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Introducing Quantum Fields

1.1
The Classical String

We obtain a quantum field by quantizing a classical field, of which the simplest
example is the classical string. To be on firm mathematical grounds, we define
the latter as the long-wavelength limit of a discrete chain. Consider N C 2 masses
described by the classical Lagrangian

L(q, Pq) D
NC1X
j D0

hm
2
Pq2

j �
�

2
(q j � q j C1)2

i
(1.1)

where m is the mass, and � a force constant. The coordinate q j (t) represents the
lateral displacement of the j-th mass along a one-dimensional chain. We impose
fixed-endpoint boundary conditions, by setting

q0(t) D qNC1(t) D 0 (1.2)

The equations of motion for the N remaining movable masses are then

m Rq j � �
�
q j C1 � 2q j C q j �1

�
D 0 ( j D 1, . . . , N ) (1.3)

The normal modes have the form

q j (t) D cos(ω t) sin( j p ) (1.4)

To satisfy the boundary conditions, choose p to have one of the N possible values

pn D
πn

N C 1
(n D 1, . . . , N ) (1.5)

Substituting this into the equations of motion, we obtain N independent normal
frequencies ωn :

ω2
n D ω2

0 sin2
�

π
2

n
N C 1

�
(n D 1 � � �N ) (1.6)
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2 1 Introducing Quantum Fields

where

ω0 D 2
r
�

m
(1.7)

This is a cutoff frequency, for the modes with n > N merely repeat the lower ones.
For N D 4, for example, the independent modes correspond to n D 1, 2, 3, 4. The
case n D 5 is trivial, being equivalent to n D 0. The case n D 6 is the same as that
for n D 4, since ω6 D ω4, and sin( j p6) D � sin( j p4).

When N is large, and we are not interested in the behavior near the endpoints, it
is convenient to use periodic boundary conditions

q j CN (t) D q j (t) (1.8)

In this case the normal modes are

q j (t) D e i( j p�ω t ) (1.9)

For N even, the boundary conditions can be satisfied by putting

pn D
2πn

N
(n D 0,˙1, . . . ,˙N/2) (1.10)

The corresponding normal frequencies are

ω2
n D ω2

0 sin2
� πn

N

�
(1.11)

Compared to the fixed-end case, the spacing between normal frequencies is now
doubled; but each frequency is twofold degenerate, and the number of normal
modes remains the same. A comparison of the two cases for N D 8 is shown
in Figure 1.1.

The equilibrium distance a between masses does not explicitly appear in the
Lagrangian; it merely supplies a length scale for physical distances. For example, it
appears in the definition of the distance of a mass from an end of the chain:

x � j a ( j D 1, . . . , N ) (1.12)

0 N1

ω

Mode number

N/2N/2- 0

Mode number

Fixed-end Periodic

ω0 0

Figure 1.1 Normal modes of the classical chain for fixed-end and periodic boundary conditions.
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1.1 The Classical String 3

The total length of the chain is then defined as

R D N a (1.13)

In the continuum limit

a ! 0 N !1 (R D N a fixed) (1.14)

the discrete chain approaches a continuous string, and the coordinate approaches
a classical field defined by

q(x , t) � q j (t) (1.15)

The Lagrangian in the continuum limit can be obtained by making the replace-
ments

(qnC1 � q j )2 ! a2
�
@q(x , t)
@x

	2

X
j

!
1
a

Z R

0
dx (1.16)

Assuming that the mass density � and string tension σ approach finite limits

� D m/a (1.17)

σ D �a (1.18)

we obtain the limit Lagrangian

Lcont D
1
2

Z R

0
dx

"
�

�
@q(x , t)
@t

�2

� σ
�
@q(x , t)
@x

�2
#

(1.19)

This leads to the equation of motion

@2q(x , t)
@t2

�
1
c2

@2q(x , t)
@x2

D 0 (1.20)

which is a wave equation, with propagation velocity

c D
p

σ/� (1.21)

The general solutions are the real and imaginary parts of

q(x , t) D e i(k x�ω t ) (1.22)

with a linear dispersion law

ω D ck (1.23)
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4 1 Introducing Quantum Fields
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Figure 1.2 Normal modes of a discrete chain of 4 masses, compared with those of a con-
tinuous string. The former repeat themselves after the first 4 modes. (After J. C. Slater and
N. H. Frank, Mechanics, McGraw-Hill, New York, 1947).

