Introduction

The great end of life is not knowledge but action.
— T. H. Huxley

1.1 Different Is Usually Controversial

Perhaps all breakthroughs in science are initially clouded with controversies.
Consider the discovery of gravity. Isaac Newton invoked the concept of “action
at a distance” when he developed his theory of gravity. Action at distance couples
the motion of objects; yet, the objects possess no clear physical connection.
Newton argued that the motion of an apple falling from a tree was similar to
the motion of the moon falling toward (and fortunately missing) the earth. The
source of the motion of both objects is consistent with an “action at a distance”
caused by the presence of the earth and its gravitational field.

We can contrast the trajectory of the moon with a simpler object such as a golf
ball. It is easy to understand that a golfer can make the ball move by striking it. A
ball struck just right will carry hundreds of yards (or meters). Residents of New-
ton’s time would be comfortable with this idea. The golf club directly contacts
the ball, albeit for a very short time. The physical connection to the ball is the
club swung by the golfer. But how can the earth change the moon’s trajectory?
The earth does not carry a big golf club to strike the moon. While the action at a
distance theory may not be apparent to a lay person, or even a good scientist in
Newton’s time, the laws of gravity predicted the behavior of astronomical bod-
ies such as the moon’s orbit incredibly well. Hardly anyone would argue that we
ignore the practical application of Newton’s theory until someone resolved this
action at distance business. For years, scientists argued the meaning of “action at
distance” and the nature of space itself. Eventually, scientists agreed that the con-
cept of Newtonian space was problematic. It was left to Einstein to straighten out
issues of space, time, and gravity. In some sense, it hardly mattered if you wanted
to predict planetary motion. A practical application of Newton’s theory accom-
plished that really well, save some relatively minor fixes from Einstein. (We are
not going to worry about issues such as worm holes or gravity waves.)
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Perhaps one should view the theory of quantum mechanics in the same man-
ner. The theory remains “mysterious” in some ways. Oddly, some of the central
components of the theory are understandable only because we can think about
them in classical terms. Still, quantum theory can be used to predict properties of
matter with unprecedented accuracy. Upon the invention of quantum mechanics,
the famous physicist Dirac wrote the following [1]:

The underlying physical laws necessary for the mathematical theory of a large part
of physics and the whole of chemistry are thus completely known, and the difficulty is
only that the exact application of these laws leads to equations much too complicated
to be soluble. It therefore becomes desirable that approximate practical methods of
applying quantum mechanics should be developed, which can lead to an explanation
of the main features of complex atomic systems with out much computation ...

Dirac’s quote of nearly a century ago is correct and appropriate. In principle,
the underlying physical laws (of quantum mechanics) should allow one to pre-
dict “much of physics” (condensed matter physics as an example) and “the whole
of chemistry.” What stands in our way is a practical machinery to accomplish
this task. Computational physicists often refer to this task as addressing Dirac’s
Challenge.

Dirac’s warning about avoiding “too much computation” is an anachronism.
Dirac’s world of 1929 did not envision a computer capable of carrying out billions
or trillions of mathematical operations within a second. When we contemplate
the use of a modest computer, such as a laptop, for the work outlined in this book,
it is indeed “without too much computation.”

1.2 The Plan: Addressing Dirac’s Challenge

Dirac’s challenge for us is to develop “approximate practical methods of apply-
ing quantum mechanics.” The goal of this book is to address, or better start to
address, the challenge.

The book is roughly divided into three parts. The first part will focus on the
theory. We will use a minimum of theory to get to the “good part.” Our intent is
not to write a quantum mechanics textbook. Rather, our intent in this part of the
book is to review essential features. For example, we will consider the simplest
of all atoms, hydrogen, and we will start with the simplest of theories from Bohr.
We will then introduce the Schréodinger equation and briefly sketch out how to
solve the hydrogen atom problem analytically.

The hydrogen atom is one of the rarest of quantum systems — one where we can
do an analytical solution of the Schrédinger equation. The next several chapters
will involve introducing the real problem, one with more than a single electron.
A clear example of such a system is helium, where we have two electrons. Our
study of the helium atom will lead us to consider the Hartree and Hartree—Fock
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approximations. Our next objective will be to consider a practical method for
more than one or two electrons. A practical theory for this is based on “density
functional theory,” which focuses on how electrons are distributed in space.

