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A First Monte Carlo Example

What will be found in this chapter: We introduce randomness in a general way and we
show how to deal with it in terms of probabilities and statistics. To illustrate the concepts,
we start the book with an example based on classical physics, namely classical particles
moving in a box. It is an example much simpler than those that involve quantum me-
chanics, but that already demonstrates the power of statistical physics and the deep insight
offered by averaging magnitudes over many degrees of freedom.

1.1
Energy of Interacting Classical Gas

There are an overwhelming number of places in life where one is confronted with
statistics: from a random binary even/odd decision, when picking petals off a flow-
er to learn about the chances of being loved, to the refined probability distributions
of health and age that life insurance companies use to estimate the premium [2].

Of course, the knowledge of how to treat ensembles of many elements appears
to be much older and already shows the first traces of statistical insight. In ancient
Asia Minor, for instance, the Hittites, who were strong in book-keeping, registered
with eager interest the quantity of barley for their beer. No doubt that, for this
purpose, they used some measurement pot instead of counting the grains in the
bucket. Masters of cuneiform writing as they were, their alphabet would have had
trouble counting huge numbers to enumerate the grains.

Statistical aspects emerged even more clearly in the past in the context of cryptog-
raphy. In the early Islamic centuries, Arab scientists were very skilled in identifying
the originality of texts which were attributed to Muhammad. To decode a text, the
occurrences of single letters in a language can be counted. Such statistical analysis
of languages was crucial to develop decoding algorithms able to solve outstanding
problems of cryptology. For example, roman military encoded their messages mix-
ing the letters of the alphabet in a manner only known to the intended receiver, a
procedure that resisted code-breaking for many centuries [3].

Mankind did not wait for the appearance of the Monte Carlo casinos to make
their own statistical evaluations. By the way, those establishments for higher soci-
ety provided numbers for the frequency of random events. These random numbers
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2 1 A First Monte Carlo Example

were not only taken by a gambler to predict the outcome of subsequent throws but
also by mathematicians to simulate any random process of unbiased events. The
generation of random numbers by a mathematical algorithm is no trivial task. The
quality of these so-called pseudorandom numbers strongly depends on the effort
the algorithm invests. The need for random numbers is obvious for example in the
numerical computation of high-dimensional integrations when the complexity of
the integrand limits the evaluation to a small number of points. Then, choosing
randomly distributed points represents a clear advantage over an equidistant grid
if the distribution of the weight of points, uniform or nonuniform, can be guessed
from the integrand itself. With the increased performance of computers, many
fields embarked on this concept of integration. In its simplest case, the distribu-
tion can be chosen to be uniform, that is, nothing is known about it. In the main
part of this book, however, we will show how the distribution of points in multidi-
mensional integrals appearing in physics can be extracted from physics itself and
its known statistical laws.

1.1.1
Classical Many-Particle Statistics and Some Thermodynamics

In this starting section we consider the relatively simple case of classical particles
which move in a box and are described by their statistical behavior. This example
avoids the complexity of quantum theory but shows already the statistical aspect of
the general method, namely a scheme to average over many degrees of freedom.

Think of a rock concert in a huge hall filled with thousands of enthusiastic rapidly
moving and hopping dancers. A significant pressure is exerted by the people onto
the barrier of the stage. This pressure can be observed by how the dancers are
spilled up to stage and how they are reflected in jumping back. And it is hot. So
the hall, closed by doors and stage, is an example of a real gas with pressure and
temperature, except that the particles are able to think (but who knows?).

The description of the behavior of many particles in terms of single-particle
quantities such as exact positions or velocities quickly drops out of any feasible
treatment when increasing the particle number. For more than one hundred years,
the solution has been known (Boltzmann, Maxwell), focusing on practical grounds
since nobody would be interested in the details. Nobody except the person him-
self/herself cares about the very elaborate moves another dancer of the concert hall
is performing.

Moving now to physics, for a number of roughly 6 � 1023 gas atoms per mole, it
would be nearly impossible to identify all their positions, enumerate them, make
a table, and communicate that information to someone else. Instead, one realizes
that the three quantities, volume V (pressure p ), heat Q (temperature T ), and parti-
cle number N (chemical potential μ) or the bracketed ones, already provide a good
description of the gas for a wide range of applications. Remember the historical
Magdeburg half-spheres, where even the strength of two horses pulling in oppo-
site directions was not enough to separate them. Or consider the weather forecast,
by which people are more or less strongly affected: statements on the next day’s
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1.1 Energy of Interacting Classical Gas 3

weather are achieved by estimating the evolution of those thermodynamic quanti-
ties. The reason that such a description works (an optimistic view) is founded in sta-
tistical mechanics. The deviations from predictions, which question the reliability
of weather forecasts, are influenced by turbulences whose treatment is formidable
and involves statistical details not covered by the above-mentioned averaged quan-
tities of thermodynamics. Nevertheless, the latter already yield a weather forecast
we thankfully acknowledge.

Only the field of classical particles will be involved in the following statistics,
leaving aside quantum properties which will be considered later. Here we focus for
simplicity on a classical system. The equation of state of an ideal gas was signifi-
cantly generalized as the van der Waals equation of the so-called real gases,�

p � a
V 2

�
(V � b) D N kBT , (1.1)

with Boltzmann constant kB. This equation is equivalent to that of an ideal gas for
a volume reduced by the residual volume b of the molecular constituents and a
pressure reduced by the inner pressure a/V 2, which is exerted on the container
wall by the particles’ repulsion. The 1/V 2 law and the constants a and b are either
determined empirically or derived theoretically from statistics.

The subsequent considerations serve also as a test of the main statistical tool
used in the variational quantum Monte Carlo (QMC) method besides the gener-
al common aspect. In fact, this kind of statistical investigation happened prior to
the QMC development, showing at least their common roots. To be more specific
we consider the derivation of the 1/V 2 law for the real gas. The idea behind intro-
ducing the Monte Carlo method in statistical mechanics is the multidimensional
integration in statistical averages for many particles. For those interested in the
relevant equations connecting thermodynamics and statistical mechanics for this
example we give a short summary.

