1
Introduction to Quantum Information Processing

Quantum information is a relatively young area of interdisciplinary research. One
of its main goals is, from a more conceptual point of view, to combine the prin-
ciples of quantum physics with those of information theory. Information is phys-
ical is one of the key messages, and, on a fundamental level, it is quantum phys-
ical. Apart from its conceptual importance, however, quantum information may
also lead to real-world applications for communication (quantum communication)
and computation (quantum computation) by exploiting quantum properties such
as the superposition principle and entanglement. In recent years, especially en-
tanglement turned out to play the most prominent role, representing a universal
resource for both quantum computation and quantum communication. More pre-
cisely, multipartite entangled, so-called cluster states are a sufficient resource for
universal, measurement-based quantum computation [1]. Further, the sequential
distribution of many copies of entangled states in a quantum repeater allow for ex-
tending quantum communication to large distances, even when the physical quan-
tum channel is imperfect such as a lossy, optical fiber [2, 3].

In this introductory chapter, we shall give a brief, certainly incomplete, and in
some sense biased overview of quantum information. It will be incomplete, as the
focus of this book is on optical quantum information protocols, and their experi-
mental realizations, including many experiment-oriented details otherwise miss-
ing in textbooks on quantum information. Regarding the more abstract, mathe-
matical foundations of quantum information, there are various excellent sources
already existing [4-8].

Nonetheless, we do attempt to introduce some selected topics of quantum in-
formation theory, which then serve as the conceptual footing for our detailed de-
scriptions of the most recent quantum information experiments. In this sense, on
the one hand, we are biased concerning the chosen topics. On the other hand,
as our goal is to advertise a rather new concept for the realization of quantum
information protocols, namely, the combination of notions and techniques from
two complementary approaches, our presentation of the basics of quantum infor-
mation should also provide a new perspective on quantum information. The two
complementary approaches are the two most commonly used encodings of quan-
tum information: the one based upon discrete two-level systems (so-called qubits),
certainly by far the most popular and well-known approach, in analogy to classi-
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cal digital encodings; the other approach relies on infinite-dimensional quantum
systems, especially quantized harmonic oscillators (so-called qumodes), more rem-
iniscent of classical analog encodings.

There are also approaches in between based on elementary systems that live
in more than two, but still finite dimensions. Such discrete multi-level systems
share many of their most distinct features with those of simple qubit systems. In
fact, we may simulate any d-level system (so-called qudit) by a set of log, d qubits.
Therefore, one may expect to obtain qualitatively new features only when the lim-
it d — oo is taken. Schemes based on qubit and qudit encodings are commonly
referred to as discrete-variable (DV) approaches, whereas those exploiting infinite-
dimensional systems and the possibility of preparing and measuring quantum in-
formation in terms of variables with a continuous spectrum are called continuous-
variable (CV) schemes. Many fundamental results of quantum information theory,
however, would not even depend on a particular encoding or dimensionality. These
results based on fundamental elements of quantum theory such as linearity stay
solid even when the infinite-dimensional limit is taken.

Similar to a classical, digital/analog hybrid computer, one may also consider uti-
lizing discrete and continuous degrees of freedom at the same time for encoding,
logic gates, or measurements. Later, when we start discussing optical implementa-
tions of quantum information protocols in Chapter 2, we can give the motivation
as to why such a hybrid approach would be useful for processing quantum infor-
mation. The purpose of the present chapter is solely conceptual and independent
of potential implementations. We shall introduce some basic results and notions of
quantum information theory, and, in particular, apply these to both DV qubit and
CV qumode systems.

Starting with a short motivation for the interest in quantum information theory
in Section 1.1, we discuss the preparation and representation of quantum informa-
tion in the form of quantum states and observables (Section 1.2), its manipulation
using unitary gates and evolution (Section 1.3), and its behavior under non-unitary
evolution in the form of quantum channels and measurements (Section 1.4). The
latter scenario is very important, as an initialized quantum information carrier
would typically be subject to unwanted interactions with its environment, and such
a pure-into-mixed-state evolution is described by a channel map (Section 1.4.1).
Whenever the environment is replaced by an auxiliary system that can be mea-
sured, information about the original quantum system may be obtained, as we
discuss in Section 1.4.2.

Before concluding this chapter in Section 1.10 with a discussion of some non-
optical experimental realizations of quantum information processing, we briefly
introduce some basic notions, resources, subroutines, and full-scale applications
such as entanglement (Section 1.5), quantum teleportation (Section 1.6), quantum
communication (Section 1.7), quantum computation (Section 1.8), and quantum
error correction (Section 1.9). Since the remainder of this book is intended to de-
scribe and illustrate many of these protocols and applications, we shall postpone
such more detailed discussions until the respective chapters regarding optical im-
plementations.
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1.1
Why Quantum Information?

Quantum computers are designed to process information units which are no
longer just abstract mathematical entities according to Shannon’s theory, but rather
truly physical objects, adequately described by one of the two" most fundamental
physical theories — quantum mechanics.

Classical information is typically encoded in digital form. A single basic infor-
mation unit, a bit, contains the information whether a “zero” or a “one” has been
chosen between only those two options, for example, depending on the electric cur-
rent in a computer wire exceeding a certain value or not. Quantum information is
encoded in quantum mechanical superpositions, most prominently, an arbitrary
superposition of “zero” and “one”, called a “qubit”.”? Because there is an infinite
number of possible superposition states, each giving the “zero” and the “one” par-
ticular weights within a continuous range, even just a single qubit requires, in
principle, an infinite amount of information to describe it.

We also know that classical information is not necessarily encoded in bits. Bits
may be tailor-made for handling by a computer. However, when we perform cal-
culations ourselves, we prefer the decimal to the binary system. In the decimal
system, a single digit informs us about a particular choice between ten discrete
options, not just two as in the binary system. Similarly, quantum information may
also be encoded into higher-dimensional systems instead of those qubit states de-
fined in a two-dimensional Hilbert space. By pushing the limits and extending
classical analog encoding to the quantum realm, quantum observables with a con-
tinuous spectrum may also serve as an infinite-dimensional basis for encoding and
processing quantum information. In this book, we shall attempt to use both the
discrete and the continuous approaches in order to formulate quantum informa-
tion protocols, to conceptually understand their meaning and significance, and to
recast them into a form most accessible to experimental implementations. We will
try to convey some answers as to why quantum information is such a fascinating
field that stimulates interdisciplinary research among physicists, mathematicians,
computer scientists, and others.

There is one answer we can offer in this introductory chapter straight away. In
most research areas of physics, normally a physicist has to make a choice. If she or
he is most interested in basic concepts and the most fundamental theories, she or
he may acquire sufficient skills in abstract mathematical formalisms and become
part of the joint effort of the physics community to fill some of the gaps in the basic
physical theories. Typically, this kind of research, though of undoubted importance
for the whole field of physics as such, is arbitrarily far from any real-world applica-
tions. Often, these research lines even remain completely disconnected from any
potential experimental realizations which could support or falsify the correspond-
ing theory. On the other hand, those physicists who are eager to contribute to the

1) The other, complementary, fundamental physical theory is well known to be general relativity.
2) The term qubit was coined by Schumacher [9].
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real world by using their knowledge of fundamental physical theories would typ-
ically have to sacrifice (at least to some extent)” their deeper interest into those
theories and concepts, as day and life times are finite.

Thus, here is one of the most attractive features of the field of quantum infor-
mation: it is oriented towards both directions, namely, one that aims at a deeper
understanding of fundamental concepts and theories, and, at the same time, one
that may lead to new forms of communication and computation for real-world ap-
plications.” Obviously, as quantum information has been an interdisciplinary field
from the beginning, the large diversity of quantum information scientists natu-
rally means that some of them would be mainly devoted to abstract, mathemati-
cal models, whereas others would spend most of their time attempting to bridge
the gaps between theoretical proposals, experimental proof-of-principle demonstra-
tions, and, possibly, real-world applications. However, and this is maybe one of the
most remarkable aspects of quantum information, new fundamental concepts and
insights may even emerge when the actual research effort is less ambitious and
mostly oriented towards potential applications. In fact, even without sophisticated
extensions of the existing mathematical formalisms, within the standard frame-
work of quantum mechanics, deep insights may be gained. A nice example of this
is the famous no-cloning theorem [14, 15] which is, historically, probably the first
fundamental law of quantum information.”

The no-cloning theorem states that quantum information encoded in an arbi-
trary, potentially unknown quantum state cannot be copied with perfect accura-
cy. This theorem has no classical counterpart because no fundamental principle
prevents us from making arbitrarily many copies of classical information. The no-
cloning theorem was one of the first results on the more general concepts of quan-
tum theory that had the flavor of today’s quantum information theory (see Fig-
ure 1.1). Though only based upon the linearity of quantum mechanics, no-cloning
is of fundamental importance because it is a necessary precondition for physical
laws as fundamental as no-signaling (i.e., the impossibility of superluminal com-
munication) and the Heisenberg uncertainty relation.

3) A famous exception, of course, is Albert for a “superluminal communicator”, the

Einstein who dealt with fridges during

his working hours in a patent office and
discovered general relativity during his spare
time.

so-called FLASH (an acronym for First Laser-
Amplified Superluminal Hookup) [16]. The
flaw in this proposal and the non-existence of
such a device was realized by both referees:

4) Very recent examples for these two Asher Peres, who nonetheless accepted the
complementary directions are, on the one paper in order to stimulate further research
hand, the emerging subfield of relativistic into this matter, and GianCarlo Ghirardi,
quantum information that is intended to who even gave a no-cloning-based proof for
provide new insights into more complete the incorrectness of the scheme in his report.
theories connecting quantum mechanics Eventually, the issue was settled through the
with relativity [10, 11]; and, on the other published works by Dieks, Wootters, and
hand, the recent demonstration of a quantum Zurek [14, 15], proving that any such device
key distribution network in Vienna [12, 13]. would be unphysical.

5) There is a fascinating anecdote related

to the discovery of no-cloning in 1982.
The theorem was inspired by a proposal
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Figure 1.1 A summary of concepts and appli-
cations linked to or originating from quantum
information. The upper part is devoted to fun-
damental physical laws, while the middle and

lower parts refer to elementary quantum pro-
tocols and the ultimate full-scale quantum
applications, respectively.

At the center of quantum information is the notion of entanglement, a necessary
resource for elementary quantum protocols such as quantum teleportation [17] (the
reliable transfer of quantum information using shared entanglement and classi-
cal communication) and quantum key distribution [18] (the secure transmission
of classical information using quantum communication);® entanglement has also
been shown to be a sufficient resource for the ultimate applications, long-distance
quantum communication [2] and universal quantum computation [1]. Missing in
Figure 1.1 are important subroutines for quantum error correction [5, 21] in or-
der to distribute or reliably store entanglement; in quantum communication, such
a quantum error correction may be probabilistic (so-called entanglement distilla-
tion [22]), while for quantum computation, we need to measure and manipulate
entangled states fault-tolerantly in a deterministic fashion [5].

