
�

� Jolien D. E. Creighton and Warren~G.~Anderson: Gravitational-Wave Physics
and Astronomy — Chap. anderson8863c01 — 2011/6/24 — page 3 — le-tex

�

�

�

�

�

�

3

1
Prologue

1.1
Tides in Newton’s Gravity

A brief review of Newtonian gravity is useful not only as a limit of weak-field rela-
tivistic gravity, but also as a reminder of the principles upon which general relativity
was formulated. Newtonian gravity is conveniently formulated in a fixed rectilinear
coordinate system in terms of an absolute time coordinate. In such coordinates as
these, Newton’s laws of motion and gravitation describe the motion of a body of
mass m falling freely about another body of mass M by the force

F D m
d2x
d t2 D � G M m

kx � x 0k3 (x � x 0) , (1.1)

where x is the position of the body with mass m, x 0 is the position of the body with
mass M, t is the absolute time coordinate, and G ' 6.673 � 10�11 m3 kg�1 s�2 is
Newton’s gravitational constant. Famously, the quantity m cancels and

d2x
d t2 D � G M

kx � x 0k3 (x � x 0) . (1.2)

If there is a continuous distribution of matter then we can sum up all contributions
to the acceleration from all pieces of the distribution to obtain

d2x
d t2 D �G

Z
body

x � x 0

kx � x 0k3 �(x 0)d3x 0 D Δ

264G
Z

body

�(x 0)
kx � x 0k d3x 0

375 , (1.3)

where � is the mass distribution (density) and

Δ

is the gradient operator in x .
Therefore, the acceleration of the body (with respect to the Newtonian system of
rectilinear coordinates) is

a D d2x
d t2 D � Δ

Φ (x) , (1.4)

where

Φ (x) WD �G
Z

body

�(x 0)
kx � x 0k d3x 0 (1.5)
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4 1 Prologue

is the Newtonian potential. The Newtonian potential satisfies the Poisson equation

Δ2Φ (x) D �G
Z

�(x 0)

Δ2 1
kx � x 0k d3x 0 D 4πG�(x ) , (1.6)

where we have used

Δ2 1
kx � x 0k D �4πδ(x � x 0) . (1.7)

Because the mass of the falling body does not enter into the equations of motion,
any two bodies will fall the same way. If you can only see nearby free-falling bodies,
you cannot tell whether you’re falling or not. You feel the same if you are freely
falling toward some massive object as you would if you were in no gravitational
field whatsoever. The gravitational acceleration describes the motion of the falling
body with respect to the absolute Newtonian coordinates – but is there any way for
a freely falling observer to know if they are accelerating or not?

Einstein codified the observation that freely falling objects fall together as a prin-
ciple known as the equivalence principle: a freely falling observer could always set
up a local (freely falling) frame in which all the laws of physics are the same as they
would be if that observer were not in a gravitational field. The coordinate acceler-
ation a does not have any physical importance (as it does in Newtonian gravity)
because one can always choose a frame of reference – freely falling with the ob-
server – in which the observer is at rest.

Example 1.1 Coordinate acceleration in non-inertial frames of reference

An inertial frame of reference in Newtonian mechanics is any frame of reference
that can be related to the absolute Newtonian frame of reference by a uniform
velocity and a constant translation of position. That is, if x is the location of a
particle in one inertial frame of reference, then another inertial frame of reference
will have x 0 D x � x0 � v t for some constant vectors x0 and v . Inertial frames
preserve the form of Newton’s second law since a0 D d2x 0/d t2 D d2x/d t2 D a.

In non-Cartesian coordinates, however, the form of the coordinate acceleration is
different. For example, for a two-dimensional system we could express the location
of a particle in polar coordinates r D (x2 C y 2)1/2 and φ D arctan(y/x ). In these
coordinates, the coordinate velocity of a particle is given by dr/d t D v � e r and
dφ/d t D r�1v � eφ where e r and eφ are unit vectors in the r- and φ-directions,
and the equations of motion for the particle are Fr D m[d2r/d t2 C r(dφ/d t)2]
and Fφ D m[d2φ/d t2 C 2r�1(dr/d t)(dφ/d t)]. Even when there is no force on the
particle, F D 0, there is still a coordinate acceleration in that d2r/d t2 and d2φ/d t2

do not vanish except for purely radial motion. This merely arises because of the
choice of non-Cartesian coordinates – the geometrical form of Newton’s second
law, F D ma still holds.