The key quantity is the free energy F(T, V ) D �kBT ln Z(T, V ) obtained from
the classical partition function,
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DW
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�

!3N/2

Zpot(T, V ) , (1.4)

where � D 1/(kB T ) is related to the absolute temperature T and vi j is the potential
between two particles. The integration over the momenta p i is carried out above
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4 1 A First Monte Carlo Example

in closed form. The remaining integral abbreviated by Zpot has to be calculated
numerically once a suitable interparticle potential is fixed. Before proceeding we
state a few thermodynamical relations to connect the van der Waals equation (1.1)
with the partition function. The partial derivative of the free energy with respect to
volume, where temperature has to be kept constant, yields the pressure which is
equated to that of the van der Waals state equation (1.1),

p D �@F(T, V )
@V

jTDconst D kB T
@ ln Zpot(T, V )

@V

ˇ̌̌
ˇ

TDconst
(1.5)
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(1.6)

D N kBT
V � b

C a
V 2 . (1.7)

Expression (1.6) will be transformed into a form more suitable for a general Monte
Carlo integration. To this end we differentiate the logarithm of the partition func-
tion ln Zpot with respect to �� which yields the average of the potential energy
weighted by the Boltzmann probability density:

@ ln Zpot(T, V )
@(��)

D Zpot(T, V )�1
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DW Upot . (1.9)

Reversely, we can reconstruct the partition function and furthermore the pressure
from the average potential energy by integration, see (1.5), (1.8),

ln Zpot(�, V ) D ln Zpot(1, V ) �
�Z

0

d�0Upot(�0, V ) , (1.10)

p D kBT
@

@V

2
64N ln

V

(
p

2π„)3
�

�Z
0

d�0Upot(�0, V )

3
75 . (1.11)

As a result, the relation between the pressure and the intended MC integration
is given by an averaged potential energy Upot, see (1.9),

p D kBT N
V

� kBT

�Z
0

d�0 @Upot

@V
. (1.12)
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1.1 Energy of Interacting Classical Gas 5

Without special notation, in order to simplify the writing, we always keep constant
the remaining variables in a partial differentiation or integration. Integrals which
constitute an average as in (1.8) are within the scope of the Monte Carlo method
we will dominantly use later. Here, it enables us to give an estimate for the state
equation.

The potential energy will be fixed as a screened repulsive Coulomb potential,
the so-called Yukawa potential. This is a convenient example for our main purpose
which deals with electrons. Think here of a charged gas, though a real uncharged
gas can be modeled similarly in the repulsive regime. For simplicity, we omit the
hard core repulsion given by the finite extent of the molecules. As a consequence
the constant b in the van der Waals equation (1.1) must be set equal to zero. With
screening length λ and potential strength v0 the Yukawa potential reads as

vi j D v0

jr i � r j j exp
��jr i � r j j

λ

�
, (1.13)

using boldface types for three-dimensional vectors as the position vector r i of par-
ticle i . The 1/V 2 volume dependence of the van der Waals pressure term is only an
approximation of next lowest order to the ideal gas equation in an 1/V expansion
which is called a virial expansion. Our MC simulation will not only display this
term but the whole correction, being exact within this potential model and within
the statistical error margin. More realistic calculations are based on the Lennard-
Jones potential model and yield analytical results through an Ursell–Mayer cluster
expansion. This is beyond the scope of this text though the interested reader could
run a MC simulation with a more suitable interparticle potential.

With b D 0 we obtain from (1.1), (1.12) and finally integrating with respect to V

a
V 2 D �kBT

�Z
0

d�0 @Upot

@V
, (1.14)

a
V

D kBT

�Z
0

d�0Upot , (1.15)

where the integration constant vanishes at infinite volume.
We can approximately get some insight from the analytical point of view. At high

temperature � ! 0 the multiple space integrations in (1.8) can be carried out
exactly and reduce to volume averages over the potential energy of two particles,
which is approximated by averaging 1/r12 exp (�r12) over a spherical volume V D
L3 D 4π/3R3 of radius R for a cubic box of edge length L,

Upot � N(N � 1)v0 λ2 2π
V

[1 � e�R/λ(1 C R/λ)] (1.16)

� N(N � 1)v0 λ2 2π
V

for R/λ � 1 (1.17)

� N(N � 1)v0
3
4

�
4π
3

�1/3 1
V 1/3

for R/λ � 1 (1.18)
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6 1 A First Monte Carlo Example

The former case considers a screened interaction in the limit of a large volume.
The latter applies to small volumes. Alternatively, if one likes to investigate the
thermodynamic limit of infinite volume without screening, the screening has to
be switched off first (λ ! 1) before proceeding to the limit of large volume. The
former gives the van der Waals law with

a D 4π
1
2

N(N � 1)v0λ2 DW N v0λ2 Qa , (1.19)

where a is determined by the constants of the interaction potential. The factor
1/2N(N �1) counts the number of terms in the potential energy. It is compensated
in the state equation by the square of the volume which is N times the volume per
particle. Chemists prefer volume per mole, instead, by replacing N kB by the gas
constant R , see (1.1).

In view of the box geometry the approximation of (1.18) is too crude to compare
with the subsequent exact numerical results. We need the exact asymptotical be-
havior. In Appendix A.1 the behavior for L/λ � 1 in the geometry which is used
in the MC calculations is evaluated. It yields a single number 0.2353 to determine
Upot, see (1.12), as Upot D N(N � 1)(4v0/L)0.2353.

In order to use comfortable quantities for the MC simulation, instead of V , T ,
and Upot we define dimensionless quantities

v WD V
λ3

, (1.20)

α WD v0

kB T λ
D v0�

λ
, (1.21)

u(α, v ) WD λ
N v0

Upot(�, v ) , (1.22)

which leads with (1.14) to

Qa
v

D 1
α

αZ
0

dα0u(α0, v ) . (1.23)

The above limits of Upot control the numerical MC results obtained for the right-
hand side of (1.23) in the case of high temperature, specifically

1
α

αZ
0

dα0u(α0, v ) D 2π(N � 1)
v

for
L
λ

� 1 (1.24)

D 4(N � 1)
0.2353

v1/3 for
L
λ

� 1 (1.25)

for T ! 1.
In the following we present and discuss the main parts of the program

“therm95.f”. The program “therm95.f” uses the MC method to calculate the aver-
age energy of a system of particles confined in a cube under conditions of fixed
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1.1 Energy of Interacting Classical Gas 7

temperature T , volume V , and particle number. The complete code is electronically
available in the collection of programs.