Without no-cloning, the following scenario appears to be possible [16]. Two par-
ties, “Alice” (subscript A) and “Bob” (subscript B), sharing a maximally entangled
two-qubit state,”

1

L 0)a® [0)s + 114 ® [1)3) = 7

7 (H)a® [+ +1-)a®[-)8)

(1.1)

may use their resource to communicate faster than the speed of light. The essential
element for this to work would be the Einstein, Podolsky, and Rosen (EPR) [23]

6) The importance of entanglement as a
necessary precondition for secure key
distribution was shown by Curty et al. [19].
Even though entanglement may not be
physically distributed between the sender

of the quantum signals such that perfect
cloning would definitely prevent secure
quantum key distribution (Figure 1.1), and,
in a realistic scenario, approximate cloning
may as well.

and the receiver (as in [18], as opposed to, for
example, the Ekert protocol [20]), for secure
communication, the measured correlations
must not be consistent with classical
correlations described by an unentangled
state. Note that a possible eavesdropper
attack is always given by approximate cloning

7) The following discussion requires some
familiarity with basic quantum mechanical
notions such as state vectors, density
operators, and partial trace operations, a brief
introduction of which will be given in the
succeeding section.
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correlations of the entangled state which are stronger than classical correlations
as they are present at the same time in different, conjugate bases, {|0),|1)} and
{|+), |-)} with |£) = (|0) & |1))/+/2, corresponding to different, non-commuting
observables Z and X, respectively, where Z|k) = (—1)¥|k) and X|+) = +|+) with
k = 0,1. Physically, each of the two bases could correspond to two orthogonal
polarizations of a single photon; one basis for linear polarization and the other one
for circular polarization.

Alice could now choose to measure her half of the entangled state in the basis
{]0),]1)}. Alternatively, she may as well project onto {|+), |—)}. In the former case,
Bob's half ends up in the corresponding eigenstate |0) or |1) and so would all copies
that he could generate from his half. In the latter case, copies of Bob’s half would all
be in the corresponding state |+) or |[—), and measurements in the basis {|0), |1)}
would yield, on average, half of the copies in the state |0) and likewise half of them
in the state |1). Therefore, the statistics of measurements on copies of Bob’s half
would enable him to find out which measurement basis Alice has chosen. Such
a scheme could be exploited for a deterministic, superluminal transfer of binary
information from Alice to Bob. However, the other crucial element here would
be Bob’s capability of producing many copies of the states {|0), [1)} or {|+),|—)}
without knowing what the actual states are. This is forbidden by the no-cloning
theorem.

Physically, no-cloning would become manifest in an optical implementation of
the above scheme through the impossibility of amplifying Bob’s photons in a noise-
less fashion; spontaneous emissions would add random photons and destroy the
supposed correlations. From a mathematical, more fundamental point of view, the
linearity of quantum mechanics alone suffices to negate the possibility of superlu-
minal communication using shared entanglement.

The crucial ingredient of the entanglement-assisted superluminal communica-
tion scenario above is the copying device that may be represented by an (initial)
state |A). It must be capable of copying arbitrary quantum states ) as

[)A) — [w)|y)IA) . (1.2)

The final state of the copying apparatus is described by |A"). More accurately, the
transformation should read

[1)al0)p|A)e —> |w>a|w)b|A/>c , (1.3)

where the original input a to be cloned is described by |1), and a second qubit b is
initially in the “blank” state |0). After the copying process, both qubits end up in
the original quantum state |).

Wootters and Zurek [15] (and similarly Dieks for his “multiplier” [14]) considered
a device that does clone the basis states {|0), |1)} in the appropriate way according
to Eq. (1.2),

0)[A) —> 10)0)[Ao) ,
IDIA) — [1D1)[A1) - (1.4)
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Since this transformation must be unitary® and linear, its application to an input
in the superposition state |y) = a|0) + |1) leads to

[9)[A) —> a[0)[0)|Ao) + BI1)[1)]A1) . (1.5)

For identical output states of the copying apparatus, |Ag) = |A;), a and b are in the
pure state a|0)|0) + 3|1)|1) which is not the desired output state |y)|y). With a
distinction between the apparatus states, that is, taking them to be orthonormal,
(AolAg) = (A1]A1) = 1, (Ag|A;) = 0, we obtain from the density operator of the
whole output system (for simplicity, assuming real a and ),

Pabe = @*|00Ag)abc (00A0] + BZ|11A1)abe (11A]
+ aﬂ|00A0)abc(11A1| + aﬂ|11A1>abc<OOA0| ) (16)

the density operator of the original-copy system ab by tracing out the apparatus,
TrePabe = &*[00)ab (00] + B2[11)an (11] = s - (17)
Finally, we can calculate the individual density operators of a and b,

Trppab = @2(0)a(0] + B[1)a(1] = fa
Trafab = a?|0)p (0] + BZ|1)p (1] = fp - (1.8)

The two outgoing states are identical, but significantly different from the desired
original density operator,

[9)alw| = a?10)a(0] + aBl0)a(1] + af|1)a(0] + BZ|1)a(1] - (1.9)

In fact, any information about quantum coherence encoded in the off-diagonal
terms of |y) is eliminated in the output states of Eq. (1.8). The degree of similarity
between the actual output states and the original state, expressed by their overlap,
the so-called fidelity [9],

F=(lpat)a = o (@lpply)y = a* + p* = a* + (1 — a?)?, (1.10)

depends on the original input state. The basis states |0) or |1) are perfectly copied
with unit fidelity (¢ = 1 or a = 0), as we know from Eq. (1.4). However, coherent
superpositions are copied with non-unit fidelity, where the worst result is obtained
for the symmetric superposition a = 1/+/2 with F = 1/2.

Is it inevitable to obtain such a bad result when copying a symmetric superposi-
tion? Of course, only when we insist on perfectly copying certain basis states such

8) It was pointed out by Werner [24] that the linear, completely positive trace-preserving
“constructive” approach here, i.e, coupling (CPTP) maps. General quantum operations,
the input system with an apparatus or channels, and CPTP maps as well as states
“ancilla” through a unitary transformation represented by density operators instead of
and then tracing out the ancilla, is equivalent vectors in Hilbert space will be discussed in

to a general quantum cloner described by more detail in the following sections.

9
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as {|0),|1)}. A universal copying machine that “treats all input states equally well”
could be considered instead. For any input state |s) = «|0) + 3]1), it would always
yield the same optimal non-unit fidelity independent of a, namely, F = 5/6 [25].
This would correspond to the optimal, approximate, universal cloning of an un-
known qubit.

Since no-cloning only depends on the linearity of quantum theory, it applies to
quantum states of any dimensionality, not only to qubits. Optimal, approximate,
universal cloning may then be considered for all kinds of quantum states, from
DV d-level systems [24] to CV infinite-dimensional systems [26, 27], including ex-
tensions with certain given numbers of input and output copies.

1.2
States and Observables

A pure quantum state is given by a vector in Hilbert space [y), and the vector may
be expanded in an arbitrary basis,

lp) = (mly)|m). (1.11)

The basis is complete and orthonormal,

Do Imy(m[ =1, (m|m’) = 6 . (1.12)

The complex numbers (m|y) are the components of the Hilbert space vector |).
When measuring an observable M, the probability for obtaining the measurement
result m (a real eigenvalue of M with eigenstate |m)) is determined by the size of
the component of |1) in direction of |m),

_ (m]yp)?
= gy (14
Here,
(ly) = 32 S lm)(ml(m|p)im’y = 3 |(mlp) (1.14)

ensures the proper normalization, with (m|y)* = (y|m). Once the measurement
result m is obtained, the state vector |) is reduced (“collapses”) onto the corre-
sponding eigenstate |m). The overlap (1|y’) is the scalar product of the vector
space, which is obviously independent of the basis choice in Eq. (1.11). The expec-
tation value of the observable M in the state |1) is given by (with (y|y) = 1)

(K1) =Y pum =" m{ylm)(m|y)

m

= 1Y mim)(mly) = (¥|M]y) . (L.15)
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This equation reveals the spectral decomposition of the observable M,
M =" m{m)(m|, (1.16)

which is a Hermitian operator and so the eigenvalues m are real. Thus far, we have
considered observables with a discrete, countable spectrum, regardless of whether
the Hilbert space is finite or infinite-dimensional. In the infinite-dimensional case,
an observable X may have a continuous spectrum. Its spectral decomposition be-
comes

X = /dxx|x)(x| , (1.17)

with the continuous eigenbasis {|x)} and the real, continuous eigenvalues x.

In contrast to pure states, mixed states cannot be described by Hilbert space vec-
tors, taking into account the case of incomplete knowledge about the state prepa-
ration. A mixed state is a statistical mixture of pure states given by the density
operator (with py > 0and )", px = 1)

p= pulwe) (vl - (1.18)
k

As opposed to the coherent superposition in Eq. (1.11), a mixed state is sometimes
called an incoherent superposition. According to this definition, we find for the
overall expectation value of the observable M,

(M) =" pelwil Mlype) = D> pe(we M{m) (m|y)
p "k

= > (m > pelwi)(ye M|m) = Tr(pM) (1.19)
m %

where we have introduced the trace operation Tr(---) = >, (m]|---|m) with an
arbitrary basis {|m)}. The density operator is a normalized Hermitian operator, so
Tr(p) = 1, and it is non-negative (i.e., it has only non-negative eigenvalues) because

(@1l¢) =D pel{dlyi)l> = 0 (1.20)
k

for any |¢). Note that the states |1;) in the mixture 5 need not be orthogonal to
each other. Further, the mixed-state decomposition is not unique. However, when
the density operator of Eq. (1.18) is written in its eigenbasis, we find

Tr(p) =Y pt<y p=1, (1.21)
k k

with p, now being the eigenvalues of p. Equality, Tr(?) = 1, only holds for pure
states. Therefore, any state with Tr(p%) < 1 is mixed. Alternatively, this becomes
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manifest in the von Neumann entropy of a state,

S(p) = ~Trplog p

= _Tr |:Zpk|wk WkIZ(logpz ly1) %l} Zpklogpk
(1.22)

It becomes nonzero for any mixed state and vanishes for pure states.

1.2.1
Qubit

We shall now consider specific quantum states as they are typically used in quan-
tum information. In a two-dimensional Hilbert space, a general pure qubit state
can be written as

[Y0,4) = cos(6/2)|0) + sin(0 /2)e'? [1) . (1.23)
This state can also be represented in terms of the Bloch vector representation,

b =1%0,0) Vol
1]1 1 ( cos 6 sin 6e71¢)

2 sinfet®  _—cos@
_ 1 1+ S3 S1 — iSz . 1
= (s1+is2 L) =50, (1.24)

with ¢ = (01, 0;, 03)", the Pauli matrices
0 1 0 —i 1 0
o1 = (1 0), 0) = (1 O), 03 = (0 _1), (125)

s = (51,52, 53) = (sin 0 cos ¢, sin O sin ¢, cos 0) . (1.26)

and

The Bloch vector s fully describes the qubit state. It points in the direction specified
by the spherical coordinates 6 and ¢. The vector’s tip lies on the surface of the
Bloch sphere, representing a pure state with |s| = 1. For mixed states, we would
have |s| < 1. Throughout, we will interchangeably use {04, 02, 03}, {04, 0y, 0.},
and { X, Y, Z}, respectively, to express the Pauli matrices and operators (where Y =
iX Z).