A non-inertial frame is a frame that is accelerating relative to an inertial frame.
A common example is a uniformly rotating reference frame with angular velocity
vector ω. In such a reference frame, Newton’s second law has the form F D ma C
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1.1 Tides in Newton’s Gravity 5

mω � (ω � r) C 2mω � v where the two additional terms, the centrifugal force,
mω � (ω � r) and the Coriolis force, 2mω � v , arise because the frame of reference
is non-inertial. These are known as fictitious forces.

A freely falling frame of reference in Newtonian theory is a non-inertial frame of
reference because it is accelerating relative to the absolute set of Newtonian coor-
dinates. The following coordinate transformation relates a freely falling frame of
reference (primed coordinates) at point x0 with the absolute Newtonian coordi-
nates (unprimed): x 0 D x � x0 � 1

2 g t2, where g D � Δ

Φ (x0) is a constant. It is
straightforward to see that a0 D d2x 0/d t2 D � Δ

[Φ (x ) � Φ (x0)] which vanishes at
point x0.

In fact, there is a way to tell if you are falling. If there is another object that is
some small distance away from you then its acceleration will be slightly different.
Suppose � is the vector pointing from you to the other object. The acceleration of
that object is

a(x C � ) D a(x) C (� � Δ

)a(x ) C O(�2) (1.8)

and so the relative acceleration or tidal acceleration is

Δai D �� j @2Φ
@x i@x j D �Ei j � j , (1.9)

where

Ei j WD @2Φ
@x i@x j (1.10)

is known as the tidal tensor field. The tidal acceleration is not really local since it
depends on the separation � between falling bodies. The tidal field, however, is a
local quantity, and it encodes the presence of the gravitational field. We will see later
that in General Relativity, the tidal field is a measure of the spacetime curvature.

In the above expressions, the indices i and j run over the three spatial coordinates
fx1, x2, x3g or equivalently fx , y , zg and � i is the ith component of the vector � .
(The three components of the vector are �1, �2 and �3 so we would write � i D
[�1, �2, �3].) The tidal field is a rank-2 tensor having nine components: E11, E12, E13,
E21, E22, E23, E31, E32 and E33. It is symmetric: E12 D E21, E13 D E31 and E23 D E32,
or, more concisely, Ei j D E j i . Einstein’s summation convention is being used here:
there is an implicit summation over repeated indices. That is, the expression

Ei j � j

is short-hand for
3X

j D1

Ei j � j D Ei1�1 C Ei2�2 C Ei3�3 .

For example, if two objects are separated in the x3- or z-direction, so that �1 and
�2 both vanish, then the three components of the tidal acceleration are

Δa1 D �E13�3 , Δa2 D �E23�3 , and Δa3 D �E33�3 .
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6 1 Prologue

Example 1.2 Tidal acceleration

Consider a body falling toward the Earth. The Newtonian potential is

Φ D � G M˚
(x2 C y 2 C z2)1/2 . (1.11)

The tidal field component E11 is

E11 D @2Φ
@x2

D �G M˚
�

3
x2

(x2 C y 2 C z2)5/2
� 1

(x2 C y 2 C z2)3/2

�
, (1.12)

the tidal field component E12 is

E12 D @2Φ
@x@y

D �G M˚
�

3
x y

(x2 C y 2 C z2)5/2

�
, (1.13)

and so forth. The components can be written concisely as

Ei j D � G M˚
r5

�
3xi x j � δ i j r2� , (1.14)

where r D (x2 C y 2 C z2)1/2 and δ i j is the Kronecker delta,

δ i j WD
(

1 i D j

0 i ¤ j ,
(1.15)

and so xi D δ i j x j .
Suppose that a reference body is on the z-axis at a distance r D z from the centre

of the Earth. Then the tidal tensor is

Ei j D G M˚
r3

241 0 0
0 1 0
0 0 �2

35 . (1.16)