A property is used which states that the statistical average of a quantity with a
given probability density can be evaluated by summing a sequence of terms ob-
tained from sequentially choosing points in density space according to their prob-
ability distribution. These terms are calculated as values of that quantity at the
chosen points. Because of the sequential choice the terms can be considered as
representing a fictitious time evolution of the quantity. The average over the sta-
tistical ensemble arises then as an average over evolution time where ergodicity
would guarantee the equality of both averages.

Accordingly, the calculation of the average potential energy as specified in (1.9),
(1.13) and (1.22) proceeds by simulating a random walk which samples the con-
figuration space of the particles by a sequence of M MC steps where in turn the
position of every individual particle is submitted to a random change according
to the Boltzmann probability. The “change according to probability” is achieved by
proposing a step of random length and direction within a maximum step length
and accepting it, if the probability of the new position is larger or equal to that of the
old one. It is accepted also in the opposite case, that is, the ratio between the new
and old probability is smaller than one, if the value of a one-dimensional random
number drawn from a uniform distribution between zero and one lies below that
ratio. Otherwise the proposed position is rejected and the actual particle stays at its
old position. This reflects the true frequency of acceptances given by the probability
distribution. The potential energy is simultaneously summed up adding its value
at the actual position of each step. The sum divided by the number M of steps
represents at each stage a realization of a random energy variable, which is the
normalized sum of sequential individual energies. According to the central limit
theorem of probability theory such a sum converges under very general premis-
es to a Gaussian distributed variable with a mean equal to the true average and
a variance decreasing as 1/M to zero. Written by formulae the acceptance proba-
bility pstep for a proposed step is obtained from the Boltzmann probability density
of (1.9), PBoltzmann, via

PBoltzmann D Zpot(T, V )�1 exp

2
4��

1
2

X
i¤ j

vi j (xi � x j )

3
5 , (1.26)

pstep D min
�

PBoltzmannjnew

PBoltzmannjold

, 1
�

. (1.27)

The factor Zpot(T, V )�1 represents the normalization of the probability. But we do
not need to know it. It is a nice property of the so-called Metropolis algorithm de-
scribed above which states that the procedure automatically guarantees normaliza-
tion. For instance, if instead of summing the energy we sum an arbitrary constant,
say c, then the sum divided by M is equal to c, which demonstrates automatic
normalization.

The need for random numbers occurs at two stages. First, one has to decide
upon direction and length of a step in position space. To this aim one runs over
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8 1 A First Monte Carlo Example

the three Cartesian directions and chooses every coordinate extent as a fraction
of a maximum step length by drawing a random number uniformly distributed
between zero and one. Second, one has to decide upon acceptance of a MC step in
case of a smaller probability at the new particle position.

Throwing a die and letting statistical events decide one’s fate has been common
to mankind from its earliest stages. From written testimonies of antiquity down to
relics in the tombs of ancient Egypt, or of any region including the Far East, the
dice always had a similar appearance, except that some were loaded for cheating.
Thus, some statistical concepts must have been known since early times, though
the art of gambling experienced a refinement in our ages with the construction of
casinos as in Monte Carlo. In casinos a large reservoir of random numbers was
developed, which could be utilized for statistical investigations instead of throw-
ing the dice. Drawing random numbers has now become even more easy by the
use of computers. We will present details of random number generators in a sub-
sequent section, but here we use without discussion the built-in generator of the
g95-Fortran compiler. The relevant code is contained in the “module random” of
the program.

A dumb choice of starting positions, as it might occur for instance by an extreme-
ly improbable configuration could influence the subsequent positions for a number
of steps and deteriorate the value of the sampled energy. To become independent of
the initial conditions, one applies a first MC run without counting the energy, our
so-called prerun, which otherwise has the same structure as the main run. Further-
more, we skip the formal specification part of the program as well as both outer
loops, which run over the different values of two external parameters, the temper-
ature parameter ALPHA and the cubic length parameter LENGTH. Programming
of the output data does not need explanation either. Dots denote program parts left
out from this representation.

C–––––––––––––––––––––––––––––––––––-
program THERM
use random
use position
use output,only: FE1MAX,FE2MAX,FE3MAX,PRONAME,OUT3D

C NE = number of particles
implicit none
integer,parameter :: NXFA1=0,NXFA2=9
real(dp) :: X,Y,Z,STEPMAX,ALPHA,DALPHA,ALPHA0,ALPHA1,BETA
real(dp) :: DLENGTH,LENGTH0,LENGTH1,DUMMY
real(dp) :: RDIF,QUOT
real(dp) :: LOCEN,ERWEN,VAREN,ERWKIN,VARKIN,ERWPOT,VARPOT
real(dp) :: AVRHO(FE3MAX,FE3MAX,FE3MAX)
logical :: MCSCHRITT,SWIRHO
character(7) :: FELDNAM

C Local variables
integer :: n1,n2,i,k,ny,nz,M
real(dp) :: RAD1,RAD2,RADNEU,EK,ep,rannumb
real(dp) :: WORK1(NXFA2+1),WORK2(NXFA2+1),WORK
logical :: l
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1.1 Energy of Interacting Classical Gas 9

C
PRONAME=’thermod’

C Control output
open(unit=35,file=PRONAME//’_MC10.OUT’,position=’append’,
& status=’unknown’)
write(35,*)’MC7 and MC6 have totally unbiased boundary condition’
write (35,*)’totally unbiased is still biased;instead MC8 rejects’
write (35,*)’any move outside the volume which is really unbiased’

C Contour plot output ALPHA and WAVEC for "xfarbe" tool
C on a NXFA*NXFA grid

open(unit=38,file=PRONAME//’erw_yukawa10.dat’,position=’append’,
& status=’unknown’)
open(unit=39,file=PRONAME//’var_yukawa10.dat’,position=’append’,
& status=’unknown’)

C Number of electrons and MC steps
NE = 100
IF (NE .GT. NEMAX) THEN

write (*,*)’NE= ’,NE,’ larger than NEMAX= ’,NEMAX
STOP

ENDIF
MCPRE = 100000
MCMAX = 1000000
NDIV = 21 ! NDIV must be odd
call INITRAN

C Start data:
lparam1:do m=1,3
lparam2:do n1 = 1,NXFA1+1
lparam3:do n2 = 1,NXFA2+1

C Parameter ALPHA of inverse temperature and edge length LENGTH
SWIRHO = .true.
ALPHA0=0.50D0
ALPHA1=10.0D0
LENGTH0=+1.00D0
LENGTH1=+50.0D0
DALPHA=(ALPHA1-ALPHA0)/DBLE(NXFA1+1)
DLENGTH=(LENGTH1-LENGTH0)/DBLE(NXFA2+1)
ALPHA=ALPHA0+(n1-1)*DALPHA

C adjust LENGTH to logarithmic plot
LENGTH=(0.01+(n2-1)*0.01)*10**m

C LENGTH=LENGTH0+(n2-1)*DLENGTH
C Maximum step width, Be careful: check with acceptance ratio!