For fixed-end boundary conditions

q(0, t) D q(R , t) D 0 (1.24)

the normal modes of the continuous string are

qn(x , t) D cos(ωn t) sin(kn x ) (1.25)

with ωn D ckn , and

kn D
πn
R

(n D 0, 1, 2, � � � ) (1.26)

The normal frequencies ωn are the same as those for the discrete chain for n/N �
1, as given in (1.6). However, the number of modes of the continuum string is
infinite, and only the first N modes have correspondence with those of the discrete
string. This is illustrated in Figure 1.2 for N D 4. Thus, there is a cutoff frequency

ω c � ωN D
πc
a

(1.27)

This is of the same order, but not same as the maximum frequency defined earlier
ω0 D 2c/a, for ω c is based on a linear dispersion law. The continuum model is an
accurate representation of the discrete chain only for ω � ω c .

For periodic boundary conditions

q(0, t) D q(R , t) (1.28)

the allowed wave numbers are

kn D
2πn

R
(n D 0,˙1,˙2, � � � ) (1.29)

We obtain the cutoff frequency ω c by setting n D N/2.
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1.3 The Quantum String 5

1.2
Renormalization

The high-frequency cutoff is a theoretical necessity. Without it, the specific heat
of the string will diverge, since each normal mode contributes an amount k T .
The value of the cutoff cannot be determined from the long-wavelength effective
theory, because only the combination c D aω c/π occurs. Absorbing the cutoff into
measurable parameters, as done in (1.17), is called renormalization. A theory for
which this can be done is said to be renormalizable.

Non-renormalizable systems exhibit behavior that is sensitive to atomic motion.
Such behavior would appear to be random on a macroscopic scale, as in the prop-
agation of cracks in materials, and the nucleation of raindrops.

1.3
The Quantum String

We now quantize the classical chain, to obtain a quantum field in the continuum
limit. The Hamiltonian of the classical discrete chain is given by

H(p , q) D
NX

j D1

"
p 2

j

2m
C
�

2
(q j � q j C1)2

#
(1.30)

where p j D m Pq j . The system can be quantized by replacing p j and q j by hermi-
tian operators satisfying the commutation relations1)


p j , qk
�
D �i δ j k (1.31)

We imposing periodic boundary conditions, and expand these operators in Fourier
series:

q j D
1
p

N

N/2X
nD�N/2

Q n ei2πn j/N

p j D
1
p

N

N/2X
nD�N/2

Pn ei2πn j/N (1.32)

where Pn and Q n are operators satisfying

P†

n , Q m
�
D �i δnm

P†
n D P�n

Q†
n D Q�n (1.33)

1) We use units in which „ D c D 1, where „ is the reduced Planck’s constant, and c ist the velocity
of light.
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6 1 Introducing Quantum Fields

The system is reduced to a sum of independent harmonic oscillators:

H D
N/2X

nD�N/2

�
1

2m
P†

n Pn C
1
2

mω2
n Q†

n Q n

	

ω2
n D

4�
m

sin2
� πn

N

�
(1.34)

The eigenvalues are labeled by a set of occupation numbers fαng:

Eα D

N/2X
nD�N/2

ωn(αn C 1/2) (1.35)

where αn D 0, 1, 2, � � � . The frequency ωn is taken to be the positive root of ω2
n ,

since H is positive-definite.
In the continuum limit (1.14) the Hamiltonian becomes

Hcont D

Z R

0
dx

"
1

2�
p 2(x , t)C

σ
2

�
@q(x , t)
@x

�2
#

(1.36)

where, with x D j a,

p (x , t) D
p j (t)

a
D �

@q(x , t)
@t

(1.37)

The quantum field q(x , t) and its canonical conjugate p (x , t) satisfy the equal-time
commutation relation


p (x , t), q(x 0, t)
�
D �i δ(x � x 0) (1.38)

Just as in the classical case, we have to introduce a cutoff frequency ω c . General
properties of the quantum field will be discussed more fully in Chapter 2.