Consider a nearby second body that is also on the z-axis, a distance Δz farther
from the centre of the Earth. The relative tidal acceleration of this body is

Δai D �Ei j � j D �Ei3Δz . (1.17)

The only non-vanishing component is the z-component:

Δa3 D 2
G M˚

r3
Δz . (1.18)

A third body is next to the reference body, lying a small distance Δx away on the
x-axis. The relative tidal acceleration of this body is

Δai D �Ei j � j D �Ei1Δx (1.19)

and the only non-vanishing component is the x-component:

Δa1 D � G M˚
r3 Δx . (1.20)

Notice that a collection of freely falling objects will be pulled apart along the
direction in which they are falling while being squeezed together in the orthogonal
directions.
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1.1 Tides in Newton’s Gravity 7

Unlike the coordinate acceleration, the tidal acceleration has intrinsic physical
meaning. We witness ocean tides caused by the Moon and the Sun. These tides
dissipate energy on the Earth. That is, tidal forces can do work. To compute the
work, consider an extended body (say, the Earth) moving within a tidal field pro-
duced by another body (say, the Moon). An element of the extended body, located
at a position x and having mass �(x )d3x , experiences a tidal force

Fi D �Ei j x j �(x )d3x . (1.21)

If the element is moving through the tidal field with velocity v then there is an
amount Fi v i of work per unit time done on that element. Summing over all ele-
ments that comprise the body yields the total amount of tidal work:

d W
dt

D �
Z

body

Ei j v i x j �(x )d3x

D � 1
2
Ei j

d
d t

Z
body

x i x j �(x )d3x

D � 1
2
Ei j

d I i j

d t
, (1.22)

where

I i j WD
Z

body

x i x j �(x )d3x (1.23)

is the quadrupole tensor. Note that this tensor is closely related to the moment of
inertia tensor

Ii j WD �
δ i j δk l � δ i k δ j l

�
I k l D

Z
body

�
r2δ i j � xi x j

�
�(x )d3x (1.24)

and also to the (traceless) reduced quadrupole tensor

I i j WD
�

δ i k δ j l � 1
3

δ i j δk l

	
I k l D

Z
body

�
xi x j � 1

3
r2δ i j

	
�(x )d3x . (1.25)

Here r2 D kxk2 D δ i j x i x j .
Tidal work can also be performed by a dynamical system with a time-changing

tidal field Ei j (t). The work performed by such a system on another body with a
quadrupole tensor I i j is found by integrating Eq. (1.22) by parts:

W D � 1
2
Ei j I i j

ˇ̌T
0 C 1

2

TZ
0

dEi j

d t
I i j d t . (1.26)

The first term is bounded, while the second term secularly increases with time and
represents a transfer of energy from the dynamical system that is producing the
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8 1 Prologue

time-changing tidal field to the other body. For example, the source of the time-
changing tidal field might be a rotating dumbbell or a binary system of two stars in
orbit about each other. Over a long time (large T ) the secularly growing term will
dominate, and we can write the work done by the dynamical source on the body
with moment of inertia tensor I i j as

d W
dt

� 1
2

dEi j

d t
I i j . (1.27)

1.2
Relativity

The special theory of relativity postulates that there is no preferred inertial frame:
local measurements of physical quantities are the same no matter which inertial
frame the measurement is made in. This is the principle of relativity. In particular,
measurements of the speed of light in any inertial frame will always yield the same
value, c WD 299 792 458 m s�1. The consequence of this is that the Newtonian sep-
aration of space and time must be abandoned. Consider a spaceship travelling at a
constant speed v in the x-direction relative to the Earth (see Figure 1.1). Within the
spaceship, an experimental determination of the speed of light is made in which a
photon is emitted from a source in the y-direction, reflected by a mirror a distance
1
2 Δy away from the source, and received back at the source. The time-of-flight Δτ
is measured and the speed of light c D Δy/Δτ is computed. For an observer on
the Earth, however, the distance travelled by the photon is [(Δx )2C(Δy )2]1/2, where
Δx D vΔ t and Δ t is the amount of time the observer on the Earth determines it
takes the photon to travel from the emitter to the receiver. Since the observer on
Earth must measure the same speed of light, c D [(Δx )2 C (Δy )2]1/2/Δ t, we see
that