STEPMAX = 9.0D-2*LENGTH
C Random initial electron positions

do k=1,NE
do i=1,3
call GENRAN(rannumb)
RE(i,k) = LENGTH*(rannumb-0.5)
RNEU(i,k) = RE(i,k)

end do
end do
do i=1,NE
VNEW(i) = 0.D0
VDIF(i) = 0.D0
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10 1 A First Monte Carlo Example

do k=1,NE
IF (k .eq. i) cycle
DISTNEU(1:3,i,k) = RNEU(1:3,i)-RNEU(1:3,k)
DIST(1:3,i,k) = DISTNEU(1:3,i,k)
DISTNEU(4,i,k) = dsqrt(sum (DISTNEU(1:3,i,k)**2))
DIST(4,i,k) = DISTNEU(4,i,k)
VNEW(i) = VNEW(i) + 1.D0/DISTNEU(4,i,k)*dexp(-DISTNEU(4,i,k))
end do

end do
C Counts the acceptance number

MCOUNT = 0
C Observables

RHO(1:NDIV,1:NDIV,1:NDIV) = 0.D0
AVRHO(1:NDIV,1:NDIV,1:NDIV) = 0.D0
LOCEN = 0.D0
ERWEN = 0.D0
VAREN = 0.D0
ERWKIN = 0.D0
VARKIN = 0.D0
ERWPOT = 0.D0
VARPOT = 0.D0
l = .true.

C
C
C MC loop: prerun for thermalizing. Be careful: does not change a bad
C sampling of energy!!!

lrunpre:do IMC=2,MCPRE
lelrunpre:do IE=1,NE
do i=1,3

C Shift position at random within +-STEPMAX/2
call GENRAN(rannumb)
RDIF = (rannumb-0.5)*STEPMAX
RNEU(i,IE) = RE(i,IE)+RDIF

CCC Reflect particle at wall if it crosses
CC if (RNEU(i,IE) > 0.5D0*LENGTH)
CC ) RNEU(i,IE)=LENGTH-RNEU(i,IE)
CC IF (RNEU(i,IE) < -0.5D0*LENGTH)
CC ) RNEU(i,IE)=-LENGTH-RNEU(i,IE)
CCC Scatter particle at a rough wall
CC if (DABS(RNEU(i,IE)) > 0.5D0*LENGTH) THEN
CC call GENRAN(rannumb)
CC if (RNEU(i,IE) > 0.5D0*LENGTH)
CC & RNEU(i,IE)=LENGTH/2.D0-ABS(rannumb-0.5)*STEPMAX
CC & RNEU(i,IE)=LENGTH*(1/2.D0-rannumb) ! totally unbiased
CC if (RNEU(i,IE) < -0.5D0*LENGTH)
CC & RNEU(i,IE)=-LENGTH/2.D0+ABS(rannumb-0.5)*STEPMAX
CC & RNEU(i,IE)=-LENGTH*(1/2.D0-rannumb) ! totally unbiased
C Apply strict cut-off boundary conditions

if (DABS(RNEU(i,IE)) > 0.5D0*LENGTH) THEN
MCSCHRITT = .false.
RNEU(1:3,IE) = RE(1:3,IE)
MCOUNT = MCOUNT + 1
cycle lelrunpre
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1.1 Energy of Interacting Classical Gas 11

end if
end do

C Calculate Boltzmann ratio with energy 0.5*sum_k 1/r_ik exp(-r_ik)
C without term k=i

call JASEXP(VNEW(IE),VDIF(IE))
QUOT = DEXP(-ALPHA*VDIF(IE))

C Test on acceptance
if (QUOT .lt. 1) THEN

C MCSCHRITT = DBLE(ZBQLU01(DUMMY)) .LT. QUOT
call GENRAN(rannumb)
MCSCHRITT = DBLE(rannumb) < QUOT

C write(*,*)’QUOT .lt. 1 ’,MCSCHRITT
else
MCSCHRITT = .true.

end if
if (MCSCHRITT) then

RE(1:3,IE) = RNEU(1:3,IE)
MCOUNT = MCOUNT + 1

else
RNEU(1:3,IE) = RE(1:3,IE)

end if
end do lelrunpre
end do lrunpre
write(35,*)’STEPMAX = ’,STEPMAX
write(35,*)’prerun: MCPRE= ’,MCPRE,’ acc. ratio = ’,
& 100.*DBLE(MCOUNT)/DBLE(NE*MCPRE),’ % ’
MCOUNT = 0

C
C
C
C MC loop: main run after thermalizing

lrun:do IMC=2,MCMAX
lelrun:do IE=1,NE
do i=1,3

C Shift position at random within +-STEPMAX/2
call GENRAN(rannumb)
RDIF = (rannumb-0.5)*STEPMAX
RNEU(i,IE) = RE(i,IE)+RDIF