A particularly important set of pure qubit states are the six +1 eigenstates of
{£X,£Y,+Z}, according to”

EX|£) = 1), (~1*Z[k) = k), (1.27)

9) For a definition of stabilizers, see the discussion and the box in Section 1.9.
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+7

o
-Z

Figure 1.2 The qubit Bloch sphere. There are six +1 eigenstates of the Pauli operators
{£X, LY, £Z} corresponding to three pairs of basis vectors on opposite sides of the Bloch
sphere.

and £Y(|0) +1[1))/+/2 = (|0) £1i|1))/+/2, with k = 0,1 and |£) = (|0) £ |1))/+/2.
These are the so-called stabilizer states for one qubit, where each pair represents a
basis situated on opposite sides of the Bloch sphere (see Figure 1.2). Typically, the
Z eigenstates are chosen to be the computational basis, while the X eigenstates are
then obtained through Hadamard transformation, H|k) = (|0) + (—1)¥|1))/v/2.

1.2.2
Qumode

A natural way to encode quantum information is in terms of quantized harmonic
oscillators. In general, we shall refer to these quantum objects as qumodes. In this
case, the Hilbert space vectors live in an infinite-dimensional Hilbert space. The
observables are Hermitian operators with a discrete, countable or a continuous
spectrum such as occupation number or amplitude and phase of the oscillator,
respectively. These mathematical notions have their physical interpretation in the
complementary particle and wave properties of a quantum oscillator.

The well-known Hamiltonian of a single qumode is w (#1+1/2), with the Hermi-
tian occupation number operator 7 = 47 4. The eigenstates of the number operator
are the number states |n),

aln) = nln), (1.28)

where n = 0,1,2,...,00 is the occupation or excitation number of the oscillator.
The ground state of the oscillator is defined by

a0y =0. (1.29)

The energy hw /2 corresponds to the ground-state or zero-point energy which is
still present when the qumode has an excitation number zero.

The non-Hermitian operators @ and 47 are the lowering and raising operators,
respectively,

aln) = Vnln—1), afin) = Vn+1n+1). (1.30)
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By successive application of the raising operator, all number states can be obtained
from the ground state,

@)’
Vnl

The number states form an orthonormal,

In) = |0) . (1.31)

10)
(nm) = Onm , (1.32)

and complete basis,

oo
Y In)nl=1. (1.33)
n=0
The Hamiltonian of a single qumode, H = #w (4T + 1/2), may be rewritten as,
v L 252
H=E(p + w?%?), (1.34)
with
b= ——— (R +ip), = ——— (0% — i) (1.35)
a= w% +ip), a'= w% —ip) , .
V2hw P 2hw P
or, conversely,
R ho. R Cjho .
= oo (a+al), p=—if Sl @-a), (1.36)

using the well-known commutation relation for “position” and “momentum”,
(%, p] =ik . (1.37)

These Hermitian operators are the position and momentum operators of an oscil-
lator with unit mass. The lowering and raising operators satisfy the commutator
[a,aT] = 1. In Eq. (1.35), we see that up to some dimensional factors, the position
and momentum operators are the Hermitian real and imaginary parts of the low-
ering operator. It is then convenient to define the dimensionless pair of conjugate
quantum variables,

A w ~ 1
X =,/—%x = Read, P = p = Ima . 1.38
V 2h Zhwp (1.38)

Their commutation relation is given by

(X, P]= % . (1.39)

10) The proper normalization is ensured by the prefactors in Eq. (1.30).
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In other words, the dimensionless “position” and “momentum” operators, X and
P, are defined as if we set # = 1/2. Considering a classical oscillator, they would
correspond to the real and imaginary parts of the oscillator’s complex amplitude.
Throughout the text, we use # = X and p = P to express the dimensionless
position and momentum operators so that & = X + ip.

The Heisenberg uncertainty relation for the variances of two non-commuting
observables A and B in a given quantum state,

(AAY) = ((A— (A)?) = (A%) — (A)?,
(AB)?) = ((B—(B))*) = (B — (B)?, (1.40)
becomes

{[A, B))I>- (1.41)

Inserting Eq. (1.39) into Eq. (1.41) gives the uncertainty relation for a pair of con-
jugate phase-space variables of a single qumode,

k=(a+a"2, p=(a-ahyi, (1.42)
namely,
(ARN(ABP) = 7102 AP = 1 - (143

A single qumode has position and momentum eigenstates,

X|x) = x|x), plp) = plp) . (1.44)
These are orthogonal,
(x| =0(x—x),  (plp) =d(p—p), (1.45)

and complete,

o0 o0
[ mwax =1, [ ipplap =1, (146
—00 —0o0
and they would correspond to lines in phase space, as shown in Figure 1.3.

As it is well-known from quantum mechanics, the position and momentum
eigenstates are related to each other by the Fourier transformation,

1 7 -
|x) = — / e*Zi"p|p)dp , |p) = — / e+21"p|x)dx . (1.47)
v vr )

The Fourier transformation of a qumode is the analogue of the discrete Hadamard
gate for a qubit mentioned in the preceding section (see Figure 1.4). Similarly, |x)
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p |x> p

[

(@ (b)

Figure 1.3 Z and X stabilizer states of a qumode in phase space. (a) Computational position
basis, (b) conjugate momentum basis.

qumode qubit
computational
basis |x) [0y [1)
bass [p=x) 1=
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Figure 1.4 Basis state transformations for a qumode and a qubit. |4) = (|0) & |1))/+/2.

and |p) play the roles of the computational and the conjugate basis, respectively,
like {|0), 1)} and {|+), |—)} in the qubit case. They are the eigenstates of the Weyl—
Heisenberg (WH) operators,

X(S) = 672isﬁ ) Z(S) = e+215§c , (1.48)
with
e—I—Zisp X(S)'p) — |p> , e—Zist(s)lx) — |x) , (149)

similar to Eq. (1.27) for a single qubit. The position and momentum states, be-
ing the above +1 WH eigenstates, are among the stabilizer states™ for a single
qumode. A more general set of stabilizer states would include rotated position
or momentum eigenstates. For instance, the rotated p-momentum states are +1
eigenstates of

e—l—Zisp—iszcosb‘sinb‘X(scos Q)Z(—S sin 9) = g(pg)(s) } (150)

with a “clockwise” rotation angle 6. In particular, by using our convention, for
6 = —m/2, we recover the stabilizer of the position states (here with eigenvalue

11) For a definition of stabilizers, see the discussion and the box in Section 1.9.
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—p) corresponding to a Fourier transformation of the p-momentum states. We shall
get back to these qumode stabilizers later in various contexts such as unitaries on
qumodes and optical Gaussian states of one or more qumodes.

A general pure qumode state |y) can be expanded in the position basis,

|w>=/dx|x><x|w> =/dxw<x>|x>, (1L51)

where (x|y) = 1 (x) is the position wave function. Any mixed state may be written
as

,a:/f(s, t)X(s) Z(t)ds dt , (1.52)

with a complex function f(s, t). In quantum optics, this would correspond to a
phase-space expansion in terms of the quantum optical displacement operator.

Encoding quantum information

®  Qubit

arbitrary pure states:
[90,6) = cos(6/2)[0) + sin(6 /2)e'? |1)
arbitrary mixed states:
~ 1 T
o= E(]H—s-a), 0= (01,02,03) , |[s]=<1
stabilizer states as +1 eigenstates of {+X = +01, Y = +0,,£Z = +o03}:
£X(10) £ [1))/v2 = (0) £ [1))/v2
£Y(|0) £1/1))/v/2 = (|0) £i]1))/v2
+Z|0) =10), —Z1)=1)

