Contents

Preface IX

List of Contributors X/

1	Human Mobility and Spatial Disease Dynamics 1
	Dirk Brockmann
1.1	Introduction and Motivation 1
1.2	Quantitative Assessments of Human Mobility 3
1.2.1	Preliminary Considerations 3
1.2.2	The Lack of Scale in Human Mobility 5
1.3	Statistical Properties and Scaling Laws in Multi-Scale Mobility
	Networks 8
1.3.1	Scaling Laws in the Topological Features of Multi-Scale
	Transportation Networks 10
1.4	Spatially Extended Epidemic Models 12
1.4.1	Disease Dynamics in a Single Population 13
1.4.1.1	The SIS Model 14
1.5	Spatial Models 15
1.5.1	Continuity Limit and Fractional Transport 18
1.5.2	Limiting Cases 20
	References 23
2	Stochastic Evolutionary Game Dynamics 25
	Arne Traulsen and Christoph Hauert
2.1	Game Theory and Evolution 25
2.2	The Replicator Dynamics 26
2.3	Evolutionary Games in Finite Populations 29
2.3.1	Stochastic Evolutionary Game Dynamics 29
2.3.2	Fixation Probabilities 31
2.3.3	Fixation Times 34
2.3.3.1	Unconditional Fixation Time 34

Reviews of Nonlinear Dynamics and Complexity. Edited by Heinz Georg Schuster Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-40850-4

٧

- VI Contents
 - 2.3.3.2 Conditional Fixation Times 36
 - 2.3.4 The Moran Process and Weak Selection 37
 - 2.3.5 The Fermi Process 41
 - 2.4 From Finite to Infinite Populations (and Back Again) 43
 - 2.5 Applications 46
 - 2.5.1 The Prisoner's Dilemma 47
 - 2.5.2 Rock-Paper-Scissors 49
 - 2.5.3 Voluntary Public Goods Games 51
 - 2.5.4 Punishment 54
 - 2.6 Concluding Remarks 56 References 57

3 Dynamic and Topological Interplay in Adaptive Networks 63

- Bernd Blasius and Thilo Gross
- 3.1 Introduction 63
- 3.2 Adaptive Networks: A Definition 66
- 3.2.1 Basic Definitions of Graph Theory 66
- 3.2.2 Dynamic and Evolving Networks 68
- 3.2.3 Adaptive Networks 70
- 3.3 Ubiquity of Adaptive Networks Across Disciplines 72
- 3.4 Robust Self-Organization Toward Criticality
- in Boolean Networks 76
- 3.5 Adaptive Connection Weights in Coupled Oscillator Networks 79
- 3.5.1 Leadership and the Division of Labor 79
- 3.5.2 Self-Organization Towards Synchronizability 82
- 3.6 Cooperation in Games on Adaptive Networks 84
- 3.6.1 Elevated Levels of Cooperation 84
- 3.6.2 Struggle for Topological Position 87
- 3.7 Dynamics and Phase Transitions
- in Opinion Formation and Epidemics 88
- 3.7.1 Epidemiological Models 88
- 3.7.2 Opinion Formation 97
- 3.8 Summary, Synthesis and Outlook 98
- 3.8.1 The Four Hallmarks of Adaptive Networks 99
- 3.8.2 Adaptive Networks: Future Impacts 100
- 3.8.3 Towards a Unifying Theory of Adaptive Networks 101
- 3.8.4 Future Challenges 103
 - References 103

Contents VII

4	Fractal Models of Earthquake Dynamics 107
	Pathikrit Bhattacharya, Bikas K. Chakrabarti, Kamal, and
	Debashis Samanta
4.1	Introduction 107
4.1.1	Earthquake Statistics 107
4.1.2	Modeling Earthquake Dynamics 108
4.1.3	Fractal Faults 110
4.1.3.1	Fractal Geometry of Fault Surfaces 110
4.1.3.2	Frequency–Size Distribution of Faults 111
4.2	Two-Fractal Overlap Model 115
4.2.1	The Model 115
4.2.2	Analysis of the Time Series 117
4.2.3	The Gutenberg–Richter Law 119
4.2.4	The Omori Law 121
4.2.5	Temporal Distribution of Magnitudes of an Aftershock
	Sequence 123
4.3	Comparison with Observations 125
4.3.1	The Gutenberg–Richter Law 125
4.3.2	The Omori Law 127
4.3.3	The Temporal Distribution of Aftershock Magnitudes 127
4.4	Fiber Bundle Model of Earthquakes 137
4.5	Summary and Discussion 139
C.1	Random Cantor Sets 148
C.2	Regular Sierpinski Gaskets 149
C.3	Random Sierpinski Gaskets 152
C.4	Percolating Clusters in a Square Lattice 152

C.4 Percolating Clusters in a Squa References 155

> **Epilepsy** 159 Klaus Lehnertz, Stephan Bialonski, Marie-Therese Horstmann, Dieter Krug, Alexander Rothkegel, Matthäus Staniek, and Tobias Wagner

5.1 Introduction 159

5

- 5.2 Computational Models in Epilepsy Research 165
- 5.2.1 From Microscopic to Macroscopic Modeling Approaches 166
- 5.2.2 Modeling Epileptic Phenomena 168
- 5.3 Measuring Interactions in Epileptic Networks 171
- 5.3.1 Bivariate Time Series Analysis 173
- 5.3.2 Multivariate Time-Series Analysis 179
- 5.4 Conclusion 183

References 184

VIII Contents

6 Structure in Networks 201 Jörg Reichardt and Stefan Bornholdt 6.1 Introduction 201 6.2 Multivariate Data Versus Relational Data 203 6.2.1 Clustering 203 6.2.2 Dimensionality Reduction 208 A New Quality Function for Structure Recognition 6.3 in Networks 210 6.3.1 The Optimal Image Graph 213 6.3.2 Choice of a Penalty Function and Null Model 214 6.3.3 Benchmark 216 Clusters, Modularity and Graph Partitioning 217 6.4 6.5 Modularity of Random Networks: Replica Method 218 Modularity of Random Networks: Cavity Method 222 6.6 6.7 Conclusion 234 References 236

Index 239