CCC Reflect particle at wall if it crosses
CC if (RNEU(i,IE) > 0.5D0*LENGTH)
CC ) RNEU(i,IE)=LENGTH-RNEU(i,IE)
CC if (RNEU(i,IE) < -0.5D0*LENGTH)
CC ) RNEU(i,IE)=-LENGTH-RNEU(i,IE)
CCC Scatter particle at a rough wall
CC if (DABS(RNEU(i,IE)) .gt. 0.5D0*LENGTH) then
CC call GENRAN(rannumb)
CC if (RNEU(i,IE) > 0.5D0*LENGTH)
CC & RNEU(i,IE)=LENGTH/2.D0-ABS(ZBQLU01(DUMMY)-0.5)*STEPMAX
CC if (RNEU(i,IE) < -0.5D0*LENGTH)
CC & RNEU(i,IE)=-LENGTH/2.D0+ABS(ZBQLU01(DUMMY)-0.5)*STEPMAX
CC & RNEU(i,IE)=LENGTH/2.D0-ABS(rannumb-0.5)*STEPMAX
CC & RNEU(i,IE)=LENGTH*(1/2.D0-rannumb) ! totally unbiased
CC if (RNEU(i,IE) .lt. -0.5D0*LENGTH)
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12 1 A First Monte Carlo Example

CC & RNEU(i,IE)=-LENGTH/2.D0+ABS(rannumb-0.5)*STEPMAX
CC & RNEU(i,IE)=-LENGTH*(1/2.D0-rannumb) ! totally unbiased
C Apply strict cut-off boundary conditions

if (DABS(RNEU(i,IE)) > 0.5D0*LENGTH) THEN
MCSCHRITT = .false.
l = .false.
exit

end if
end do
if (l) then

C Calculate Boltzmann ratio with energy 0.5*sum_k 1/r_ik exp(-r_ik)
C without term k=i

call JASEXP(VNEW(IE),VDIF(IE))
QUOT = DEXP(-ALPHA*VDIF(IE))

C Test on acceptance
if (QUOT < 1) then

call GENRAN(rannumb)
MCSCHRITT = DBLE(rannumb) < QUOT

else
MCSCHRITT = .true.

end if
end if
l = .true.

C Update of observables.
if (MCSCHRITT) then
RE(1:3,IE) = RNEU(1:3,IE)
ep = VNEW(IE)
MCOUNT = MCOUNT + 1

else
RNEU(1:3,IE) = RE(1:3,IE)
ep = VNEW(IE) - VDIF(IE)

end if
C E=0.5 sum_ik v_ik, sum i omitted because
C run averages over particles, so energy per particle is calculated

LOCEN = LOCEN + 0.5D0*ep
end do lelrun

C energy per particle
LOCEN = LOCEN/DBLE(NE)
if (IMC == 2) then !set start values
ERWEN = LOCEN
VAREN = 0.D0
end if
ERWEN = (IMC-1)/DBLE(IMC)*ERWEN+LOCEN/DBLE(IMC)
VAREN = (IMC-1)/DBLE(IMC)*VAREN +

& 1/DBLE(IMC-1)*(ERWEN-LOCEN)**2
LOCEN = 0.D0
if (SWIRHO) then

C density
call DENSITY(RHO)
do nz=1,NDIV
do ny=1,NDIV
AVRHO(1:NDIV,ny,nz)=(IMC-1)/DBLE(IMC)*AVRHO(1:NDIV,ny,nz)

& + RHO(1:NDIV,ny,nz)/DBLE(IMC)
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end do
end do

end if
end do lrun

C end MC loop
C

WORK1(n2) = ERWEN
WORK2(n2) = VAREN
write(35,35)’main run: MCMAX= ’,MCMAX,’ acc. ratio = ’,
, 100.*DBLE(MCOUNT)/DBLE(NE*MCMAX),’ % ’
write(35,*)’ALPHA = ’,ALPHA,’ LENGTH = ’,LENGTH
write(35,*)’energy+0.5*ALPHA**2 = ’,ERWEN+0.5*ALPHA**2
write(35,*)’ERWEN = ’,ERWEN,’ VAREN = ’,VAREN
write(35,*)
write(35,*)
if (SWIRHO) then

write (36,*) ’ALPHA = ’,ALPHA,’ LENGTH = ’,LENGTH
call OUT3D(NDIV,NDIV,NDIV,AVRHO)

end if
write(38,45) LENGTH,ERWEN
write(39,45) LENGTH,VAREN
end do lparam3
write(38,fmt="(t3)")
write(39,fmt="(t3)")
end do lparam2
end do lparam1
CLOSE(35)
CLOSE(38)
CLOSE(39)

35 FORMAT(1X,A,I8,A,F7.3,A)
45 FORMAT(t3,F7.3,E12.3)

end program THERM
C–––––––––––––––––––––––––––––––––––-

Modules “random”, “position”, and “output” are used, which specify the random
number generator, the updating of the particle positions and their potential energy,
and the output collection. The values for the number of particles, number of steps
of the prerun and of the main MC run are chosen as NE D 100, MCPRE D 10 000,
MCMAX D 100 000 in this example. The maximum step width STEPMAX is tak-
en as somewhat less than the actual length parameter LENGTH, which denotes
the edge length of the container cube. A random number is calculated by subrou-
tine GENRAN(rannumb). The initial particle positions RE(1:3,1:NE) are randomly
chosen.

The arrays DIST(1:4,1:NE,1:NE) and DISTNEW(1:4,1:NE,1:NE) both store the
interparticle distance vectors, the former for the old configuration and the latter
for the updated one. At start both are identical. The fourth component stores its
modulus. VNEW(1:NE) and VDIF(1:NE) store the updated potential and the dif-
ference between it and its nonupdated value of a particle in the field of the others,
see (1.13). Initializing is completed with the initial setting of the counter MCOUNT
which counts each accepted case of MC steps and with the setting of the energy
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14 1 A First Monte Carlo Example

variables, that is, the actual potential energy LOCEN, its average ERWEN, and its
variance VAREN.

Here, we describe only the main MC run which is started after the prerun, be-
cause the prerun is essentially the main run without the calculation of observables.
The MC steps are counted by IMC and for every step a run over all NE parti-
cles is carried out with IE as actual particle index. The update process begins by
proposing a jump of the actual particle to a new position which is obtained by
increasing its three coordinates by randomly chosen increments within the inter-
val ˙STEPMAX/2. RNEU(1:3,1:NE) stores the new position of that particle. Sub-
sequently, the constraint for enclosing the particles in a cubic box is applied by ran-
domly back scattering the particle if the new position crosses the container walls.
Alternatively, one could think of applying reflecting boundary conditions or requir-
ing a strict cut-off at the surface. The reflecting walls could mean nonergodic runs
like the behavior of a billiard ball enclosed between ideally reflecting walls, which
comes close to the case of a very dilute gas. It is left to the reader to test how this
changes our results. We will come back to this point in Section 1.1.2, though a test
with strict cut-off on the case of α D 0.5 in Figure 1.1 does not change the graph.