with qubit Pauli operators X, Y, Z

~~~~ Qumode:
arbitrary pure states:

) = [ dxpl
arbitrary mixed states:
p= [ dsat fis.nx2(0)
stabilizer states as +1 eigenstates of {e 2157 X(s), e 7215* Z(s) }:

e ™7 X(s)|p) = |p)

e B Z(s)|x) = |x)

with qumode Weyl-Heisenberg operators X(s) = e 27 and Z(s) = et2is*
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A general physical operation on a density operator can be non-unitary, including
irreversible channels and measurements. However, reversibly mapping a normal-
ized density operator onto another normalized density operator is described by
unitaries which we briefly discuss in the following section.

13
Unitaries

Unitary transformations (unitaries) represented by unitary operators U, with
U0 = 00t = 1, preserve the norms and overlaps of states. However, this
trace-preserving property is not the most distinct feature of unitaries. Rather, it is
reversibility.'? By acting on Hilbert space vectors, unitaries are used in order to
access any other vector in the same Hilbert space; an important tool for quantum
computation."

As it is well-known from standard quantum mechanics, the unitary evolution of
a quantum system can be described in the Schrédinger as well as the Heisenberg
representation. Assume the pure state |1 (t)) is prepared at time to. The unitarily
evolved state at time t > t, can then be written in the Schrédinger representation
as

[y () = (L to) |9 (ko)) - (1.53)

For a closed system where the Hamiltonian is time independent, § H/dt = 0, the
unitary operator U(t, to) takes on the simple form

U(t, o) = exp [—%I:I(t - to)] . (1.54)
The unitary evolution of a mixed state is easily found to be
p(t) = U(t, t0)dto) UT (1, t0) , (1.55)

using Eq. (1.18).

In the Heisenberg representation, the initial states remain unchanged during
the evolution, |y (t)) = |¥u) = |9 (k). It follows |ypy) = UT(t, to)|y (). Equiv-
alence of the expectation values in both representations means

(Wil My (t)|[yn) = (¥ (8) Ut o) UT(t, to) M U, to) UT (£, o) (£))
),

= (¥(OIMy (1) (1.56)
for arbitrary |1y y). Thus, we obtain
My(t) = UT(t, to) MU, to) . (1.57)

12) Which refers to physical reversibility; a notion stronger than just mathematical invertibility.

13) Later, however, we shall describe the one-way model of quantum computation which achieves this
universal accessibility of quantum states in an irreversible fashion through measurements on an
entangled resource state.
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This corresponds to the equation of motion

@ty = Lo, o+ 012 g 158
or

Ld o~ A s L OMy

ih - Mu(t) = [MH,HH] +ih— (1.59)

Therefore, the action of an arbitrary unitary operator U is described by either
M — UTMU (Heisenberg) or p — UpUT (Schrédinger). Here, we dropped the
time dependence, focusing on an input—output relation between states or observ-

ables.

1.3.1
Qubit

Consider a single qubit. According to the Bloch sphere representation in Figure 1.2,
it is convenient to think of single-qubit unitaries as rotations. In particular, finite
rotations around the coordinate axes are expressed by

Ry(0) = e 7195912 = cos(0/2)1 —isin(0/2)s - o, (1.60)

again with ¢ = (01, 0, 03)" for the Pauli operators {01, 05, 03} = {X, Y, Z} and
the real unit vector s (thus, strictly |s| = 1), using (s - 6)> = 1. For example, a
rotation around the Z-axis corresponds to ﬁ(o,o_l)(H) = ﬁZ(G) =e 022 =7, In
the Heisenberg representation, it becomes clear that the rotation takes place in the
X Y-plane,

ZiXZy = Z_gXZy = Xcos — Ysin6 ,
ZYYZy=7_gYZy = Xsin@ + Ycos 6,
73729 =79229=7. (1.61)

Another thing becomes apparent here. Two different, though discrete choices of
the rotation angle, for instance, # = /2 and 6 = /4, lead to very distinct output
operators: while § = /2 transforms the Pauli operators into Pauli operators, the
choice of 6 = m/4 results in linear combinations of Pauli operators.

The set of single-qubit unitaries that transform Pauli operators into Pauli opera-
tors,

{U|U'i‘okfj = :tol}, (1.62)

forms a group, the so-called Clifford group. Clifford group elements map stabilizer
states | S) onto stabilizer states |S’)." Assume g, g’ € {+X,+Y,+Z} such that

14) The corresponding stabilizer group S is an abelian subgroup of the one-qubit Pauli group,
{£1,+il,£X,+iX,£Y,+iY,+Z, +iZ}. The prefactors (£i) which ensure that the Pauli
group is closed under multiplication are not important for our purposes and will be omitted
throughout. For a detailed definition of stabilizers see Section 1.9.
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g|S) =1S)and g’|S") = |S’). Then, we obtain the Clifford transformed state
U|S) = UglS) = UgUTU|s) = UgUT|s") = g|S'). (1.63)

Thus, the inverse Heisenberg evolution of the corresponding single-qubit stabiliz-
er,g € {£X,£Y,+Z} — g = UgUT € {£X, %Y, £Z}, completely determines
the resulting state | S’). For example,

Zupl+) = (77410) + €TV ) V2 = 70 +il1) V2, (164)
corresponds to
X > ZipXZ zp=1Y, (1.65)

up to an irrelevant phase factor. The distinction between Clifford unitaries and
non-Clifford unitaries will be important regarding universality and nonclassical
speed-up in quantum computation (see Section 1.8).

1.3.2
Qumode

Now, consider a single qumode. In this case, the free evolution of the oscillator is a
rotation in phase space. Using the input—output formalism, such a phase rotation
of a single qumode with annihilation operator @ can be expressed by

R(6) = e, (1.66)

D>

a— RT(0)

with

R(0) =exp(—ifa'a). (1.67)

In terms of the position and momentum operators (recall that a = % + ip), we
obtain

)
)pR(O) = —%sin 6 + pcos b . (1.68)

In this case, the resulting operators are always linear combinations of the input op-
erators for any choice of 6. The phase-rotation unitary is an element of the Clifford
group which, for qumodes, may be defined similar to the qubit case as

{fJ| U7 Xy (5) U o Xl(s)}. (1.69)

In this case, Xj(s) and X;j(s) stand for products of WH operators, that is, products of
elements of the WH group. Thus, the Clifford single-qumode unitaries transform
WH operators into products of WH operators. In terms of the WH group gen-
erators, that is, the momentum and position operators, Clifford transformations
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always lead to linear combinations of the generators. Non-Clifford transformations
result in nonlinear combinations of % and p.

We observe that general single-qubit rotations on the Bloch sphere do contain
non-Clifford elements, whereas single-qumode rotations in phase space do not.”
In the qubit case, the rotation angle determines whether a unitary is Clifford or
not. For qumodes, the Clifford or non-Clifford character of a unitary U depends on
the order of the Hamiltonian that generates U. We shall return to this discussion
later.

The above discussion on transforming stabilizer states through Clifford unitaries
applies as well to qumodes. Stabilizer states |S) are then mapped onto stabilizer
states |S’). The stabilizers this time, represented by g(s) and g'(s), are products
of WH operators. Again, the inverse Heisenberg evolution of the corresponding
single-qumode stabilizer, g(s) — g’(s) = Ug(s) UT, completely determines the re-
sulting state | S”). For example, the Fourier transform of a p-momentum eigenstate,
with F = R(—m/2) in our convention, leads to an x-position eigenstate with eigen-
value —p, F|p) = |x = —p). This corresponds to

e—|—2isp X(s) — e+2isp ﬁX(S) ﬁ”y‘ — e+2iSP Z(S) , (170)

using FpFT = —%. More generally, an arbitrary rotation R() acting, for instance,
on a p-momentum eigenstate, gives the state R(6)|p) which is stabilized by

ﬁ(e)e—l—Zisp X(S) }%1(9) — e—I—Zispe—Zis(ﬁcosH—l—;csinﬂ)

— e—I—Zispe—Zisp cos O e—Zisx sin 6 e—Z[isp cos 6,isx sin 6]
()
=g (5), (1.71)

as defined earlier in Eq. (1.50). Here, we used the well-known Baker—-Campbell-
Hausdorff formula, A5 = eAeBe~l4812 for [A, [A, B]] = 0, and so on, and the
input-output relations in Eq. (1.68). General single-qumode Clifford unitaries also
include squeezers beside the phase rotations. Squeezing applied to an unphysical,
qumode stabilizer state corresponds to a rescaling of the eigenvalue. For instance,
for a squeezing operation .§(—r) acting on a p-momentum eigenstate, we obtain

the new stabilizer

S(—r)eTHP X(5)§T(—r) = eTHP X(seT7) (1.72)

using S(—r)pST(—r) = eT7p [see Eq. (2.52) through Eq. (2.56)]. Therefore, the
new stabilizer state is [e~"p) since we have e 7257 X(set")[e™"p) = |[e " p).

15) This is a first hint that single-qubit non-Clifford unitaries might be optically easy to implement,
while those for a single qumode are hard to realize. This is, however, compensated by the
complication of making two photons interact for a two-qubit entangling gate, whereas entangling
two qumodes is relatively easy. The next chapter will provide additional details on this issue.
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Reversible quantum operations
state p — UpUT (Schrédinger), observable M — UTM U (Heisenberg)

(M) = Tr(pM) — Tr[(UpUT)M] = Te[p(UTM U)] and

Ot = 00 =1
(®  Qubit: arbitrary unitaries:

e? Ry(0) = e 0592 = €l [cos(6/2)1 — isin(0/2)s- o], |s| =1
with ¢ = (01, 02, 03)" and the Pauli operators {X = 01, Y = 0,, Z = 03}
Clifford unitaries:

ge{xX,2Y, 472} » ¢ = UgUT e {£X,+Y,+£Z}
with g|S) = |S) and g’|S’) = |S’) for qubit stabilizer states |S), |S’) = U]|S)
~~~~ Qumode: arbitrary unitaries:

U = e tH@E) F(a,a%)  is arbitrary Hamiltonian ,

— UTaU is nonlinear transformation

D

Clifford unitaries:
{U| 0T Xy (s5) U o Xl(s)}
with Xj(s) and X;(s) products of WH operators and

U = e tH@E) [(a,a")  is quadratic Hamiltonian ,

— UTaU islinear transformation

D

The qumode Clifford unitaries, combining squeezing, rotations, and displace-
ments, are useful for defining a universal gate set (see later in Section 1.8).

Squeezing itself will become an important tool when we discuss physical
qumode stabilizer states, that is, Gaussian states, in the next chapter. While any
qumode Clifford unitary can be generated by a Hamiltonian which is a quadratic
polynomial of %, p or d, 4T, a general qumode unitary requires a Hamiltonian of
sufficiently high order. An at least cubic Hamiltonian suffices to realize arbitrary
qumode unitaries asymptotically (see Section 1.8).

In the next section, we will discuss quantum operations which do not belong to
the class of unitaries. These are the irreversible channels and measurements.
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1.4
Non-unitaries

A physical, generally non-unitary quantum operation corresponds to a linear map
between density operators, p — p' = £(p).

For this linear map to be physical, it must satisfy the mathematical notion of
complete positivity. Such a completely positive (CP) map can always be written in
the form of an operator sum,

E(p) =Y ApAl . (1.73)
k

The sum may be finite or go to infinity and the summation over k may also be re-
placed by an integral. The operators A} are usually referred to as Kraus operators.
When the corresponding set of positive operators A;CAA,C sums up to the identi-
ty, Dk AJ;AA;C = 1, we have a CP trace-preserving (CPTP) map. Otherwise, when
> AAJ’,;A;C < 1, the CP map is trace-decreasing (CPTD).

This distinction leads to an output density operator which is either normalized
or not. In the former case, the corresponding CPTP map describes an, in general,
irreversible channel. The case of an unnormalized output after a CPTD map rep-
resents situations where information is gained through measurements and hence
a certain output state is only obtained with non-unit probability. The following two
sections are devoted to this distinction of channels and measurements. In the next
section, we will also explain the important difference between positivity and com-
plete positivity.

1.4.1
Channels

Consider a signal system A in a state po. Now, suppose the signal interacts with an
ancilla system B in a state pp through a global unitary Uag (see Figure 1.5). When

the ancilla is traced over, the effect of this transformation on the signal is described
by

pA—>pA—TrB[UAB pa ® pp) ULB
—Z (k| Uns |:PA®<ZP1|Z )i| UZBW)B
]
:Z(B<k|mUAB|lB)ﬁ ( |«/_UAB|k )
Tl

=" AubaAl = E(pa) , (1.74)
k,l

where we used a diagonal basis {|I)p} to express pp and to trace over B. Note that
Ay is an operator in the Hilbert space of the signal A. For the simple case of an
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B — Figure 1.5 A signal system A in an initial state labeled by A
u interacts with an ancilla system B in an initial state labeled by B
A — A" through a global unitary U. The resulting signal state is labeled

by A’ after tracing over system B.

ancilla starting in the state pg = [0)5 (0|, that is, py = Oy, we obtain the operator
sum in Eq. (1.73) with A, = g(k|Uxp|0)s and the signal density operators p =
ﬁA-m)

The operator sum or Kraus representation in Eq. (1.73) represents a CPTP map.
The TP property is easily confirmed through

T (p) = Tr (Z Akﬁﬁ,;) = > T (AL Aup)
k k
=Tr [(Z A*,;Ak) ,6} =1, (1.75)
k

provided that )", AA’kAk = 1 holds. In the first line of Eq. (1.75), we used the in-
variance property of the trace operation under cyclic permutations. In order to see
that )", AJ;AA ¢ = 1 is not only sufficient, but also necessary for the TP property of
&, note that the last line in Eq. (1.75) must be satisfied for any normalized state p.

Let us now explain the CP property of the map £. Clearly, for the output density
operator to represent a physical state we need £(0) > 0. However, there are oper-
ations that do satisfy this positivity constraint, but nonetheless are unphysical."”
Hence, a stricter condition is required, assuming that the signal A is part of a larg-
er composite system A and B. In this case, the condition is $¢ pa = p, > 0 and
($e ® 1g)pap = Php = 0, where $¢ stands for the (super)operator that affects the
map £ on system A.

In conclusion, a map £ that describes a physical operation is CP and linear. Lin-
earity means that E[Ap1 + (1 —1)p2] = AE(p1) + (1 — 1)E(p2). Whenever the ancilla
system B in Figure 1.5 is assumed to be inaccessible such that no information can
be gained from it (for instance, when it represents the uncontrollable environment
of the signal A), the trace over B gives a new normalized density operator for A;
thus, £ is TP. The situation of an accessible ancilla system B that can be measured
and acts as a probe to the signal will be considered in the next section.

