhy

dx
.

(1.29)

Note that these triplets of equations are independent since there is no coupling
between the two groups. Moreover, the differential equation for ey in (1.27)
and that for hy in (1.28) are also not coupled and independent of each other.
These equations,




d2ey

dx2
+ (n2k2 − β2)ey = 0,

d2hy

dx2
+ (n2k2 − β2)hy − d ln n2

dx

dhy

dx
= 0,

are inconsistent because the substitution of the triplets (1.29) into the
corresponding differential equations yields two different solutions for β. In
order to obtain consistent solutions to the Maxwell equations, it is necessary
for one of the two triplets of components to be zero. Thus we have the two
following cases:
• either ey, hx, hz = 0 and ex, hy, ez �= 0 – these are the transverse magnetic

TM modes (hz = 0),
• or ex, hy, ez = 0 and ey, hx, hz �= 0 – these are the transverse electric TE

modes (ez = 0).
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These cases further simplify (1.27) and (1.28) by reducing the number
of necessary equations. Thus, for each family of modes TE and TM, we
respectively obtain [8]:

TE modes




hx = −
√

ε0

µ0

β

k
ey,

ihz =
√

ε0

µ0

1

k

dey

dx
,

ex = ez = hy = 0.




d2ey

dx2
+ (n2k2 − β2)ey = 0,

d2hx

dx2
+ (n2k2 − β2)hx = 0,

d2hz

dx2
+ (n2k2 − β2)hz

− n2k2

(n2k2 − β2)

d ln n2

dx

dhz

dx
= 0.

(1.30)

TM modes




ex =
√

µ0

ε0

β

kn2
hy,

iez = −
√

µ0

ε0

1

kn2

dhy

dx
,

ey = hx = hz = 0.




d2ex

dx2
+(n2k2 − β2)ex + d

dx

{
ex

d ln n2

dx

}
= 0,

d2hy

dx2
+ (n2k2 − β2)hy − d ln n2

dx

dhy

dx
= 0,

d2ez

dx2
+ (n2k2 − β2)ez

− β2

(n2k2 − β2)

d ln n2

dx

dez

dx
= 0.

(1.31)

At first sight, the differential equations for ex and hy in (1.31) appear to be
different. However, it should be noted that these equations can be deduced
from each other. It is relatively straightforward to show that the first differential
equation can be obtained from the second with the following function change,
hy = n2 ex. Therefore these two equations are one and the same.

In the case of an arbitrary index profile n(x, y), the planar waveguide loses
its invariance in the y dimension and the equations (1.24) no longer reduce
to two triplets of independent components like those of (1.29). Moreover,
the longitudinal components ez and hz are no longer null, therefore these
waveguides only support hybrid modes and not TE or TM modes.

1.5.2
The case of a Circularly Symmetric Refractive Index Profile n(r)

Let us return to the cylindrical polar components and the equations (1.18). In
a similar way to the previous case with the Cartesian coordinates (x, y), in the
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case where the components hz, hr, ez and er are independent of φ, we find two
groups of coordinates that are mutually independent




er =
√

µ0

ε0

β

kn2
hφ,

hφ =
√

ε0

µ0

1

kn2

(
βer + diez

dr

)
,

iez = −
√

µ0

ε0

1

kn2r

d(rhφ)

dr
.




eφ = −
√

µ0

ε0

1

kn2

(
βhr + dihz

dr

)
,

hr = −
√

ε0

µ0

β

k
eφ,

ihz =
√

ε0

µ0

1

kr

d(reφ)

dr
.

(1.32)

Again, one of these two triplets must necessarily consist of null components,
therefore we have the two following cases:
• either eφ, hr, hz = 0 and er, hφ, ez �= 0 – these are the transverse magnetic

TM modes (hz = 0),
• or er, hφ, ez = 0 and eφ, hr, hz �= 0 – these are the transverse electric TE

modes (ez = 0).

By rewriting (1.16), (1.17) and (1.20) for each of these cases, and by
eliminating the derivatives with respect to φ, we, respectively, obtain the
following for each family of modes TE and TM.