To calculate the ratio QUOT between the probability after the jump and that
before it, subroutine JASPEX is called which involves the module “position” and
is explained in detail later in context with that module. Here, it suffices to state
that the new potential VNEW(IE) and its difference VDIFF(IE) with respect to the
old one is obtained by this routine. As only the position of the actual particle IE is
changed at the actual jump, interparticle potential contributions between the actual
particle only and all other particles are involved. The factor ALPHA in the exponent
stands for the temperature, see (1.13) and (1.20). Then, as explained in the theory,
the ratio QUOT is compared with 1 and the logical variable MCSCHRITT set to
“true” if QUOT is larger than or equal to 1. Otherwise MCSCHRITT gets the value
“true” in those cases where a random number drawn from [0,1] lies below QUOT
and “false” otherwise.

In the case that MCSCHRITT is “true” the position variable RE(3,NE) is updated
to its new value and the acceptance counter is incremented. Otherwise the variable
RNEU(3,NE) holding the new position is reset to the old position. The potential
energy “ep” of the actual particle IE is given the actual value according to the new
or old position by the last call to JASEXP, and added to the energy sum of previ-
ous particles. For the energy per particle we divide by NE and update the average
energy ERWEN and its variance VAREN. The formulae for the latter quantities are
addressed in the section on statistical properties. We have reached the end of the
MC loop with label 100. The remaining part, not cited here, concerns the output.
Note that we reserve channel 35 for control output in a file with ending MC.OUT.
Channels 38, 39 direct the average energy ERWEN and its variance VAREN to the
files therm_erw_yukawa.dat and therm_var_yukawa.dat, respectively, for append-
ing the results of multiple MC runs.

It remains to discuss the subroutine JASEXP contained in the module “position”
as found below.
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Figure 1.1 Van der Waals pressure correc-
tion to ideal gas equation of state accord-
ing to (1.22) in logarithmic representation,
u(α, v) vs. L D v1/3. Note that here the edge
length L of the cubic container volume is al-
ready scaled by the screening length λ of the
interaction potential. Thick lines without sym-
bols show analytical results 2π(N � 1)/L3

and 4(N � 1)0.2353/L for high temperature
α ! 0 at both asymptotic limits v ! 1
and v ! 0, respectively; dots connected
by thin solid lines refer to MC simulations
with α D 0.5 showing separate calculation

sets with different maximum step widths
STEPMAX D 0.001, 0.01, 0.1, and 1.0 for
lengths L between 0.1–1, 1–10, 10–50, and
above 50, respectively, calculated at high accu-
racy with MC steps equal to 106 times number
of particles N . Lower accuracy with only 105

times number of particles is shown by open
squares for comparison; lines with star sym-
bols refer to different values of α as indicated
and lower accuracy (105), number of particles
is N D 100 in all cases; inset shows an extract
for very small volume.

module position
C updates positions, their differences, two-particle potential and
C its change for particle IE

implicit none
public :: JASEXP
integer,parameter,public :: NEMAX=1000,

& dp=selected_real_kind(2*precision(1.0))
integer,public :: NE,IE
real(kind=dp),public:: EMACH
real(kind=dp),dimension(NEMAX),public:: VNEW,VDIF
real(kind=dp),dimension(3,NEMAX),public :: RE,RENEW
real(kind=dp),dimension(4,NEMAX,NEMAX),public :: DIST,DISTNEW
contains

C
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16 1 A First Monte Carlo Example

subroutine JASEXP(VN,VD)
C updates the distances from the active particle to all others
C and calculates potential energy

real(kind=dp),intent(out),dimension(NEMAX):: VN,VD
integer :: i,k,n
real(dp) :: work01,work02,work1,work2
work1=0.0_dp
work2=0.0_dp
IENEK:do k=1,NE
if (k .eq. IE) then
cycle
end if
work01=0.0_dp
work02=0.0_dp
do n=1,3
DIST(n,IE,k)=RE(n,IE)-RE(n,k)
DIST(n,k,IE)= -DIST(n,IE,k)
DISTNEW(n,IE,k)=RENEW(n,IE)-RE(n,k)
DISTNEW(n,k,IE)=-DISTNEW(n,IE,k)
work01=work01+DIST(n,k,IE)**2
work02=work02+DISTNEW(n,k,IE)**2
end do
work01 = dsqrt(work01)
work02 = dsqrt(work02)
if (work01 .lt. EMACH) work01 = 2.D0/3.D0*EMACH
IF (work02 .lt. EMACH) work02 = 2.D0/3.D0*EMACH
DIST(4,IE,k) = work01
DIST(4,k,IE) = work01
DISTNEW(4,IE,k) = work02
DISTNEW(4,k,IE) = work02
work1=work1+1.D0/work02*dexp(-work02)-1.D0/work01*dexp(-work01)
work2=work2+1.D0/work02*dexp(-work02)
end do IENEK
VD(IE)=work1
VN(IE)=work2
end subroutine JASEXP

end module position

The interparticle distances refer to the actual particle IE and concern their value
with respect to the new DISTNEW(3,IE,NE) and to the old position DIST(3,IE,NE).
With these distances the new potential energy VN(IE) and its difference VD(IE)
from the old potential energy is determined according to (1.13) and transferred to
the calling program. Note that the potential energy per particle must carry a factor
1/2 which is multiplied in the calling program. In contrast the probability ratio
QUOT contains the total potential energy, which is twice that value because the
particle IE appears twice in the particles’ double sum.

Figure 1.1 displays over several length decades how the exact result for high tem-
peratures is approached by the MC simulation. The edge length of the volume is
scaled by the screening length of the interaction potential such that at λ the tran-
sition occurs between unscreened potential at small distances and fully screened
potential at large distances. The plot shows a rapid convergence towards the van



�

� Wolfgang Schattke and Ricardo Díez Muiño: for Atoms, Molecules, Clusters, and Solids —
Chap. c01 — 2013/5/14 — page 17 — le-tex

�

�

�

�

�

�

1.1 Energy of Interacting Classical Gas 17

der Waals 1/L3 dependence at large L. The temperature dependence is shown by
the variation with parameter α / 1/T being appreciable at large volume and disap-
pearing for small. The integral in (1.23) becomes simply u in the latter case and can
be roughly estimated as an average of u over some values of α as displayed in the
general plots. Remember that both asymptotic lines are valid only for large temper-
ature, α ! 0. Towards smaller volume the curve bends from a linear logarithmic
behavior with slope �3 to a slope of �0.3 at the left end of the plot.