We introduced CPTP maps in the Schrodinger representation. Similar to the
unitary case, we may also describe the reduced dynamics of the signal system in

16) Note that the operators A}, are not unique completely positive TP map. This property
and can always be transformed into turns out to be useful for inseparability
new operators A} = ", uj, Aj, with a checks of bipartite density matrices (see
unitary matrix u such that ), A’l ,61&’1‘ = Section 1.5).

D lkm Wik Ul AkpAm = D ArpA, since
DUl vk = Omk.

17) An example for such an unphysical operation
is transposition. It is a positive, but not
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the Heisenberg representation,

(i) = S ALMA,
k

(1.76)

where now the dual map £* is a completely positive unity-preserving (CPUP) map,
E*(1) = 1, when >, AAJ’,;AAk = 1, and M is an observable. This map is uniquely
defined by requiring that the expectation values are independent of the representa-
tion, (M) = Tr(6M) — Tr[E(p) M] = Tr[pE* (M)].

In general, the dual map will change the commutators, that is, the algebra
is not preserved; a sign for non-unitary evolution. Only for reversible channels,
that is, unitaries, the algebra is invariant. For instance, for a single qumode,
we have [%, p] — UT[%, p)U = [UT% U, UTp U], whereas, in general, [%, ] —
E*([%, p)) # [E™(%),E£*(P)]- Similarly, only for unitaries do we have f(%,p) —
F(UT%U, UTpU) for arbitrary polynomials f(%, ) (in fact, we used this earli-
er on). However, under a non-unitary map £*, in general, f(%, p) evolves into
EX(f(%,B) # fIE*(R),€%(H)).™

For a general qubit channel expressed by an operator sum, Eq. (1.73), the Kraus
operators can be expanded in terms of the Pauli basis. Thus, we have [5]

A=l + B X + yi Y + 0,2 (1.77)
Similarly, for a general qumode channel, we can use the WH operators as a com-
plete basis such that [28]

E(p) = /dsdtds’dt/f(s, t,s', ') X(s) Z()pX(—s') Z(—t') . (1.78)
Finally, we note that also for non-unitary dynamics, similar to the case of reversible,
unitary dynamics, we may keep track of the continuous time evolution of the states
or observables. Such continuous, non-unitary, mixed-state evolutions are given by
the well-known master and Langevin equations, respectively [29]."

18) We should at least mention that those dual
maps that map the generators x and p to
linear combinations of X and p (and WH

19) However, the operator sum representation
is in some sense more general, as it even
allows one to describe non-Markovian

operators to products of WH operators)
correspond to the important Gaussian

channels in the Schrédinger representation.

These will be discussed later in Chapter 2.
This particular case of non-unitary reduced
dynamics is a kind of mixed-state extension
of the Clifford unitaries that transform
stabilizer states into stabilizer states, as
presented in the preceding section. A
mathematically more rigorous discussion
of channels, Schrédinger CPTP maps, and
Heisenberg CPUP dual maps and other

examples can be found in Chapter IL.5 of [6].

dynamics [5]. The continuous time evolution
of the master equation corresponds to the
quantum version of a continuous Markov
chain while the operator sum is the quantum
analogue of a probability map. In particular,
for the master equation, the signal A and
the ancilla/environment B must not be
entangled initially (so-called Markovian
approximation). The solution of the master
equation can always be written as well as

B(t) = Y, APV AL (1),
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Irreversible quantum operations, channels

state p — 5(,6 > AkﬁA (Schrédinger CPTP),
observable M — £*(M) = Y, Al MAk (Heisenberg CPUP)

R s D o)

and Y, ATA, =1
(®  Qubit: arbitrary channels:

Ay =ail + X + i Y + 0:Z
Pauli channels:

A x1,X,Y,Z, Vk,

amplitude damping channel:
< (1 0 (0 7
im0 ) A=)

~~~~ Qumode: arbitrary channels:
() = [ dsdrds'dr fis, 1,5, 1) X\ ZIOPX () Z(~Y)
WH channels:
= [ dsdt fls X1 205 X(-5)Z(~

amplitude damping channel:

00 oo 172
m:z&m,&=zuy Wkﬂ|wwm

Channel maps of density operators are trace-preserving and hence determinis-
tic. They are non-selective in the sense that none of the terms in the operator sum
are discarded. In the next section, we shall consider the nondeterministic, selective
case of trace-decreasing CP maps corresponding to situations that include mea-
surements.
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1.4.2
Measurements

A reversible channel map as written in the form of the operator sum in Eq. (1.73)
only has one term left in the sum and the one remaining Kraus operator becomes
a unitary operator, 3", A ﬁA'k = UpUT with 3, AAJ’,;Ak =U00=1.

Are there also irreversible, non-unitary operations that are described by a map
with only one term such that p — £(p) = AO[)AE? Since such a non-unitary map
must have AA_EAAO # 1, we would obtain an output density operator with non-unit
trace, TrE(p) # 1 [see Eq. (1.75)], and the map, in general, would not be trace-
preserving. Indeed, the corresponding probabilistic operation could describe, for
example, a measurement and the measurement-induced “state reduction” would
leave the signal system in a pure, conditional state depending on the measurement
result,

£(p) _ AopAj
TE(P)  Tr(AlAep)

(1.79)

Here, the measurement result is labeled by the subscript “0”. The state after the
measurement is renormalized to unit trace with the unnormalized condition-
al state divided by the probability for the measurement outcome, p(k = 0) =
Tr(AEAOf)) < 1. Let us make this probabilistic interpretation in terms of measure-
ment-induced state evolution more plausible.

For this purpose, first we introduce a very useful and well-known extension of
the standard von Neumann, projection measurement to a generalized measure-
ment, a so-called positive-operator valued measure (POVM). Recall that the measure-
ment of an observable, that is, a Hermitian operator with real eigenvalues, leads to
an eigenstate from the observable’s orthogonal eigenbasis and the corresponding
eigenvalue is the measurement result. This is a projection measurement.

1.42.1 POVM
Let us now define the positive operator

E,=AlA,. (1.80)

The set of positive operators { E;} is referred to as POVM. It determines a set of
probabilities given by p(k) = Tr(Ejp). This probability distribution of measure-
ment outcomes should be normalized such that Y, p(k) = ), Tr(A'kAA ko) = 1.
This holds for ), AA’kAk = 1 and Trp = 1. In other words, any complete set of
positive operators { E},} with Y k Ei = 1 defines a generalized measurement. The
POVM elements and the Kraus operators coincide if and only if the measurement
is a projection measurement so that Ek = A, A’k = Ay, and A A, = dA,.

Note that the POVM formalism itself is only about probabilities and not about
state evolution. However, we can make statements about non-unitary state evolu-
tion as follows.
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Consider again the scheme in Figure 1.5. This time, we assume that a projective
POVM is applied to the output state of the ancilla after the unitary. This POVM
is given by the set of projectors {Ex} = {|k)(k|} with an orthonormal basis {|k)}
for the ancilla system. Similar to what we did before, we can write down the total
unitary state evolution of the composite system of signal A and ancilla B, where
we assume the ancilla starts in the state pg = |0)g(0|. However, this time, we do
not simply trace over the ancilla system. Instead, we calculate the probabilities for
obtaining the measurement outcome k,

p(k) = Tras [UAB (P2 ® [0)5(0]) U}, (]IA ® L‘:k)]

= Tra [ZBM Uns (52 ® [0)3(0]) Ul (1a @ [K)s (k) |l>B}

1
= Trs (A kﬁAAJ’,;) = T, (A",;A kﬁA) , (1.81)

using A, = s{k| ﬁAB|O)B as before and g(k|l)g = Oy;. This defines the POVM
{A Ay} on the signal system pa. An additional new POVM, {Fy}, acting upon the
signal output state would result in the joint probabilities

p(k, 1) = Trag [0AB (pa ® 10)8(0)) Uiy (131 ® ]L‘:k)]

= Tra (Auon AL Fr). (1.82)

From this, we can immediately infer the probabilities for obtaining the POVM

element F; when the initial state prior to the second POVM is ﬁgk), namely,

TralpW Fi] = p(llk) = p(k,1)/p(k) = Tral[AwpaAl/p(K)]Ei}. Thus, we must

have the conditional state of the first POVM,

ﬁ(k) _ Ak/aAAAJ’,; _ AAk/aAA'i;Ac __E(pa)

N = — = — .

p(k) Tra (A}cAkfsA) Tra&(pa)

(1.83)

Thus, the a-priori-state of the second POVM gives us the a-posteriori-state of the
first POVM and hence the state evolution consistent with the first measurement.
Here, the a-posteriori-state is pure (provided p, is pure), as we have assumed per-
fect knowledge about the outcome k. More generally, a CP trace-decreasing (CPTD)
map can be written in the same way as Eq. (1.73), but with }_, AJ’,;Ak < 1. This
may lead to an unpure output state, but the trace is strictly decreasing, provided
some information is gained through the measurement. In the special case when
no information is gained or, equivalently, when the average is taken over all possi-
ble outcomes k, we obtain the ensemble output state,

ph = Zp(k 5 Zp(k JArpaAl/p (k)

= Z ApaAl = E(pa) - (1.84)
k
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This is again a CPTP map and we see that there is a physical interpretation of such
a CPTP map. We can think of a channel as an ancilla system like the signal’s envi-
ronment which is monitoring the signal system with random outcomes k. As long
as we do not have access to these outcomes, we cannot use them for processing.
Therefore, effectively, the input state g, is randomly replaced by ﬁ/(f) with probabil-
ity p(k). The ensemble state is then the same as before when we traced over the
environment using a complete, orthonormal basis.

To summarize, a channel is a CPTP map that non-selectively and deterministically
transforms density operators. It will always map pure states to mixed states, unless
it is a unitary channel. A CPTD map is then expressed by a selective and hence
nondeterministic Kraus evolution. It can map pure states to either pure or mixed
states, depending, for example, on the resolution of a measurement.

Finally, we shall discuss that there is an alternate way to formulate a generalized
measurement besides attaching an ancilla and considering measurements in the
product Hilbert space of signal and ancilla, as depicted in Figure 1.5.

1.4.2.2 Naimark Extension

Though maybe less physically motivated, but mathematically more systematic, the
alternate approach uses an extended Hilbert space from the original signal space
corresponding to the total Hilbert space H = K @ K. Through this direct-sum
structure, the POVM is then described by a projection measurement onto the or-
thogonal set of vectors in the total space,

[wy) = [uu) +Nu) (1.85)

with (w,|w,) = 0,,. The vectors {|u,)} are unnormalized, possibly non-ortho-
gonal state vectors in the Hilbert space K. We may write

Ey = luu)(uul . (1.86)
These are the POVM operators of an N-valued POVM with fo:l ]2",4 = 1. The
vectors {|N,)} are defined in the complementary space K- orthogonal to K, with
the total Hilbert space H = K @& K. If the dimension of the signal space is n,
with |u,) = >, b,i|vi), some complex coefficients b,;, and {|v;)}"_; as a ba-
sis in K, we have |N,) = ZiN:n +1 b,ilvi) with some complex coefficients b,,;,
and {|vi)}iN=n+1 as a basis in K. The vectors {] N,)} are referred to as a Naimark
extension.
Let us give an example for a POVM on a single qubit, n = 2. Consider a pair of
pure and non-orthogonal qubit states,”

lx+) = al0) £ BI1), (1.87)

where o > f are assumed to be real and {|0), |1)} are two basis states. When we
are given a single copy of this qubit without knowing whether it is in the + or the —

20) Actually, any pair of pure states can be written this way up to a global phase. We use the notation
|0) and so on in order to indicate that the basis states here are logical basis states. Later, in the
optical context, a logical basis state may be encoded into photonic states of several optical modes.
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state, there are various restrictions. We cannot perfectly discriminate the two states
and so we cannot unambiguously and deterministically decide in which quantum
state the qubit exists. In fact, if we were able to achieve perfect state discrimination,
we could also create more copies from a single copy of the unknown quantum state,
thus violating the no-cloning theorem; as a result, we could even communicate at
a speed faster than light (recall Section 1.1). The fundamental inability of perfect
state discrimination for non-orthogonal states is also the essence of quantum key
distribution (see Section 1.7).

However, there are measurement schemes that do achieve state discrimination
to some extent in an imperfect fashion, either unambiguously or deterministically,
or somewhere in between. The two extreme cases are the deterministic discrim-
ination with an ideally minimal error (so-called minimum error discrimination,
MED) and the error-free discrimination with an ideally minimal probability for ob-
taining an inconclusive result (so-called unambiguous state discrimination, USD).
In either case, the optimal performance can be derived from the laws of quantum
theory.

Now let us consider the USD for the two states in Eq. (1.87). The POVM for this
USD may have three elements, N = 3, two of which correspond to an error-free
identification of the + and — states. The third POVM element would express an
additional inconclusive measurement outcome. Thus, we have 2221 E, = 1 with
E“ﬂ from Eq. (1.86). The elements E; and E, are conclusive, while E is inconclusive.
Now, in order to make the first two POVM elements unambiguous, that is, error-
free, we must satisfy p(1—) = Tr(Eilz—) (¢—|) = p(21+) = Te(Ealy+) (x+1) = O,
where p(1|-) and p(2|+) are the probabilities for obtaining the 1 outcome for the —
state and the 2 outcome for the + state, respectively. Using the ansatz in Eq. (1.85),
a projection onto a three-dimensional basis {|w, )} can be constructed that satisfies
the above constraints. More precisely, the choice of

1 (Bgn NIy
[u1) = 7 (E|0> + |1)), [Nip) = «/5 —12),
2 -
=120, vy =-Lpy, (188)

with (2|0) = (2|1) = 0, would even achieve the optimal USD with minimal fail-
ure probability, that is, minimal probability for obtaining an inconclusive result,
Probgy = (x4 |x—)| for equal a priori probabilities [30-32]. The optimality is easi-
ly confirmed through

Probguce = Tr (Ealyz+) (r+1) 12+ Tr (Bl (x-1) /2

=1- PI'Obfaﬂ
= 1=Tr (Bslz+) (1) 2= T (Bslx=) (1) 12
=1 (o> =) =1 |(x+lx-) =287 . (1.89)

The factors 1/2 in lines one and three are the a priori probabilities. Examples of
projection measurements, POVMs, and USD on optically encoded quantum states,
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both in the DV qubit and the CV qumode regime, will be presented in Chapter 2.
Such quantum measurements are highly relevant for many applications in optical
quantum information, especially quantum communication.

Irreversible quantum operations, measurements

generalized measurement, positive-operator valued measure (POVM):
By = A'kAk with Z Ev =1 and probabilities p(k) = Tr(];"k[))
k

non-unitary state evolution, completely positive trace-decreasing (CPTD):

E(p ApAl -
5 0 P with Y ALA <1

Tré'([)) Tr (Zk AlkAA kf)) k

Besides those POVMs on a single qubit or qumode, an important extension are
collective, joint POVMs on many qubits or qumodes. An example is the projection
onto an entangled-state basis as needed for quantum teleportation. We shall now
proceed with an introduction to the notion of entanglement.

1.5
Entanglement

In this section, we will first introduce pure entangled states, focusing on qubit
and qumode states. Further, extending the discussion on quantum states for a sin-
gle qubit and a single qumode in Section 1.2, we shall now look at bipartite qubit
and qumode states from a point of view that is based on stabilizers (see the dis-
cussion and the box in Section 1.9). For the case of qumodes, the stabilizer states
introduced in this section are idealized, unphysical states. We will briefly introduce
inseparability criteria for mixed states and entanglement witnesses as well as a few
entanglement measures.

1.5.1
Pure States

For any pure state of two parties, for instance, a pure state of two qubits or two
qumodes, there is always an orthonormal basis for each subsystem, {|u,)} and
{|vn)}, such that the total state vector can be written in the “Schmidt decomposi-
tion” [33] as

) = caltin)|va) - (1.90)

n
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The summation goes over the smaller of the dimensionalities of the two subsys-
tems and would go to infinity for two qumodes. Therefore, for two qubits, there
are, in general, two terms. In order to write a bipartite pure state of a qubit and
a qumode, two terms are enough as well (see the notion of hybrid entanglement
introduced in Chapter 8).

The Schmidt coefficients ¢, are real and non-negative, and satisfy ), ¢2 = 1.
The Schmidt decomposition may be obtained by writing an arbitrary pure bipartite
state as

|1/)) = Zamk|m)|k) = Z umncnnvknlm)lk)
mk

nmk

= calten)|va) , (1.91)

with ¢,, = cy,. In the first step, the matrix a with complex elements a,;, is diago-
nalized using singular-value decomposition, a = ucv?, where u and v are unitary
matrices and c is a diagonal matrix with real, non-negative elements. In the second
step, we defined |u,) = 3, Uma|m) and |v,) = Y, viu|k) which form orthonor-
mal sets due to the unitarity of u and v, and the orthonormality of |m) and |k).

A pure state of two finite-dimensional, d-level systems is maximally entangled
when the Schmidt coefficients of the total state vector are all equal. Since the eigen-
values of the reduced density operator after tracing out one half of a bipartite state
are the Schmidt coefficients squared,

pr=Trapra = Tral )| = Y chlun)i{unl (1.92)

tracing out either subsystem of a maximally entangled state leaves the other half
in the maximally mixed state 1/d. In other words, if one party is discarded, the
remaining party is in a maximally noisy state with maximum entropy. Conversely,
a pure bipartite state is factorizable (not entangled) if and only if the number of
nonzero Schmidt coefficients, the so-called Schmidt rank, is one. In this case, the
reduced states are pure and have zero entropy.

A unique measure of bipartite entanglement for pure states is given by the partial
von Neumann entropy, that is, the von Neumann entropy as defined in Eq. (1.22)
for the remaining system after tracing out either subsystem [34], —Trf; log, p1 =
—Trpylog, pp = — >, ¢ log, ¢, with Trap1, = p1, Tripra = p,. This measure
ranges between zero and one, and for qubits (d = 2) its units are “ebits”. It can be
understood as the amount of maximum entanglement contained in a given pure
state.”” For example, an entropy of 0.4 means that asymptotically 1000 copies of the
state can be transformed into 400 maximally entangled states through determinis-
tic state transformations using local operations and classical communication [5].

21) For general bipartite qumode states, there are some complications of this entanglement entropy.
The entropy fails to be continuous in the sense that there are (rather artificial) states that
have arbitrarily large entanglement, though being arbitrarily close to a pure product state.
However, through restriction on bounded mean energies continuity of the entanglement can be
recovered [35].
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1.5.1.1 Qubits
For two qubits, a maximally entangled basis is given by the four “Bell states”,”
1 1
o) = —(j00) £]11)),  |¥E) = —=(j01) £ [10)) . 1.93
|®~) ﬁ(| ) +11)) 1) ﬁ” ) +110)) (1.93)

These are stabilizer states with nonlocal stabilizer generators.” For instance, the
|@ T) state has stabilizer generators (X ® X, Z ® Z) corresponding to a stabilizer
group{l®1, X ® X,—-Y ® Y, Z® Z}. Any of these Pauli products has eigenvalue
+1 when applied upon |@ T). The set of generators is sufficient to represent every
stabilizer since the products (X ® X)(Z ® Z) = XZ® XZ = —-Y ® Y and
(X ® X)(X ® X) =1® 1 must have +1 eigenvalue as well.

Recall that a one-qubit stabilizer state has a single stabilizer generator, namely,
+1 times one of the Pauli operators. The stabilizer group has two elements after
adding the unity operator. Two qubits require two stabilizer generators as a mini-
mal set to give a stabilizer group of four elements. For instance, a product state of
two qubits, |0) ® |0), is a stabilizer state with stabilizer group {1 ® 1,1 ® Z,Z ®
1, Z® Z} and, in this case, local stabilizer generators®™ (1® Z, Z®1). The nonlocal
stabilizer generators of the four Bell states in Eq. (1.93) are easily found to be

(X®X,ZQ Z), (X®X,-2Q Z),
(-X®X,Z® Z), (-X®X,-Z® Z), (1.94)

respectively. The two-qubit stabilizer states are either product states or maximally
entangled states. The two-qubit non-stabilizer states are the non-maximally (par-
tially) entangled states (or products of non-stabilizer states).

1.5.1.2 Qumodes
Now, consider the case of two qumodes. The “CV Bell states” for two qumodes may
be written as

1 :
|V (u,v)) = ﬁ/dzxez”‘ﬂx”x —u). (1.95)
Although these states obey the completeness and orthogonality relations
/dudv|‘1’(u,v))(¥f(u,v)| =1®1,
(W (u,v)| W, v)) = O(u—u)ov—1), (1.96)

they are nonetheless unphysical since they exhibit an infinite degree of quantum
correlations. This is similar to the position and momentum eigenstates of a single
qumode with infinitely precise position and momentum eigenvalues as depicted
in Figure 1.3. Each of the CV Bell states is similarly determined through infinitely

22) We shall use the notations |@*) and | @ (), a nonlocal subgroup. The local subgroup
and so on, interchangeably throughout. then contains stabilizer operators that act

23) For a definition of stabilizers, see the exclusively upon either subsystem [36].
discussion and the box in Section 1.9. For the product state |0) ® |0), the whole

24) Where, more precisely, “local” refers to the stabilizer is given by the local subgroup
local subgroup into which the total stabilizer {1,Z}-{1, Z}.

group of the state can be split together with
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precise, continuous eigenvalues. However, for two qumodes, we need two such
eigenvalues, corresponding to two nonlocal observables with (% — %,)| ¥ (u, v)) =
ul¥ (u,v)) and (p1 + pa)|¥ (u, v)) = v| ¥ (u, v)).
Expressed in terms of the WH shift operators, we can equivalently write for all ¢, s,
e e PR W (y, v)) = e"H Z(t) ® ZT(1)| ¥ (u, v))
| (u,v))
e t2sre =251t 02) |y (yy, 1)) = eFHV X(s5) @ X(s)| ¥ (u, v))
= |¥(u,v)) . (1.97)

In other words, for the unphysical, infinitely correlated CV Bell states, we obtain
the nonlocal stabilizer generators

<e+2ist(S) ® X(S),G_ZituZ(t) ® Z';(t)) . (198)

Note that for v = 0, this would be a unique representation for the famous two-
particle state presented by Einstein, Podolsky, and Rosen (EPR) which is quan-
tum mechanically correlated in the positions (x; — x, = u) and the momenta
(p1 + p2 = 0) [23]. In the optical context, a physical version of the EPR state corre-
sponds to a Gaussian two-mode squeezed state in the limit of large squeezing (see
Chapter 3). Moreover, similar to the two-qubit stabilizers, the two-qumode stabiliz-
ers here are useful to construct so-called entanglement witnesses. These witnesses
would enable one to detect the entanglement of the physical, finitely correlated, and
possibly even noisy mixed-state approximations of the EPR state. How to find such
witnesses for qubits and qumodes will be discussed in Chapter 3. At this point, we
shall proceed by looking at the entanglement of mixed states, inseparability criteria,
and the definition of entanglement witnesses.

Given an arbitrary two-party (e.g., two-qubit or two-qumode) density operator,
how can we find out whether the bipartite state is entangled or not? For this pur-
pose, first of all, a definition of entanglement is needed which goes beyond that
of pure-state entanglement expressed by the Schmidt rank and so is applicable to
mixed states as well.

1.5.2
Mixed States and Inseparability Criteria

A mixed state of two parties is separable if its total density operator can be written as
a mixture (a convex sum) of product states,”

pr2 = Z NiPi1 ® Pia - (1.99)
i

25) Corresponding to a dlassically correlated historically well-known notion of nonlocality
state [37]. For instance, for the qubit or that refers to the inapplicability of local
the qumode Bell states, the nonclassical realistic models. In fact, Werner’s [37]
character of entanglement is reflected by the original intention was to demonstrate that
nonlocal stabilizer generators simultaneously quantum states exist which are inseparable
in terms of X and Z. However, note that according to the convex-sum definition and

this notion of nonlocality is weaker than the yet admit a local realistic description.
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Otherwise, it is inseparable and hence entangled. In general, it is a highly non-
trivial question whether a given density operator is separable or inseparable.

A very powerful method to test for inseparability is Peres’ partial transpose criteri-
on [38]. For a separable state as in Eq. (1.99), transposition of either density matrix
yields again a legitimate non-negative density operator with unit trace,

p1r = Z i(pia)" ® pia

1

(1.100)
since (p;1)" = (pi1)* corresponds to a legitimate density matrix. This is a neces-
sary condition for a separable state, and hence a single negative eigenvalue of the
partially transposed density matrix is a sufficient condition for inseparability. Ap-
plied to one party entangled with another party, transposition may indeed lead to
an unphysical state because it is a positive but not a CP map. For inseparable states
of two qubits and of one qubit and one qutrit, partial transposition always leads to
an unphysical state [39]. The same holds true for any bipartite Gaussian state of
one qumode entangled with arbitrarily many other qumodes (see Chapter 3).

1.5.3
Entanglement Witnesses and Measures

Independent of partial transposition, an entanglement witness W is an observable
whose expectation value is non-negative for all §eparable states Pgep, Tr( Wﬁsep) >0,
and negative for some inseparable state p, Tr(W p) < 0 (see Figure 1.6).

A very important class of entanglement witnesses is given by the Bell-type in-
equalities imposed by local realistic theories [41]. For both qubits and qumodes, we
shall discuss the canonical and most commonly used entanglement witnesses in
Chapter 3. These witnesses are independent of local realism. Since the insepara-
bility criteria expressed in terms of expectation values of observables are directly
measurable, entanglement witnesses are of great significance for the experimental
verification of the presence of entanglement.

Tr(#;$)20

separable Tr(W,p)<0

Figure 1.6 Entanglement witnesses are Her-
mitian operators that define hyperplanes in
the space of density operators (states), sepa-
rating some inseparable states from all sep-
arable states. The plane closer to the set of
separable states represents a “better” witness
W, than the other plane corresponding to Wa,

as the former detects more inseparable states.

An optimal linear witness would correspond
to a plane tangent on the set of separable

states. However, there are even better witness-

es like W5 which are nonlinear and can detect
even more inseparable states [40].
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Besides those qualitative inseparability criteria, which we may call entanglement
qualifiers, a more ambitious task is to provide entanglement measures and to ob-
tain entanglement quantifiers for a given density operator, both theoretically and
experimentally. In general, the known measures for mixed-state entanglement are
not unique. In the summary box ‘Entanglement’, we included some of the most
commonly used and most convenient entanglement measures.

In the case of pure states, (most of) these measures would coincide. The naive
approach for extending pure-state quantifiers to mixed states would be to simply
apply a pure-state measure such as the reduced von Neumann entropy to every
term in a density operator decomposition. However, in general, a given decompo-
sition )", pr|¥r)12(% x| may then give a completely wrong result,

D oS [T ([ (yel)] - (1.101)
k

For instance, the maximally mixed state of two qubits, p1, = 11,/4, can be decom-
posed as

P2 = (1P @F|+ @ )i @ 7| + [P ) (WH| + W) (W) /4
(1.102)

using the two-qubit Bell basis in Eq. (1.93). In this case, every term corresponds
to a maximally entangled state with unit reduced entropy. So the average reduced
entropy as calculated by Eq. (1.101) also gives one ebit instead of the correct result
of zero ebits for a separable density operator written as

p12 = (10)1(0] ® [0)2(0] 4 [0)1(0] ® [1)2(1
+ 111 @10)2(0] + [1)1 (1] @ [1)2(1])/4 . (1.103)

Therefore, for a globally mixed state, we only obtain sensible results if we minimize
the average reduced entropy over all possible ensemble decompositions,

Ex(pro) = inf ;pks [Tra (19 )12 ()] - (1.104)

This is the so-called entanglement of formation. In general, the minimization over
all decompositions is hard to compute. However, for two qubits, the entanglement
of formation can be obtained through the concurrence [42]. Another important and
more practical (i.e., relatively easily computable) mixed-state entanglement quan-
tifier is the logarithmic negativity which is based upon the negativity after partial
transposition [43—45].

The logarithmic negativity is defined as follows,

, (1.105)

Ex(p12) = log, H/a?zz

where ||A|| = TrV ATA is the so-called trace norm and /63 is the partial trans-
pose of a given bipartite state 5y, with respect to subsystem 2. This measure is
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an entanglement monotone (i.e., it does not increase under local operations and
classical communication) and, in addition, it is additive.® The trace norm of the

partial transpose corresponds to the sum of the modulus of its eigenvalues. For

instance, for a two-qubit Bell state p1,, we have ||,6L2 [| = 2, as the eigenvalues of

,6% are {—1/2,1/2,1/2,1/2}. Conversely, for a separable state p;,, we always obtain

Il ,63“ = 1. Thus, the Bell state gives Ex(f12) = 1, whereas a separable state has
Ex(p12) = 0. In general, any entanglement measure should be an entanglement

monotone and should vanish for separable states.

Entanglement

bipartite pure states: separable iff Schmidt rank is one in Schmidt decompo-
sition )12 = Y, Cultn)1|Vn)2

bipartite mixed states: separable iff p1; = Y, 7:pi1 ® pi2

qualifiers, witnesses: V pgep Tt ( W Psep) = 0 and 3p such that Tr( Wp) <0
quantifiers: reduced entropy for pure states: E(|%)12) = S[Tra(|%)12{¥ )]
entanglement of formation: Fg(f12) = infy, y, D1 pe S[Tr2(|9k)12 (k)]
logarithmic negativity: Ex(p12) = log, ||p12|

(®  Qubits: maximally entangled two-qubit Bell states:
@) = (100) £ [11))/vV2, [WF) = (01) +[10))/v/2
stabilized by
(X®X, ZRZ) , (X®X,—ZRZ) , (~X®X, ZRZ) , (~X®X,—~ZRZ)