c2 D (Δx )2 C (Δy )2

(Δ t)2 D (Δx )2 C (cΔτ)2

(Δ t)2 , (1.28)

where we have used Δy D cΔτ, and so

c2(Δτ)2 D c2(Δ t)2 � (Δx )2 . (1.29)

y

x = v t

t = t t = tt = 0

Figure 1.1 A measurement of the speed of
light, performed in a rocket moving at speed
v relative to the Earth, as seen by an observer
on the Earth. A flash of light is produced at
t D 0. The light travels a vertical distance

1
2 Δy , reflects off of the mirror and returns
to the source after a time Δ t (as measured
by the observer on the Earth). The rocket has
moved a horizontal distance Δx D vΔ t in
this time.
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1.2 Relativity 9

The usual time dilation formula Δ t D γ Δτ, where γ D (1 � v2/c2)�1/2 is the
Lorentz factor, follows by setting Δx D vΔ t. This relationship between how time
is measured within the moving frame of the spaceship to how time is measured
on Earth is not particular to the experiment with the photon: time really does move
differently in the different inertial frames of reference.

Equation (1.29) relates the amount of time Δτ between two events, as recorded in
an inertial frame in which the two events occur at the same spatial position (which
is known as the proper time between the two events), to the amount of time Δ t
between the same two events as seen in an inertial frame in which the two events
are separated by a spatial distance Δx . Since the notion of an absolute time is lost in
special relativity, we understand time to simply be a new coordinate which, along
with the three spatial coordinates, depends on the frame of reference. Together,
the time and space coordinates are used to identify points (or events) on a four-
dimensional spacetime. For rectilinear coordinates in an inertial frame, we define
an invariant interval (Δ s)2 between two points in spacetime, (t, x , y , z) and (t C
Δ t, x C Δx , y C Δy , z C Δz), by

(Δ s)2 WD �c2(Δ t)2 C (Δx )2 C (Δy )2 C (Δz)2 , (1.30)

which has the same form as the Pythagorean theorem except for the factor of �c2

in front of the square of the time interval. This equation is just a generalization of
Eq. (1.29) with (Δ s)2 WD �c2(Δτ)2.

Special relativity is incompatible with Newtonian gravity because Newton’s law
of gravitation defines a force between two distant bodies in terms of their separa-
tion at a given instant in time. However, in special relativity, there is no unique
notion of simultaneity. In addition, different frames of reference will make differ-
ent measurements of the Newtonian gravitational force, a result that is at odds with
the principle of relativity.

The general theory of relativity provides a description of gravity in terms of a curved
spacetime. This is discussed in Chapter 2. In general relativity, the inertial frames
of reference are freely falling frames, and the principle of relativity is then taken
to hold in such frames of reference. Tidal acceleration is the physical manifesta-
tion of gravitation, but measurement of a tidal field requires a somewhat extended
apparatus.

Of course, Newtonian gravity must be recovered in some limit of general relativ-
ity: this limit is when G M/(c2R) � 1 and v/c � 1 where M is the characteristic
mass of the system, R is the characteristic size of the system, and v is the charac-
teristic speed of bodies in the system. And since in Newtonian gravity a changing
tidal field is capable of producing work on distant bodies, this must be true in gen-
eral relativity as well. This means that in order to ensure that energy is conserved,
energy must be radiated from the gravitating system that is producing the chang-
ing tidal field to the rest of the universe, because there is no way that the bodies
on which the work is done can create an instantaneous reactive force on the grav-
itating system – this would be incompatible with relativity. The radiation is called
gravitational radiation.
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