Guided Optics: Optical Fibers and All-fiber Components

Jacques Bures

ERRATA

Page $9,2^{\text {nd }}$ eq. should appear as (with transverse scalar Laplacian operators ∇_{t}^{2} after the $2^{\text {nd }}$ and $3^{\text {rd }}$ equal signs) $\nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}=\nabla_{t}^{2}+\frac{\partial^{2}}{\partial z^{2}}=\nabla_{t}^{2}-\beta^{2}$.
Page 9 , the line after eq. 1.21 should read: "where the vector operator ∇_{t}^{2} ".
Page 15, all ∇_{t}^{2} in eq. 1.33 should appear as transverse scalar Laplacian operators ∇_{t}^{2}.
Page 16 , all ∇_{t}^{2} in eq. 1.34 should appear as transverse scalar Laplacian operators ∇_{t}^{2}.
Page 18, the beginnig of the $2^{\text {nd }}$ paragraph should appear as: "Taken as a whole, all these solutions, except for the leaky modes which can be expressed on the basis of evanescent and radiation modes, form a complete basis for the decomposition of the fields".
Page 45, eq. 3.24 should appear as $\tan U=-n_{\mathrm{cl}}^{2} U / n_{\mathrm{co}}^{2} W$,
Page 58, section Asymptotic behavior when $\boldsymbol{n}_{\mathbf{1}} \rightarrow \boldsymbol{n}_{\mathbf{2}}$: change (3.46) for (3.47) (2 times).
Page 76, table 3.5, " $v=1$ " and " $v>1$ " should appear as "if $v=1$ " and "if $v>1$ ".
Pages 79, 80, and 82, tables 3.7, 3.8, and 3.9, "Core" refers to the $2^{\text {nd }}$ column.
Page 106, section 3.3.6, $3^{\text {rd }}$ line should read : "the group velocity and the intramodal or chromatic dispersion".
Pages 106 and 107, Figs. 3.31 and 3.32 refer to the section 3.3.6.
Page 122, table 4.1, $\mathrm{U}_{\mathrm{c}} \mathrm{U}_{\ell m} \mathrm{U}_{\infty}$ and $\mathrm{V}_{\text {min }}$ should appear as $U_{c} U_{\ell m} U_{\infty}$ and $V_{\text {min }}$.
Page 125, Fig. 4.4 refers to the section 4.2.6.
Page 128, caption of fig. 4.5. Add the following sentence: '"The fields of eq. 4.11 are multiplied by the factor $J_{\ell}(U)$."
Page 132, after "We thus have [9]," equation should appear as (with gradient operators ∇_{t} in the 2 nd member)

$$
\int_{A_{\infty}}\left(\bar{F}_{\ell} \nabla_{t}^{2} F_{\ell}-F_{\ell} \nabla_{t}^{2} \bar{F}_{\ell}\right) d A=\oint_{C}\left(\bar{F}_{\ell} \nabla_{t} F_{\ell}-F_{\ell} \nabla_{t} \bar{F}_{\ell}\right) \cdot \hat{\mathbf{n}} d C=0
$$

Page 137, Fig. 4.9, the three $\Psi(r)$ should appear as $\Psi(r)$.
Page 140, eq. 4.47, last line should appear as: $\left(U_{0} / \varepsilon\right) I_{\ell}^{\prime}\left(U_{0}\right) / I_{\ell}\left(U_{0}\right)$ if $n_{e f f}>n_{0}$.
Page 147, section 5.1.2, change Tab. 3.8 for Tab. 3.9.
Page 154, table 5.5, field $\mathbf{e}_{\mathbf{t}}$ of $\mathrm{HE}_{2 m}$ (odd) should appear as: $(\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi) \Psi_{1}(r)$.
Page 155, eq. 5.31 and text should appear as:

We note that all other combinations between modes of different ℓ do not give LP modes. For example, the following combinations of even modes

$$
\begin{align*}
& \mathrm{HE}_{1 m}+\mathrm{HE}_{2 m} \Rightarrow\left\{\begin{array}{l}
\mathbf{e}_{t}=\hat{\mathbf{x}}\left(\Psi_{0}(r)+\Psi_{1}(r) \cos \phi\right)-\hat{\mathbf{y}} \Psi_{1}(r) \sin \phi, \\
\mathbf{h}_{t}=\sqrt{\varepsilon_{0} / \mu_{0}}(\beta / k)\left\{\hat{\mathbf{x}} \Psi_{1}(r) \sin \phi+\hat{\mathbf{y}}\left(\Psi_{0}(r)+\Psi_{1}(r) \cos \phi\right)\right\},
\end{array}\right. \\
& \mathrm{HE}_{1 m}+\mathrm{EH}_{1 m} \Rightarrow\left\{\begin{array}{l}
\mathbf{e}_{t}=\hat{\mathbf{x}}\left(\Psi_{0}(r)+\Psi_{2}(r) \cos 2 \phi\right)+\hat{\mathbf{y}} \Psi_{2}(r) \sin 2 \phi, \\
\mathbf{h}_{t}=\sqrt{\varepsilon_{0} / \mu_{0}}(\beta / k)\left\{-\hat{\mathbf{x}} \Psi_{2}(r) \sin 2 \phi+\hat{\mathbf{y}}\left(\Psi_{0}(r)+\Psi_{2}(r) \cos 2 \phi\right)\right\},
\end{array}\right. \tag{5.31}
\end{align*}
$$