A logical pathway to take us from Hartree—Fock theory to density functional
theory arises from a “free electron” model. We introduce this model using
concepts removed from the physics of an isolated atom. We will “backtrack” in
our discussions to consider some solid-state physics concepts. Theories based
on electron density will provide some key approximations. In particular, we
will begin with the Thomas—Fermi approximation, which can lead to contem-
porary density functional theories. This approach will allow us to consider a
“one-electron” Schrodinger equation to solve a many-electron problem.

The last chapter of this section will center on the “pseudopotential approxima-
tion.” This key approximation will allow us to fix the length and energy scales
of the many-electron problem by considering only the chemically relevant elec-
tronic states. The pseudopotential approximation treats an element such as lead
on an equal footing with an element such as carbon. Both lead and carbon have
the same configuration for the outermost, or valence, electrons. These chemically
active states provide the chemical bond or “electronic glue” that holds atoms,
clusters, molecules, and nanocrysals together.

The next part of the book illustrates numerical methods. Numerical methods
are important as there are few atomic systems that can be solved analytically,
save the aforementioned hydrogen atom. This is also true for classical systems
where analytically only the two-body system is solvable.

We initially consider an isolated, spherically symmetric atom. We introduce
the variational method and show how approximate wave functions can be used
to obtain accurate estimates for the exact solution. We also solve the problem by
integrating a one-dimensional equation.

We will consider solutions for many-electron atoms and molecules, using
a numerical basis. This is the standard method for most quantum chemistry
approaches to molecules and atoms, although it may not be the best method
for these systems, especially for pedagogical purposes. An alternate is to solve
the problem in real space on a grid. This approach is easy to implement and
understand. With either a basis or a grid approach, we solve an “eigenvalue
problem.” Iterative methods can solve such problems and we will illustrate this.

The last part of the book demonstrates the application of quantum theory to
atoms, molecules, and clusters using a common numerical method. Physical
concepts such as pseudopotentials, density functional theory, and a real-space
grid form the underpinnings for computing a solution of the electronic structure
problem. The pseudopotential model of solids is widely used as the standard
model for describing atomistic systems. The model divides electronic states into
those that are valence states (chemically active) and those that are core states
(chemically inert). For example, systems made up of silicon atoms have valence
states derived from the atomic 3s*3p? configuration. The valence states form
bonds by promoting a 3s electron to form sp® bond. One can omit the core states
1s22s22p° altogether in pseudopotential theory. As such, the energy and length
scales for determining a basis are set by the valence state.
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Density functional theory is perhaps the weakest approximation made in
our toolbox, but it is indispensable. Density functional theory allows us to
consider one electron at a time as it maps the difficult many-body problem to a
one-electron problem.

Our use of a real-space grid reflects the bias of the author. The use of a grid to
solve difficult differential equations is well known in the engineering community.
There are good reasons for its popularity. Grids are easy to implement and possess
a number of advantages for running on high-performance computers; e.g. they
can reduce the number of global communications.

Many of the numerical solutions in our book are based on computer codes
using MATLAB. The inventors of MATLAB claim: MATLAB is a high-level lan-
guage and interactive environment that enables you to perform computationally
intensive tasks faster than with traditional programming languages such as C,
C++, and Fortran. There is merit to this claim; MATLAB is easy to use and imple-
ment. A transcription of a “state of the art” research program forms the basis of
the codes in this book.

The application to atoms will focus on ionization energies, electron affinities,
and polarizabilities. We will examine some diatomic molecules along with some
organics such as methane and benzene. We will also examine solutions for chem-
ical trends, ionicities, energy levels, bond energies, vibrational levels, and bond
lengths. Clusters of atoms represent a “new” form of matter, i.e. a combination
of atoms that is stable only in isolation. Systems in isolation represent a seri-
ous challenge for experiment. The systems must be probed without any material
interactions. We can examine properties in clusters as for molecules, but we can
also examine other seminal properties such as the evolution of properties from
atoms to crystals. We will look at nanoscale structures such as nanocrystals. In
these systems, quantum confinement can play an important role in altering phys-
ical properties. An appendix at the end will give the reader access to the essential
codes.
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