1
Vectors

We enumerate definitions and important properties of vectors in this chapter. A
vector A has magnitude A = |A| and a direction A/A. Two vectors A and B can be
summed: A + B. A scalar product of A and B is denoted by A - B. The magnitude of
Aisequal to v/A-A = |A| = A. A vector product of A and B is denoted by A x B,
which is noncommutative: B x A = -A x B.

1.1
Definition and Important Properties

1.1.1
Definitions

A vector A is a quantity specified by a magnitude, denoted by |A| = A and a direction
in space A/A. A vector will be denoted by a letter in bold face in the text. The
vector A may be represented geometrically by an arrow of length A pointing in the
prescribed direction.

Addition. The sum A + B of two vectors A and B is defined geometrically by
drawing vector A originating from the tip of vector B as shown in Figure 1.1a. The
same result is obtained if we draw the vector B from the tip of the vector A as shown
in Figure 1.1b. This is expressed mathematically by

A+B=B+A (1.1)

which expresses the commutative rule for addition.

(@) (b)

Fig. 1.1 The sum A + B, represented by (a) is equal to the sum B + A, represented by (b).
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Vectors also satisfy the associative rule:
(A+B)+C=A+(B+C) (1.2)

The quantity represented by an ordinary (positive or negative) number is called
a scalar, to distinguish it from a vector.

1.2
Product of a Scalar and a Vector

The product of a vector A and a positive scalar ¢ is a vector, denoted by cA, whose
magnitude is equal to ¢ |A| and whose direction is the same as that of A. If ¢ is
negative, then cA, by definition, is a vector of magnitude |c| |A| pointing in the
direction opposite to A. The following rules of computation hold:

|cAl = |c| |A]| (1.3)
(cd)A = c(dA) (1.4)
Ac=cA (1.5)
c(A+B)=cA+cB (1.6)
(c+d)A=cA+dA (1.7)

Equation (1.5) means that the same product is obtained irrespective of the order of
cand A. We say that the product cA is commutative. The properties represented by
(1.6)—(1.7) are called distributive.

13
Position Vector

The position of an arbitrary point P in space with respect to a given origin 0 may
Dbe specified by the position vector r drawn from 0 to P. If x, y, z are the Cartesian
coordinates of the point P, then we can express the vector r by

r=xi+yj+zk (1.8)

where i,j, and k are vectors of unit length pointing along the positive x-, y-, and
z-axes. See Figure 1.2. For the fixed Cartesian unit vectors, the position vector r is
specified by a set of three real numbers, (x, y, z). We represent this by

r=(x,y,2) (1.9)
The distance r of point P from the origin, is given by

r=r| = (x*+y*+2%)"? (1.10)



1.4 Scalar Product | 3

k
Z L
!
]
V4
0 Y
X

X x4 y

Fig. 1.2 The Cartesian coordinates (x, y, z). The orthonormal
vectors i, j and k point in the directions of increasing x, y and z,
respectively.

When point P coincides with the origin 0, we have, by definition, the zero vector
or null vector, which is denoted by 0, and can be represented by (0, 0, 0). The null
vector has zero magnitude and no definite direction.

1.4
Scalar Product

The dot product, also called the scalar product, A - B, of two vectors A and B, is by
definition a number equal to the product of their magnitudes times the cosine of
the angle 6 between them.

A-B=ABcosf, 0<6<m (1.11)

From this definition, the following properties can be derived:

A-B=B-A
A-(cB)=(cA)-B=c(A-B)
A-(B+C)=(A-B)+(A-C) (1.12)

The last two equations show that the dot product is a linear operation. That is, given
a vector B, the dot product with a vector A generates a scalar A - B, which is a linear
function of B. For example, if B is multiplied by 2, the scalar product A - B is also
doubled.

The set of Cartesian unit vectors (i, j, k) satisfy the orthonormality relations:

isj=j-k=k-i=0 (1.13)

ivi=jj=k-k=1 (1.14)
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The property (1.13) follows from the fact that the angles between any pair of (i, j, k)
are 90°, and that cos 90° = 0. We will say that the vectors (i, j, k) are orthogonal to
each other. The normalization property (1.14) holds because each of (i, j, k) has unit
length.

An arbitrary vector A can be decomposed as follows:

A=A i+A)j+Ak (1.15)

where A,, A, and A are the projections of the vector A along the positive x-, y-,
and z-axes, respectively, and are given numerically by

Ay=i-A, A,=j-A, A,=k-A (1.16)

Given the Cartesian unit vectors, the vector A can be represented by the set of the
projections (A, A,, A;) called Cartesian components:

A= (A Ay AL (1.17)
Using the Cartesian decomposition (1.15), we obtain
A-B=(A,i+A,j+A.k) - (Bii+ B,j+ Bk
— AyByi-i+ AcByi-j+ A B.i-k
+AyByj-i+A,B)j-j+A,B;j-k
+A;Bk-i+A.Bk-j+A.Bk-k
=A,By+A,B,+A;B;
or
A-B=A,B,+A,B,+A.B, (1.18)
By setting A = B here, we obtain
A-A=A + AL+ AL 20 (1.19)
The magnitude of the vector, |A|, can be expressed by the square root of this quan-
tity:
Al = (A-A)2 = (A% + A% + A%)12 (1.20)

We note that the properties of any vector A can be visualized analogously to the
position vector r except for the difference in the physical dimension.