TE modes




eφ = −
√

µ0

ε0

1

kn2

(
βhr + dihz

dr

)
,

hr = −
√

ε0

µ0

β

k
eφ,

ihz =
√

ε0

µ0

1

kr

d(reφ)

dr
,

ez = er = hφ = 0.




∇2
t eφ − eφ

r2
+ (n2k2 − β2)eφ = 0,

∇2
t hr − hr

r2
+ (n2k2 − β2)hr = 0,

∇2
t hz + (n2k2 − β2)hz

− d ln n2

dr

n2k2

(n2k2 − β2)

dhz

dr
= 0.

(1.33)

The second equation of the left-hand column indicates that the hr and eφ

components are proportional to each other, thus eφ is also independent of φ.
Finally we remark that for TE modes the electric field is reduced to this single
azimuthal component, therefore the lines of polarization of the electric field
form circles in the cross-section that are perpendicular to the purely radial
transverse components hr .
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TM modes




er =
√

µ0

ε0

β

kn2
hφ,

hφ =
√

ε0

µ0

1

k

(
βer + diez

dr

)
,

iez = −
√

µ0

ε0

1

kn2r

d(rhφ)

dr
,

hz = hr = eφ = 0.




∇2
t er − er

r2
+ (n2k2 − β2)er

+ d

dr

{
er

d ln n2

dr

}
= 0,

∇2
t hφ − hφ

r2
+ (n2k2 − β2)hφ

−1

r

d ln n2

dr

d(rhφ)

dr
= 0,

∇2
t ez + (n2k2 − β2)ez

−d ln n2

dr

β2

(n2k2 − β2)

dez

dr
= 0.

(1.34)

The first equations of the left-hand column indicate that the er and hφ

components are proportional to each other, thus hφ is also independent of
φ. Finally we remark that, for TM modes, the magnetic field is reduced to
this single azimuthal component, therefore the lines of polarization of the
magnetic field form circles in the cross-section that are perpendicular to the
purely radial transverse components er .

1.5.3
Concluding Remarks on TE and TM Modes

This type of mode can only exist in a very specific class of waveguides: y- and
z-invariant planar waveguides and fibers with circular symmetry. These are
the only two cases where the field components can be grouped into two
independent families in which one family consists of null components. Other
than these two cases ez and hz have no reason to be null and generally it is
hybrid modes that are guided.

Finally, it should be noted that it is impossible to guide vectorial TEM
modes. Indeed, if ez = hz = 0, then it is clear from (1.25) or (1.19) that all the
transverse components would become identically null.

1.6
Nature of the Solutions to Vector Wave Equations

The solutions to the vector wave equations (1.15) are the propagation modes
of light, which are characterized by their propagation constant β. Except for
very specific cases, it is very difficult to solve these vector wave equations
analytically and one must proceed numerically. The solutions will yield the
values of β as well as expressions for the six components of the fields e and h.
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The equations (1.19) and (1.25) indicate that the transverse components,
(r̂, ϕ̂) or (x̂, ŷ), and the longitudinal components are related by the imaginary
number i. We are thus faced with a choice, and by convention we choose real
transverse components and imaginary longitudinal components.

According to the values of β, the solutions to the equations (1.15) can be
classed into two large families of modes:

1. The guided modes correspond the real and discrete values of β. These are
equivalent to the guided light rays in geometrical optics. These modes
propagate through the waveguide without loss. In the cross-section
plane, the fields far from the waveguide are evanescent and tend
towards zero at infinity.