The module “random” is discussed in Appendix A.2, which contains a few ran-
dom generators and the notation. Here, we state some values to show that em-
ploying different random generators lies within the error margin of the statis-
tical accuracy. For instance, if we use the “random_number(rannumb)” subrou-
tine of F90/95, see Table 1.1, we obtain u D 5.1789 � 10�4, σ2 D 6.4 � 10�7

for L D 100 and u D 0.411 39, σ2 D 8.8 � 10�4 for L D 10 with α D 0.5,
MCMAX D 106, NE D 100 in both cases. An estimate by twice the standard devia-
tion 2σ/

p
MCMAX, which is 0.016�10�4 for the former and 0.000 06 for the latter,

yields for the lengths LENGTH D 1 and 100 a 95% probability that this and the oth-
er three generators are equivalent. For LENGTH D 10 this hypothesis cannot be
confirmed from the standard deviation.

The behavior of the van der Waals pressure correction depends on the details of
the chosen interaction potential, of course. We are not much interested here in the
specific values of the real gas, which could be easily obtained with this procedure
once the interaction potential is properly chosen. We leave this task to the reader.
Instead, we proceed to discuss some calculational properties, for example an av-
eraging procedure for a probability measure of this specific form. It becomes of
highest importance in the Monte Carlo simulations of the ground state of quan-
tum systems. It is exactly this kind of Boltzmann-like probability with a Coulomb
repulsion in the exponent the one that introduces correlation into the many-body
wave function, generalizing the pure Slater determinants. This part in the proba-
bility density, called the Jastrow factor, multiplies the one-particle determinants of
the Hartree–Fock theory.

Table 1.1 Values of average energy u and variance σ2 for two box sizes L and for four random
number generators.

L D 100 F90/95 G95 TAO REC_PJN

u 5.178 91 � 10�4 5.196 90 � 10�4 5.196 43 � 10�4 5.183 82 � 10�4

σ2 6.37 � 10�7 6.53 � 10�7 6.52 � 10�7 6.44 � 10�7

L D 10
u 0.372 41 0.372 57 0.372 86 0.373 16

σ2 9.97 � 10�4 9.97 � 10�4 9.99 � 10�4 10.06 � 10�4

L D 1
u 36.503 36.503 36.503 36.506

σ2 5.74 � 10�2 5.74 � 10�2 5.74 � 10�2 5.78 � 10�2
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18 1 A First Monte Carlo Example

With this example we learned a number of facts:

� First of all, the classical thermodynamical energy of a many-body system can be
evaluated with high accuracy.

� The asymptotic limit for large volume and high temperature is exactly repro-
duced, though it seems a priori difficult to sample such high volumes at a large
number of particles with a limited number of MC steps. Realize that the con-
figuration space of our 100 particles covers 300 dimensions which would need
10300 space points for integration on a rough grid of only 10 points per dimen-
sion, which is not feasible to date. The used MC sampling which we explained
before makes it possible.

� The asymptotic limit for small volume at high temperature is exactly reproduced
as well. This is astonishing, because very high values can appear during simu-
lation because of the 1/r dependence of the potential.

� Convergence is already reached at not too high numbers of MC steps, that is,
105 steps per particle seems to be sufficient, as the result for 106 steps does not
significantly differ.

� Sampling with a uniform probability density as it appears for very high tem-
perature is reliable. One would not expect that. Instead, the so-called importance
sampling which we apply should work best if a few configuration points carry all
the weight and the rest can be neglected. Thus, even this worst case where every
configuration point is equally probable works well.

� The maximum step width is a decisive parameter. Here, we had to adjust it to the
size of the volume, that is, to the screening length. The sampling may become
totally unreliable if this parameter is not chosen adequately. The correct behav-
ior can be controlled by observing the acceptance ratio which should neither be
too small nor too high, that is, significantly above 50 and below 100%. After play-
ing with various choices of STEPMAX in the program one arrives at choosing
roughly somewhat smaller than the characteristic length of the system, which is
condensed in the formula found in the program.

We will keep these statements in mind for those cases to follow where we have no
easy possibilities at hand to control the reliability of the MC simulations. This is
the majority of cases.

1.1.2
How to Sample the Particle Density?

According to the probability interpretation of the Boltzmann factor we can write
for the average particle density,

�(x ) D Z�1
pot

Z
V N

NY
lD1

dx3
l

NX
nD1

δ(x � xn) exp

2
4��

1
2

X
i¤ j

vi j (xi � x j )

3
5 . (1.28)

In the program we will count at every step the number of particles which fall into
each cell of a mesh into which the whole cube is divided. Again the integral is calcu-
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lated numerically by a discrete support weighted with the Boltzmann probability,
which is obtained in the course of a random walk executed just with this same
probability. Instead of one random variable, as the energy, here we have to calcu-
late the filling of each of say NDIV3 cells by particles at each of the MCMAX MC
steps. The sampling can be illustrated by displaying the particle density at various
stages of convergence. In particular, in the case of the real gas, physical differences
should become apparent in changing the value of temperature. The program us-
es the logical variable SWIRHO and samples the density on a 20 � 20 � 20-grid
(NDIV D 21) with meshes of width 1/20 of the cubic edge length LENGTH if
SWIRHO is true. The sampling should be switched off in a normal run, because
these inner loops afford significant runtime. The density is evaluated by a call to
subroutine DENSITY(RHO) inserted in module “position” which yields the den-
sity by counting the occurrences the position RE attained by a particle falls on a
specific mesh, see the program part below.

module position
.....................

subroutine DENSITY(rh)
C calculate the average particle density rh() on a cubic mesh
C with NDIV intervals on each cubic axis, NDIV must be odd

real(dp),intent(out),dimension(NDIVMX,NDIVMX,NDIVMX) :: rh
integer :: nx,ny,nz,ie
real(dp) :: dl
if (dble((NDIV-1)/2) .ne. dble(NDIV-1)/2.0_dp) then
write(*,*) ’NDIV not odd: stop’
stop
end if
rh = 0.0_dp
dl = LENGTH/dble(NDIV-1)
do ie=1,NE
nx = 1 + (NDIV-1)/2 + int(RE(1,IE)/dl)
ny = 1 + (NDIV-1)/2 + int(RE(2,IE)/dl)
nz = 1 + (NDIV-1)/2 + int(RE(3,IE)/dl)
if ((nx > NDIV) .or. (ny > NDIV) .or.