1.5
Vector Product

The vector product, A x B, of two vectors A and B is by definition a vector having a
magnitude equal to the area of the parallelogram with A and B as sides, and point-
ing in a direction perpendicular to the plane comprising A and B. The direction of
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A x B is, by convention, that direction in which a right hand screw would advance
when turned from A to B, as indicated in Figure 1.3.

IAxB|=ABsinf, 0=6=n (1.21)
The vector product is a linear operation:

Ax (cB)=cAxB

Ax(B+C)=AxB+AxC (1.22)

The following properties are observed:

BxA=-AxB (1.23)

AxB=0 ifA|B (1.24)

AxA=0 (1.25)
i j k

AxB=|A, A, A, (1.26)
B, B, B,

ixj=k, jxk=i, kxi=j (1.27)

(AxB)-C=A-(BxC) (1.28)

Ax(BxC)=B(A-C)-C(A-B) (1.29)

The last relation (1.29) may be verified by writing out the Cartesian components of
both sides explicitly.

Problem 1.5.1

By writing out the Cartesian components of both sides, show that
1.LAx(BxC)=B(A-C)-C(A-B),
2.(AxB)xC=B(A-C)-A(B-C)
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Problem 1.5.2
Show that

(AxB)-(CxD)=(A-C)(B-D)-(A-D)(B-C)

1.6
Differentiation

When a vector A depends on the time t, the derivative of A with respect to t, dA/dt,
is defined by

dA . A(t+At)—A(t)
2o im Y (1.30)
dt  At—o0 At
The following rules are observed for scalar and vector products:
d dA dB
d dA dB
E(AXB)=EXB+AXE (132)

Note that the operational rules as well as the definition are similar to the those of a
scalar function.

A function F(r) of the position r = (x, y, z) is called a point function or similarly a
field. The space derivatives are discussed in Chapter 6.

1.7
Spherical Coordinates

For problems with special symmetries, it is convenient to use non-Cartesian coor-
dinates. In particular, if the system under consideration has spherical symmetry,
we may then use spherical coordinates (r, 8, ¢), shown in Figure 1.4. These coor-
dinates are related to the Cartesian coordinates by

x =rsin 6 cosg
y=rsinfsing
Z =TrCos¢@ (1.33)

A system of orthogonal unit (orthonormal) vectors (1, m, n) in the directions of
increasing 6, ¢, and r, respectively, is also shown in Figure 1.4. These unit vectors
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P

X
Fig. 1.4 The spherical polar coordinates (r, 6, ¢). The orthonor-
mal vectors n, |, and m point in the direction of increasing r, 6,
and g, respectively.

are related to the Cartesian unit vectors (i, j, k) as follows:
1=-ksin 6 +icos 6 cosg +jcos 0 sing
m=-ising +jcos¢
n=kcos6 +isin 6 cosg +jsin 0 sin ¢ (1.34)
An arbitrary vector A can be decomposed as follows:
A=An+Ayl+A,m (1.35)

where A,, Ay, A, are the components of A along n, 1, and m, respectively. Further,
they are given by

A,=n-A, Ay=1-A, A,-m-A (1.36)

Problem 1.7.1

Two vectors point in directions (61, ¢1) and (63, ;). The angle between the two
vectors is denoted by . Show that

cos i = sin 01 sin 0, cos(¢; — ¢3) + cos 64 cos 0,

1.8
Cylindrical Coordinates

For problems with axial symmetry, cylindrical coordinates (p, ¢, z), as shown in Fig-
ure 1.5 are used. These cylindrical polar coordinates are related to the Cartesian

7
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Fig. 1.5 The cylindrical polar coordinates (p, ¢, z). The or-
thonormal vectors h, m, and k point in the direction of increas-
ing p, ¢, and z, respectively.

coordinates by

X = pCoS ¢
y =psing
z=2z

(1.37)

The set of orthonormal vectors h, m, k in the direction of increasing p, ¢, and z
are shown in Figure 1.5. They are related to the Cartesian unit vectors (i, j, k) as

follows:

h=icos¢ +jsin ¢
m=—isin ¢ +jcos ¢

k=k
An arbitrary vector A can be decomposed in the following form:
A=Ah+Aym+ Ak
where A, Ay, A, are the components of A along h, m, k, given by
A,=h-A, Ay=m-A, A,=k-A
We note that an arbitrary vector A can be decomposed as follows:

A=i(i-A)+ij(j-A) +k(k- A)
=n(n-A)+1(1-A) + m(m-A)
=h(h-A)+m(m-A) + kk- A)

(1.38)

(1.39)

(1.40)

(1.41)
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where (i,j, k), (n,1, m) and (h, m, k) are orthonormal vectors in Cartesian, spherical
and cylindrical coordinates, respectively. We note that the three equations (1.41)
can be written as

A=ei(e;-A)+ey(e;-A)+es(es-A)

3
=) ejej - A) (1.42)
j=1

where (e1, e, €3) is a set of orthonormal vectors satisfying

1 if i=j

0 if i#j (1.43)

ei~ej =6ij=

The symbol 9 is called Kronecker’s delta.
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