Page 158, eq. 5.37 should appear as $\int_{A_{\infty}}\left(\tilde{\mathbf{e}}_{t} \cdot \nabla_{t}^{2} \mathbf{e}_{t}-\mathbf{e}_{t} \cdot \nabla_{t}^{2} \tilde{\mathbf{e}}_{t}\right) d A=\oint_{\ell_{\infty}}\left\{\tilde{\mathbf{e}}_{t}\left(\nabla_{t} \cdot \mathbf{e}_{t}\right)-\mathbf{e}_{t}\left(\nabla_{t} \cdot \tilde{\mathbf{e}}_{t}\right)\right\} \cdot \hat{\mathbf{n}} d \ell$,
Page 158, eq. 5.40 should appear as $\int_{A_{\infty}} \nabla_{t} \cdot\left(S \widetilde{\mathbf{e}}_{t}\right) d A$ by $\oint_{\ell_{\infty}} S \widetilde{\mathbf{e}}_{t} \cdot \hat{\mathbf{n}} d \ell$
Page 165, table 5.8, $1^{\text {st }}$ line, all $\mathbf{n}_{\text {eff }}$ and $\tilde{\mathbf{n}}_{\text {eff }}$ should appear as $\boldsymbol{n}_{\text {eff }}$ and $\tilde{\boldsymbol{n}}_{\text {eff }}$, the line after eq. 5.66 should read : "we assume $H(r=\rho)=1 / 2$ ".
Page 171 , all ∇_{t} in the equations before eq. 6.5 should appear as ∇_{t} (transverse gradient operator).
Page 171, all ∇_{t} in eq. 6.5 should appear as ∇_{t} (transverse gradient operator).
Page 179, eq. 6.36 should appear as $C(\lambda)=\delta n^{2} \frac{k}{4} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \int_{0}^{2 \pi} \int_{0}^{\rho} \frac{\Psi_{01}(r, \phi) \Psi_{02}(r, \phi)}{\sqrt{N_{01} N_{02}}} r d r d \phi$.
Page 217, $\hat{e}_{\Phi j} \hat{e}_{\Phi m}$ in eq. 7.31 should appear as $\hat{e}_{\phi j} \hat{e}_{\phi m}$.
Page 218, $\hat{e}_{\Phi j} \hat{e}_{\Phi m}$ in eq. 7.33 should appear as $\hat{e}_{\phi j} \hat{e}_{\phi m}$.
Page 246, Fig. $8.1: \mathrm{LP}_{\ell N b}$ (on the left) should appear as $\mathrm{LP}_{\ell N a}$ and $\mathrm{LP}_{\ell N a}$ (on the right) should appear as $\mathrm{LP}_{\ell N b}$.
Pages 253 and 254, eqs. 8.19, 8.20 and 8.22 , all $\exp (-i \beta L)$ should appear as $\exp (i \beta L)$.
Page 254, three lines before the bottom, change "Fig 4.9" for "Fig. 4.8".
Page 259, Fig. 8.7, the two $\Psi_{01}(r)$ should appear as $\Psi_{01}(r)$.
Page 286, Fig. 9.16, $2^{\text {nd }}$ drawing, "Supermode $\operatorname{SLP}_{01}=\mathrm{LP}_{01}(1)-\mathrm{LP}_{01}(2)$ " should appear as
"Supermode SLP $_{11}=\operatorname{LP}_{01}(1)-\mathrm{LP}_{01}(2)$ ".
Page 278, Fig. 9.12, Δz should appear as Δz.
Page 295, table 9.2, $1^{\text {st }}$ line, $\mathrm{C}_{1,1}^{11}$ should appear as $C_{1,1}^{11}$.
Page 308, Fig. 9.37, $b_{1} e^{i \varphi}$ should appear as $b_{1} e^{i \varphi}$.
Page 315, reference [15] should appear as :
[15] W.Press, B.Flannery, S.Teukolsky and W.Vetterling: Numerical Recipes in C^{++}, The Art of Scientific Computing, $2^{\text {d }}$ Edition ed. by Cambridge University Press, Chapter 2 pp. 87-92 (2002).

Page 321, eq. A.34, a semicolon must be before $K_{\ell}(x)$.
Page 322, eq. A.43, a semicolon must be before $x / K_{\ell}(x)$.
eq. A. 44 , a semicolon must be before the $2^{\text {nd }}$ integral.