1.4
Second Quantization

Another way to obtain a quantum field is to consider a collection of identical par-
ticles in quantum mechanics. In this case, the quantum field is an equivalent de-
scription of the system. Identical particles are defined by a Hamiltonian that is (a)
invariant under a permutation of the particle coordinates, and (b) has the same
form for any number of particles. The quantized-field description is called “sec-
ond quantization” for historical reasons, but quantization was actually done only
once.
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1.4 Second Quantization 7

Let HN the Hilbert space of a system of N identical non-relativistic particles. The
union of all HN is called the Fock space:

F D
1[

ND0

HN (1.39)

The subspace with N D 0 contains the vacuum state as its only member. We as-
sume that N is the eigenvalues of a “number operator” Nop, which commutes with
the Hamiltonian. It is natural to introduce operators on Fock space that connect
subspaces of different N. An elementary operator of this kind creates or annihi-
lates one particle at a point in space. Such an operator is a quantum field operator,
since it is a spatial function. This is why a quantum-mechanical many-particle sys-
tem automatically gives rise to a quantum field.

For definiteness, consider N non-relativistic particles in 3 spatial dimensions,
with coordinates fr1, . . . , rNg. The Hamiltonian is

H D �
1

2m

NX
iD1

r2
i C V(r1, . . . , rN ) (1.40)

where r2
i is the Laplacian with respect to ri , and where V is a symmetric function

of its arguments. The eigenfunctions Ψn are defined by

H Ψn(r1, . . . , rN ) D En Ψn(r1, . . . , rN ) (1.41)

For Bose or Fermi statistics, Ψn is respectively symmetric or antisymmetric under
an interchange of any two coordinates ri and r j . The particles are called bosons or
fermions respectively.

We now describe the equivalent quantum field theory, and justify it later. Let ψ(r)
be the Schrödinger-picture operator that annihilates one particle at r. Its hermitian
conjugate ψ†(r) will create one particle at r. They are defined through the commu-
tation relations


ψ(r), ψ†(r0)
�
˙ D δ3 �r � r0�


ψ(r), ψ(r0)
�
˙ D 0 (1.42)

where [A, B ]˙ D AB ˙ B A, with the plus sign corresponding to bosons and the
minus sign to fermions. The Fock- space Hamiltonian will be defined in such a
manner that it reduces to (1.40) in the N-particle subspace.

A general N-particle Hamiltonian has the structure

H D
X

i

f (ri )C
X
i< j

g(ri , r j )C
X

i< j<k

h(ri , r j , rk )C � � � (1.43)

where the functions g, h, etc. are symmetric functions of their arguments. The first
term is a “one-particle operator”, a sum of operators of the form f (r), which act on
one particle only. The second term is a “two-particle operator”, a sum of operators
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8 1 Introducing Quantum Fields

of the form g(r1, r2), over all distinct pairs. Generally, an “n-particle operator” is
a sum of operators that depend only on a set of n coordinates. To construct the
Hamiltonian on Fock space, we associate an n-particle operator with an operator
on Fock space, with the following correspondences:X

i

f (ri )!
Z

d3r ψ†(r) f (r)ψ(r)

X
i< j

g(ri , r j )!
1
2

Z
d3 r1d3 r2ψ†

1 ψ†
2 g12ψ2ψ1

X
i< j<k

h(ri , r j , rk )!
1
3!

Z
d3r1d3r2d3r3ψ†

1 ψ†
2 ψ†

3 h123ψ3ψ2 ψ1

... (1.44)

where for brevity we have written ψ1 D ψ(r1), g12 D g(r1, r2), etc.
As an example, suppose the potential in (1.40) is a sum of two-body potentials:

V(r1, . . . , rN ) D
X
i< j

v (ri , r j ) (1.45)

Then the corresponding Fock-space Hamiltonian, also denoted H, takes the form

H D �
1

2m

Z
d3 r ψ†(r)r2ψ(r)

C
1
2

Z
d3r1d3r2ψ†(r1)ψ†(r2)v (r1, r2)ψ(r2)ψ(r1) (1.46)

The particle number is the eigenvalue of the number operator, defined as

Nop D

Z
d3r ψ†(r)ψ(r) (1.47)

By using (1.42), we can verify the relations

Nop, H

�
D 0


ψ(r), Nop
�
D ψ(r)


ψ†(r), Nop
�
D �ψ†(r) (1.48)

These imply that the action of ψ(r) on a eigenstate of Nop is to decrease its eigen-
value by 1, while that of ψ†(r) is to increase it by 1. Thus ψ(r) is an annihilation
operator, while ψ†(r) is a creation operator. The vacuum state j0i is defined as the
eigenstate of Nop with eigenvalue zero. It is annihilated by all annihilation opera-
tors:

ψ(r)j0i D 0 (1.49)

By applying ψ†(r) to the vacuum state repeatedly, it is easy to show that the eigen-
values of Nop are nonnegative integers.
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1.5 Creation and Annihilation Operators 9

To demonstrate that the quantum field is equivalent to the many-particle system,
consider a complete set of states jE , Ni of the quantum field, which are simultane-
ous eigenstate of H and Nop:

H jE , Ni D E jE , Ni

NopjE , Ni D N jE , Ni

We define the N-particle wave function ΨE (r1, . . . , rN ) corresponding to jE , Ni by

ΨE (r1, . . . , rN ) �
1
p

N !
h0jψ(r1) � � � ψ(rN )jE , Ni (1.50)

which the correct symmetry with respect to particle permutation. It tell us that the
probability amplitude for finding N particle at the positions r1, . . . , rN can be found
by annihilating the particles at the respective locations from the state jE , Ni, and
evaluating the overlap between the resulting state and the vacuum state. We leave
it as an exercise to show that this wave function satisfies the N-particle Schrödinger
equation (1.41). (See Problem 1.3.)

1.5
Creation and Annihilation Operators

The field operator ψ(r) annihilates a particle at r. That is, it annihilates a particle
whose wave function is a δ-function. Since the latter can be written as a linear
superposition of a complete set of wave functions, we can express ψ(r) as a linear
superposition of operators that annihilate particles with specific types of wave func-
tions. Suppose u k (r) is a member of a complete orthonormal set of single-particle
wave functions:Z

d3r u�
k (r)u k 0(r) D δk k 0X

k

u(r)u�(r0) D δ3(r � r0)

An example of such a set is plane-waves:

u k (r) D
1
p

Ω
e ik�r (1.51)

We can expand the field operators with respect to such a basis:

ψ(r) D
X

k

u k (r)ak

ψ†(r) D
X

k

u�
k (r)a†

k

The coefficient ak and a†
k are operators that satisfy the commutation relations


ak , ak 0†�
˙ D δk k 0

[ak , ak 0 ]˙ D 0 (1.52)
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10 1 Introducing Quantum Fields

where theC sign is for bosons, and the� sign for fermions. These relations follow
from (1.42) and the orthonormality of the functions u k (r).

It follows from the commutation relations that, for each k, the eigenvalues of
a†

k ak are integers nk , called the occupation number of the single-particle state k:

a† ajni D njni

hnjmi D δnm (1.53)

where we have omitted the label k for brevity. The allowed values of the occupation
number are given by

n D

(
0, 1, 2, . . . ,1 (Bose statistics)

0, 1 (Fermi statistics)

The actions of a and a† have the following results:

ajni D
p

njn � 1i

a†jni D
p

1˙ njn C 1i (1.54)

where the ˙ sign corresponds respectively to Bose (C) and Fermi (�) statistics.
which show that a annihilates a particle in the state with wave function u(r), and
a† creates such a particle. We leave it as an exercise to derive these basic results.
(See Problem 1.2.)

The state j0i corresponding to n D 0 is the vacuum state, which satisfies

aj0i D 0 (1.55)

We assume that it is normalizable:

h0j0i D 1 (1.56)

Obviously all other states can be obtained by creating particles from the vacuum:

jni D
1
p

n!

�
a†�n
jni (1.57)

We can simultaneously diagonalize ak
† ak for all k. The eigenstates are then la-

beled by a set of occupation numbers fn0, n1, . . .g, and they constitute a basis for
the Fock space. The total number of particles present is N D

P
k nk . We have

a†
k ak jn0, . . . , nk , . . .i D nk jn0, . . . , nk , . . .i

ak jn0, . . . , nk , . . .i D (�1)spnk jn0, . . . , nk � 1, . . .i

a†
k jn0, . . . , nk , . . .i D (�1)s

p
1˙ nk jn0, . . . , nk C 1, . . .i

where

s D

(
0 (Bose statistics)P

p<k n p (Fermi statistics)
(1.58)

That is, s D ˙1 for fermions, depending on whether the number of fermions with
quantum numbers less than k is even or odd, the meaning of “less than” being
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1.6 Bose and Fermi Statistics 11

set by an arbitrary but fixed ordering. This phase factor arises from the fact that
fermion creation operators anticommute: a†

k a†
p D �a†

p a†
k .