~~~~ Qumodes: maximally entangled two-qumode Bell states:
|V (u,v)) = /deri’”’|x)|x —u)/Jn

stabilized by

(eT2V X(s) ® X(s),e 2 Z(t) ® ZT(t))

Since the trace norm of the partial transpose effectively expresses to what extent
p12 fails to represent a physical state, it can be considered a quantitative version of
the above qualitative partial transpose criterion.

This connection is easier to understand by looking at the so-called negativity,
defined as N(p12) = (||;3;r§|| — 1)/2. This quantity corresponds to the modulus of
the sum of the negative eigenvalues of 53, and becomes N(p12) = 1/2 for a two-
qubit Bell state and N(p;2) = O for any separable state. In this sense, N(py;) is the

26) However, it is not convex, and, as an exception to what we said before, it does not reduce to the
entanglement entropy for all pure states.
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actual measure of negativity. However, though also being an entanglement mono-
tone, N(p12) fails to be additive. Therefore, usually, the logarithmic negativity is
preferred.

A discussion of multipartite entangled states of many qubits or qumodes will be
postponed until Chapter 3. Such a generalization is important in order to define
and investigate qubit/qumode cluster and graph states.

1.6
Quantum Teleportation

Quantum teleportation [17] is the reliable transfer of quantum information through
a classical communication channel using shared entanglement. It works as follows
(see Figure 1.7). After an entangled state is generated and distributed between
two parties, an external system in an arbitrary, even completely unknown quantum
state is jointly measured together with one half of the entangled state. Finally, when
the measurement result is received at the other half of the entangled state, this half
is transformed by a basic operation (such as a bit or phase flip for qubits or a phase-
space displacement for qumodes) conditioned upon the measurement outcome.

When we think of entanglement as the universal resource for quantum informa-
tion processing, we may refer to quantum teleportation as the fundamental quan-
tum information protocol or subroutine. Quantum teleportation of states (as intro-
duced here and discussed in more detail in Chapter 4) has applications in quantum
communication (see the following section) as well as quantum computation. In the
latter case, it would enable one, in principle, to connect different quantum comput-
ers when every quantum computer performs only a part of the whole computation.

Besides transferring quantum information between quantum computers and
propagating it through quantum computers, there is an extended version of quan-
tum teleportation which incorporates a controlled unitary evolution of quantum
information into the teleportation protocol. This is quantum teleportation of gates
and using such gate teleportations for computation corresponds to a certain real-
ization of measurement-based quantum computation (see Chapter 6). The mea-
surements in this case are projections onto an entangled basis and so they are
not always easy to implement, for example, in an optical approach. Complete state
transfer or evolution is also possible by performing the corresponding entangling
operations offline with only local projection measurements performed online (see
Chapter 7).

entanglement joint conditional
generation measurement transformation
A - '
@ O O @ O O o O @©

Figure 1.7 The fundamental protocol of quantum teleportation.



1.6 Quantum Teleportation

1.6.1
Discrete Variables

Let us consider quantum teleportation in finite dimensions. How the original DV
quantum teleportation protocol [17] works can be understood from the following
decomposition,

a—1

|9)in ® |Poo0)12 = Z | W )in1 Uy (0, B) )2 - (1.106)
aﬁ 0

Here, we use « and f as discrete indices. The initial total state vector is a product
of an arbitrary quantum state | ¢ ), for the input qudit (d-level system) and a partic-
ular maximally entangled state | ¥ )1, for qudits 1 and 2 (see below). A projection
measurement of the input qudit and qudit one onto the maximally entangled basis
of “qudit Bell states”,

d—1
|W,5) = f Zexp 2wikf/d) k) |k @ a) , (1.107)

reduces the above decomposition according to the measurement result (g, Bo)-
The qudit Bell states are complete and orthonormal,

D NPap)(Wapl =101, (WaplWurpr) = OuarOpp - (1.108)
a,p=0

Finally, applying to qudit two the unitary transformation that corresponds to the
Bell measurement result (ao, Bo) will correct the remaining Uj(ao, Po) operation

in Eq. (1.106) and transform qudit two to the input state (the initial state of qudit
in”). The unitary transformations are defined as

d—1
U(a, B) =) _ exp(2mikp/d)[k)(k & a , (1.109)
k=0

and @ means addition modulo d.