. (nz > NDIV)) then
write(*,*)’too large nx, ny, or nz ’,nx,ny,nz,’ > NDIV ’,NDIV
stop
end if
rh(nx,ny,nz) = rh(nx,ny,nz) + 1
end do

end subroutine DENSITY
end module position

Coming back to the question of an adequate choice of the boundary conditions, a
strict cut-off at the cube’s faces, that is, zero probability for a step outside the cube
and keeping the particle at the old position, would be formally correct. One can
imagine other choices, for example transfer of the particle at a new position inside
the cube. This position may be obtained by either being randomly chosen or at a
virtual point of reflection with the mirror at the respective cube face involved. Both
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20 1 A First Monte Carlo Example

possibilities are present but commented in the program. Note that both latter cases
alter the sampling, that is, it is not guaranteed that the sampling remains unbiased
as in the case of a strict cut-off. The cut-off is identical with the integration limit as
given in the formula. The other choices correspond to different physical boundary
conditions. One could be seduced to call them specular or random reflecting wall
constraints, respectively, although this is misleading. The random walk is meant to
step over integration points which are chosen according to their importance. This
random walk should not be mixed with the physical dynamical evolution where the
particles are moving around. Thus, boundary conditions different from the cut-off
should be judged from their effect on the probability distribution near the surface.
Keeping this in mind, one may argue that, moving to the point of reflection instead
of stopping the step whenever it falls outside, shows the probability of a second
channel to arrive at that point which normally is directly attained. This probability
is reminiscent of reflecting walls, though an ideal reflection is a dynamical process
where the velocity determines the final point and which calls the thermodynamic
description for these systems of not so many particles into question. The same
reasoning applies for the rough surface condition.

For the graphical representation we utilize the free public “gnuplot” software.
For the ease of the reader who is not familiar with this software we present a few
commands below.

gnuplot>set style line 100 lt 5 lw 0.5
gnuplot>set pm3d
gnuplot>set dgrid3d 40,40
gnuplot>set colorbox user origin 0.75, 0.62 size 0.05,0.3
.............
gnuplot>set contour
gnuplot>splot "thermod_erw.dat" using 1:2:4 index 9 with lines notitle
.............
gnuplot>unset contour
gnuplot>splot "thermod_erw.dat" using 1:2:4 index 3 with pm3d at b, \
"thermod_erw.dat" using 1:2:4 index 5 with pm3d at s, \
"thermod_erw.dat" using 1:2:4 index 8 with pm3d at t

The start of “gnuplot” enters into an interactive mode where the above first three
commands set some parameters. The output file “thermod_erw.dat” from the pro-
gram of Section 1.1.1 is used here as input. The two commands after the dotted
line plot a single surface of the density at a height z given by the ninth data block
of the datafile above the x , y plane with a contour plot of that surface. Datablocks
are separated by two empty lines. The subsequent two commands display at the
bottom a contour plot of the third data block, in the middle a surface at the height
of the fifth data block, and at the top a contour plot of the eighth data block. The op-
tion “using 1 : 2 : 4” picks out the first, second, and fourth column of the respective
data block for x , y , and density input.

The plots in Figure 1.2 are calculated for various temperatures, given by the pa-
rameter α, cf. (1.21), from highest temperature (small α, Figure 1.2a), to lowest
(Figure 1.2f). As a hint for the magnitude, α D 1.0 corresponds to the case where
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the thermal energy is of the order of the potential at screening distance. In all cas-
es the MC run took 106 steps for each of the NE D 100 particles. The size of the
cube is determined by an edge length which is ten times as large as the screen-
ing length. Note that the parameter LENGTH has been normalized to this length.
For highest temperature a smoothed average density is found with some elevation
along the middle planes of the cube, which is mainly due to the boundary con-
dition in connection with the screening length. The exponent in the Boltzmann
probability mostly vanishes in that case and every configuration of particles has
similar probability. For lower temperature the particles regularly arrange in a kind
of lattice. Freezing down to lowest temperature the symmetry is lost, which is due
to incomplete sampling when the particles are trapped in local minima. There are
remedies for this case, as “simulated annealing,” but this is not within the scope of
this book.

Let us try an interpretation of the findings in the light of formula (1.28). Arguing
on the basis of the spatial regions contributing to the integral of (1.28) we observe
that the contributions of spatial regions where particles come close together are
suppressed by the largely negative exponent. Close together thereby means large
potential energy with respect to thermal energy. For fixed volume those regions
may be large and thus important for example if the total volume’s edge length is
small compared to the length given by the thermal energy, namely v0�. Recalling
the definition of α, see (1.21), large α and small volume will exclude large portions
from the integral such that the density becomes zero in most regions, except some
parts to which the particles stick if well separated. These places should show a sym-
metrical distribution, of course, if the statistical sampling is correct. In the other
extreme case in which the total volume is large, those regions of close approach do
not carry significant weight. Consequently, the Boltzmann factor reaches unity and
the density is homogeneously distributed. The higher the temperature the smaller
the inhomogeneity and the lower the temperature the stronger the tendency for
crystallization. This reasoning does not account for the influence of the surface it-
self where the density must vanish and which may produce additional structures
in the density.

The above results and explanations may suffice for the sake of the main topic
of this book. Also, a more realistic potential as the Lennard-Jones potential which
possesses an attractive region should show different volume occupation and crys-
tallization. But to demonstrate this with the MC scheme is left to the interested
reader.
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Figure 1.2 Density distributions horizontally cut through the cube center for edge length
LENGTH D 10 with temperature parameter α equal to (a) 0.000 05, (b) 10.0, (c) 100.0,
(d) 500.0, (e) 1000.0 and (f) 5000.0 plotted as surface plot above and contour plot below.