A complete set of states can be constructed by creating particles from the vacu-
um:

jki D a†
k j0i

jk, p i D a†
k a†

p j0i

... (1.59)

These states are not normalized to unity. When there are many particle present, it
is more convenient to label the state with occupation numbers fnkg, where nk is
the number of particles with single-particle quantum number k:

jn0, . . . , nk , . . .i D C
Y

k



ak

†�nk
j0i (1.60)

These states can be normalized to unity by choosing

C D

"Y
k

nk !

#�1/2

(1.61)

1.6
Bose and Fermi Statistics

The term “statistics” refers to the rule for counting the degeneracy of an energy lev-
el of a many-particle system. In 3 dimensional space, it depends on the symmetry
of the wave function under a permutation of the particle coordinates. Technically
speaking, the different possible symmetries correspond to the different irreducible
representations of the permutation group.

The completely symmetric and the completely antisymmetric representations
correspond respectively to Bose and Fermi statistics. They are the only possible
ones in a two-particle system; but for more than two particles other possibilities ex-
ist, in which the wave function is symmetric with respect to permutations among
one subset S of coordinates, and antisymmetric for the complementary set. Called
“parastatistics”, such representations correspond to the Young’s tableaux with more
than one row, or more than one column. Since the particle are identical, there is
more than one way to choose the subset S. Consequently, such “para” representa-
tions must be multidimensional. That is, the carrier space for such a representation
must be spanned by states having the same energy eigenvalue, and they mix under
a permutation of the coordinates. Therefore, the energy levels of particles obeying
parastatistics must have intrinsic degeneracies, which cannot be removed by any
interaction that treat the particles as identical.

The Bose and Fermi statistics can be set apart from the parastatistics by virtue of
the following properties:
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12 1 Introducing Quantum Fields

� Under particle permutation, the symmetry character of wave functions is inde-
pendent of the number of particles present.

� Energy eigenfunctions do not mix under particle permutation.

Parastatistics does occur in atomic physics, but only in the context of “incomplete”
permutations, which interchange the positions of atomic electrons but not their
spins. With respect to permutations of both position and spin, electrons obey Fermi
statistics, as we know. No known examples of parastatistics have been found in
nature. Perhaps the simple properties itemized above are essential for consistency
on some level.

Although we live in a 3D world, some interesting physical systems are effective-
ly 2D. These include the electron sheets that exhibit the quantum Hall effect, the
copper-oxide planes in a high-temperature superconductor, and thin films of su-
perfluid helium on various substrates. In a 2D system, the variety of statistics is
far richer, because the exchange of two particle in a plane is not a unique process:
we may rotate the particles about a center through angle nπ, where n is any odd
integer, and the paths corresponding to different n are not necessarily equivalent.
Consequently, the symmetry group relevant to particle exchange is not the permu-
tation group, but the much larger braid group. This circumstance allows for frac-
tional spin and statistics; but we shall not discuss this, except for a brief discussion
on fractional spin in Chapter 19.

Problems

Problem 1.1

Consider an actual string made of atoms spaced a D 10�8 cm apart. Suppose the
length of the string is 1 m, and it is kept at such a tension that the fundamental
frequency is 100 cycles/sec. Find the cutoff frequency, and show that it lies in the
infrared region of the spectrum. (This gives the Debye temperature.)

Problem 1.2

a) The basic commutation relation for boson annihilation and creation operator
is 


a, a†� D 1 [a, a] D 0

where [A, B ] D AB�B A. From this definition show that eigenstates jni of a† a
have the properties

a† ajni D njni (n D 0, 1, 2, � � � )

ajni D
p

njni

a†jni D
p

n C 1jn C 1i
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b) Fermion annihilation and creation operators are defined by an anticommuta-
tion relation˚

a, a†� D 1 fa, ag D 0

where fA, Bg D AB C B A. Show

a† ajni D njni (n D 0, 1)

ajni D
p

njni

a†jni D
p

1� njn C 1i

Problem 1.3

Consider the N-particle wave function defined in (1.50)

ΨE (r1, . . . , rN ) D
1
p

N !
h0jψ(r1) � � � ψ(rN )jE , Ni

where jE , Ni is an N-particle energy eigenstate with respect to the Hamiltonian H
given in (1.46).