2. The other modes correspond to radiation modes which can be
decomposed into three parts:
a) Those corresponding to complex and discrete values of β. These are

the leaky modes, or guided pseudo-modes [9, 10], which are
equivalent to the tunneling rays of geometrical optics [11]. These
tunneling rays, as illustrated in Fig. 1.1, are evanescent only for the
turning-point caustic or the core-cladding interface, all the way to the
radiation caustic. They propagate like guided modes. However, they
are attenuated more or less slowly along z because of the imaginary
components β i of the propagation constants β that result in an
exp(−β iz) decrease of the amplitudes.

b) Those corresponding to a continuum of real values for β [12]. These
are the equivalents to the refracted rays, which can be considered as
tunneling rays in the limit where the radiation caustic tends to the
turning-point caustic (the core-cladding interface). Contrary to the
leaky modes, these modes attenuate very rapidly.

c) Those corresponding to a continuum of purely imaginary values for
β [12]. These are the evanescent modes along z, which do not

Fig. 1.1 Illustration of a tunneling ray
which is characterized by three caustics:
the inner (ric), turning-point (rtp), and
radiation (rrad) caustics. a) Projection
onto the cross-section plane; and b)
Perspective view. The evanescent wave is
represented by the gradient of gray

between the points P and Q. Upon
exiting the point Q, the tunneling ray is
tangent to the radiation caustic but
makes a certain angle θz with respect to
the axis of the fiber (adapted from
Snyder and Love [11]).
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propagate within the waveguide because β does not have a real part.
These modes describe the energy stored in the immediate vicinity of
waveguide discontinuities; like for example at the extremities of a
fiber, in the vicinity of sources, or in the plane of a splice between
two fibers.

Contrary to the guided modes, the radiation modes are not evanescent in
the regions that are far away from the waveguide in the cross-section plane.
Therefore the fields do not vanish at infinity, which can result in certain
normalization problems. These modes can be neglected, however, if we are
sufficiently far from the regions where they can be excited – like sources,
splices, the waveguide extremities, or anything that results in a break of the
z invariance. Figure 1.2 illustrates the entire set of solutions for the two larges
families of modes in the complex plane of β values.

Taken as a whole, all these solutions form a complete basis for the
decomposition of the fields. It is worth noting that a reduced basis, considering
only guided modes, for instance, can lead to considerable errors, as we shall
see in Chapter 8.

In the case of guided modes, the transverse resonance in the cross-section
of the waveguide is analogous to the vibration modes of a membrane. This
state, determined by the boundary conditions (1.11), will propagate invariantly
in the longitudinal direction z with a propagation constant β.

In the case of fiber optics, the six field components will generally exist
and form hybrid modes, named EH or HE. If one of the two longitudinal
components vanishes we get either the transverse electric modes TE (ez = 0)
or the transverse magnetic modes TM (hz = 0). In the case of one-dimensional
planar waveguides, only the transverse modes TE and TM exist. However,
the two longitudinal components can never vanish simultaneously. In the
case of a free wave, the field vectors E and H are orthogonal to the direction
of propagation ẑ. In the absence of longitudinal field components, the wave

Fig. 1.2 Illustration of the modal solutions in the complex plane β i, β r.



References 19

is rigorously TEM (ez = hz = 0). However, in contrast to the free waves,
guided waves cannot be rigorously TEM. Nevertheless, we shall see that in
the case of weak guidance the guided wave becomes quasi-transverse, i.e.,
quasi-TEM.

For telecommunications it is evident that only the guided modes of the first
family are of any practical interest, because the other modes are not guided or
present substantial loss factors.

1.7
Conclusion

The translation invariance along the z-axis allows the electric and magnetic
fields to be written in a separable form. Thus, the z dependence becomes
a phase factor exp(iβjz), where βj is the propagation constant, which also
corresponds to the eigenvalue of the j-th mode. The consequence of this
factorization is that the amplitudes of the e and h fields of a mode are
independent of z. All the differential equations and the relations between the
six field components of a mode can subsequently be deduced.

As we shall see in Chapters 6, 7, 8, and 9, the translation invariance is no
longer respected in fiber tapers, distributed Bragg gratings, fiber splices, and
fused couplers. In the case of these devices, we shall continue to talk in
terms of guided modes, but we will consider ‘amplitudes and propagation
constants that are functions of z’. This is somewhat of a misnomer. While
the concept of ‘variable’ mode lacks rigor, it is nonetheless a very good
approximation that allows us to understand and correctly model all of these
devices.
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