a) Show that it is normalized to unity:Z
d3r1 � � � d3rN jΨE (r1, . . . , rN )j2 D 1

b) Show

E ΨE (r1, . . . , rN ) D
1
p

N !
h0jψ(r1) � � �ψ(rN )H jE , Ni

c) Show that the wave function satisfies the N-particle Schrödinger equation24� NX
iD1

1
2m
r2

i C
X
i< j

v (ri , r j )

35ΨE (r1, . . . , rN ) D E ΨE (r1, . . . , rN )

by going to the result in (b), and commute H all the way to the left, where it
gives zero operating on the vacuum.

All the results stated hold for both Bose and Fermi statistics [1].
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14 1 Introducing Quantum Fields

Problem 1.4

A non-relativistic boson or fermion field ψ(x) is governed by the Hamiltonian

H D �
1

2m

Z
dxψ†(x)r2ψ(x)C

1
2

Z
dxdyψ†(x)ψ†(y)v (x� y)ψ(y)ψ(x)

The system is enclosed in a large cubical box of volume Ω (Ω !1), with periodic
boundary conditions. Expand the field in terms of annihilation operators ak for
free-particle states of momentum k, and show that

H D
X

k

k2

2m
a†

k ak C
1

2Ω

X
p,q,k

Qv (k)a†
pCka†

q�k apaq

where Qv (k) D
R

d3r e ik�rv (r).

Problem 1.5

Consider a system of N non-relativistic electrons and N positive ions with Coulomb
interactions, enclosed in a periodic box of volume Ω . The Hamiltonian is given by

H D
NX

iD1

p2
i

2m
C
X
i< j

e2

jri � r j j
�

NX
i, j D1

e2

jri � R j j
C
X
i< j

e2

jRi � R j j
C

NX
iD1

P2
i

2M

The ions are heavy. Hence consider Ri to be fixed numbers, neglect Pi , and drop
the last two terms.

a) Label single-electron states momentum k and spin s, designated collectively as
α D fk, sg. The corresponding wave function is

u α(r) D
1
p

Ω
e ik�r�s

�C D

 
1
0

!
�� D

 
0
1

!

b) To go to the quantized-field representation, replace one- and two-particle oper-
ators by the rules

NX
iD1

K(ri)!
X
α,�

hαjK j�ia†
α a�

X
i< j

v (ri � r j )!
1
2

X
α�γ λ

(aα a�)†(aγ aλ )hα�jv jγ λi



�

�

Kerson Huang: Quantum Field Theory — Chap. huang8467c01 — 2010/2/5 — 8:33 — page 15 — le-tex

�

�

�

�

�

�

References 15

c) Define Fourier transforms:

hksj
e2

jr � Rj
jk0 s0i �

δ s s0

Ω

Z
d3r e i(k0�k)�r e2

jr � Rj

D
δ s s0

Ω
4πe2

jr � Rj
e i(k0�k)�R.

hα�jv jγ λi �
δ s1 s3 δ s2 s4

Ω

Z
d3x d3 y

e2

jx� yj
e i [(k3�k1)�xC(k4�k2)�y]

D
δ s1 s3 δ s2 s4

Ω
δK (k1 C k2 � k3 � k4)

4πe2

jk3 � k1j

where δK is the Kronecker delta.
d) Obtain the Hamiltonian in quantized-field form:

H D
X

ks

„2 k2

2m
a†

ks aks C
2πe2

Ω

X
p,q,k

X
s,s0

1
k2

(apCk,s aq�k,s0 )† ap,s aq,s0

�
4πe2

Ω

X
p,k

X
s

1
k2 a†

p,s akCp,s

NX
iD1

e ik�Ri

e) Show that the second term gives, for small k,

2πe2

Ω k2

X
p,q

X
s,s0

(aps aqs0 )† aps aqs0 D
2πe2N(N � 1)

Ω k2

which is divergent at k D 0. Show that the divergent term proportional to N 2 is
canceled by the k D 0 limit of the third term.

The O(N ) term above remains divergent. The source of this divergence is the
periodic boundary conditions, by which the set of coordinates r1, . . . , rN is be-
ing repeated an infinite number of times in space. Consequently, the Coulomb
energy of an electron diverges, due to long-range interactions with an infinite
number of distant copies.
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