Quantum teleportation of an arbitrary quantum state from qudit “in” to qudit
two is, in principle, independent of any spatial limitations. Suppose the two parties
Alice and Bob initially share the maximally entangled state of qudits one and two.
Alice is then capable of transferring an arbitrary quantum state from her location to
Bob's. All she has to do is jointly measure the qudits “in” and one (“Bell measure-
ment”) and convey the measurement result to Bob through a classical communi-
cation channel. Finally, Bob has to apply the corresponding unitary transformation
to qudit two. There are now three aspects of quantum teleportation that are partic-
ularly worth pointing out:

1. An unknown input state remains unknown to both Alice and Bob throughout
the entire teleportation process. If Alice did gain some information through her
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Figure 1.8 A quantum circuit description of part in the dark gray box is the circuit for the
qubit quantum teleportation. The part of the Bell measurement of the signal state and one
circuit in the light gray box is for entanglement  half of the entangled pair.

generation between the two ancilla qubits. The

Bell measurement, Bob would no longer obtain a perfect replica of the input
state.

2. The input system does not remain in its initial state because of the Bell mea-
surement. This fact ensures that no-cloning is not violated.

3. A contradiction to special relativity is avoided because the classical communi-
cation required between Alice and Bob is restricted by the speed of light.

For qubits (d = 2), the maximally entangled states |¥, 3) become the four Bell
states from Eq. (1.93). The unitary transformations in this case correspond to the
identity operator, U(0,0) = [0)(0] + |1)(1| = 1, and the three Pauli operators

U(1,0) = 10)(1] + [1)(0] = X ,
U(1,1) = [0)(1] — [1)(0] =Y,
U(0,1) = [0)(0] —[1){1] = Z . (1.110)

Therefore, Bob will accomplish quantum teleporation of the input qubit by either
flipping his qubit (X), flipping its phase (Z), doing both (Y), or doing nothing (1).
A quantum circuit description of qubit quantum teleportation is shown in Fig-
ure 1.8. The Bell measurement circuit is the inverse of the entanglement genera-
tion circuit, each consisting of Hadamard and CNOT gates (both belonging to the
Clifford group of qubit unitaries, see Sections 1.3 and 1.8).

1.6.2
Continuous Variables

The translation of the quantum circuit for quantum teleportation from qubits to
qumodes is straightforward. For this purpose, we need to replace the qubit gates
by their qumode analogues, that is, the Hadamard gate by the Fourier gate and
the two-qubit CNOT gate by a corresponding two-qumode entangling gate. We
postpone the details about such gate sets until Section 1.8. However, we should
mention that the two-qumode entangling gate can be effectively achieved through
a linear beam splitter transformation (see Chapters 2 and 4). As a consequence,
both the entanglement generation and the Bell measurement circuit become highly
accessible to optical implementations when one-qumode stabilizer states and one-
qumode projection measurements onto stabilizer states are available (and these are
available in the form of squeezed states and homodyne detections, see Chapters 2
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and 4). In this sense, quantum teleportation also serves as the prime example to
reveal the practical significance of the CV approaches.

In order to illustrate the analogy between the above protocol for finite-dimen-
sional, DV quantum teleportation and that for infinite-dimensional, CV quantum
teleportation, we may write the following decomposition for the CV case,

1 "o
[$)in ® [W(0,0))12 = E/dudef(u,v))m,l U, (u,v)|$)2, (1.111)
with the CV Bell states of Eq. (1.95) and the unitary transformations,
U(u,v) = /deri’”|x)(x —ul. (1.112)

These unitaries are equivalent to WH shifts expressed by X(u) and Z(v). The CV
protocol is then completely analogous to the DV case, except that the entangled
state used in the CV case is an unphysical, unnormalizable state. Only with this
idealization do we obtain perfect quantum state transfer similar to the qubit case,
with no information gain by Alice through her Bell measurement.

In a physical qumode quantum teleportation protocol using properly normal-
ized, finite-energy states, Alice does gain partial information and the quantum state
transfer to Bob becomes imperfect. This will be one of the subjects of Chapter 4,
including the discussion of several variations of optical CV quantum teleportation
experiments.

1.7
Quantum Communication

The goal of quantum communication is the reliable transfer of arbitrary quantum
states (drawn from an alphabet of states) between a sender, usually named Alice,
and a receiver, Bob. More colloquially, we can say that quantum communication is
“the art to transfer quantum states” [46]. This may then lead to various applications,
some of which are already emerging as an existing technology such as the secure
distribution of a classical key through quantum key distribution (QKD) [47-49].
Other applications appear farther away from realization such as the connection of
spatially separated quantum computers for distributed quantum computing and a
kind of quantum internet [50].

Related with the above concepts and applications are the following important
lines of current research efforts:

e search for practical QKD protocols,
e security proofs for unconditionally secure QKD,
e long-distance quantum communication beyond 200 km.

Another, more traditional branch of quantum communication deals with the fun-
damental limits that quantum theory imposes on classical communication. We
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Figure 1.9 The concept of quantum key dis- in either basis. By postselecting those events
tribution [18]. Alice randomly prepares states where the bases coincide, correlated data be-
from two non-orthogonal bases, for instance, tween Alice and Bob will be obtained. In the
corresponding to the qubit stabilizer states presence of Eve, on average 25% of those oth-
+7Z and £ X, where the sign denotes the bit erwise correlated data would contain errors
value 0 or 1. Bob, after receiving the states which can be detected by Alice and Bob on a

from Alice, randomly performs measurements ~ subsample of their data.

shall get back to this quantum extension of classical information theory at the end
of this section. The more recent approaches to quantum communication aim at
the exploitation of nonclassical quantum features such as non-orthogonality and
entanglement for quantum-enhanced communication. Let us briefly discuss the
concepts behind QKD as an example.

1.7.1
Key Distribution

Quantum key distribution (QKD) [18, 20, 51] allows, in principle, for uncondi-
tionally secure communication. It relies upon the inability of a potential eaves-
dropper (“Eve”) to discriminate non-orthogonal quantum states. Recall that Eve
would be able to perfectly distinguish non-orthogonal states if she was able to pro-
duce copies of such states (Section 1.1). So no-cloning is a necessary requirement
for quantum cryptography, and while perfect quantum cloning would prevent se-
cure QKD, an approximate cloning attack performed by Eve may still be a threat
to the security of a realistic QKD protocol, including imperfect channel transmis-
sions.

In the BB84 protocol [18], Alice randomly prepares states from two non-ortho-
gonal bases, for instance, corresponding to the qubit stabilizer states +Z and +X
where the sign denotes the bit value zero or one (see Figure 1.9). Bob, after receiv-
ing the states from Alice, randomly performs measurements in either basis. By
postselecting only those events where the bases coincide, correlated data between
Alice and Bob will be obtained.



1.7 Quantum Communication

Now, Eve may, prior to Bob’s measurements, intercept the communication be-
tween Alice and Bob and randomly pick her own basis in order to retrieve Alice’s
key values. However, only in half of the cases would Eve’s basis coincide with that
of Alice. As a consequence for those events where Eve’s basis choice is wrong, she
would have to pass on a state to Bob for which he obtains a bit value differing from
Alice’s bit value in half of the cases. Therefore, in this scenario, 25% of those other-
wise correlated data would become contaminated with errors. Whenever Alice and
Bob detect such a high error rate for a subsample of their data, they would aban-
don their protocol and start from scratch. More generally, the tolerable error rate
depends on the quality of the quantum channel between Alice and Bob, and on the
most general quantum operations that are available to Eve.

Note that in order to prevent Eve from pretending to be Bob and so from even-
tually sharing the key herself with Alice, Alice and Bob need to start with an
initially shared key in order to utilize classical authentication techniques. The
QKD protocol will then enable them to grow a larger key. Finally, they can use a
sufficiently large key to exchange a message employing the well-known one-time
pad.

The BB84 protocol as described so far is a so-called prepare-and-measure scheme.
It does not directly depend on the physical distribution of entangled states; it re-
lies upon preparing and measuring non-orthogonal quantum states. In fact, just
any two non-orthogonal quantum states would suffice to do QKD [51]. As a con-
sequence, instead of qubit states, qumode states may serve as well as a carrier
for QKD. Especially, coherent states of light (see Chapter 2), forming an overcom-
plete, non-orthogonal set represent a convenient choice with regards to practical
implementations. A scheme based on coherent states was already implemented
experimentally [52].

In an entanglement-based QKD protocol [20], Alice and Bob would attempt to
generate correlated data by distributing and measuring entangled pairs. In this
case, one has to assume that Eve has total control over the whole three-party sys-
tem — effectively an arbitrarily powerful Eve may distribute any tripartite state
(see Chapter 3) among Alice, Bob, and herself. Now, whenever tracing over Eve’s
system (mimicking the situation where Eve corresponds to an untrusted, non-
cooperating third part or the inaccessible environmental degrees of freedom of
an imperfect channel) leads to a separable state between Alice and Bob, they can
no longer establish a secure key [19]. The reason for this is that the so-called in-
trinsic information (see later Section 1.7.3 for some words on classical informa-
tion measures) for Alice and Bob provides an upper bound on the secure key
rate [53] and it would strictly vanish for a separable, reduced state of Alice and
Bob.

A conceptually very important observation now is that any prepare-and-measure
scheme can also be rephrased such that the measured data for Alice and Bob (given
by a joint probability distribution for their POVMs) can be used as a secure key pro-
vided that these data are inconsistent with a separable state for Alice and Bob [19].
The additional step for proving this is that in this case, the reduced density operator
for Alice alone is known and controlled by Alice. It is basically given by the trace
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over a bipartite source state of the form,

[X)as = Y /Piluila ® |9i)e , (1.113)

with an orthonormal basis {|u;)} and a non-orthogonal set of states {|1;)} [54]. By
measuring in the basis {|u;)}, Alice effectively prepares the non-orthogonal signal
states {|1;)}, for instance, the BB84 states stabilized by +Z and +X. However,
still, when Eve has access to BoDb’s system, a reduced state for Alice and Bob which
is separable leads to a vanishing intrinsic information and so no secure key is avail-
able.

The bottom line is that in any secure QKD protocol, Alice and Bob must share
data that cannot be interpreted as coming from a separable state — the data have to
come from an effectively entangled state.

When a certain alphabet of qumode states is used for QKD, for instance, the
two non-orthogonal qumode states |1o) and |1), the interpretation of the corre-
sponding prepare-and-measure scheme in terms of effective entanglement leads to
a very special manifestation of entanglement, namely, that between a qubit and a
qumode in a kind of hybrid entangled state, (|uo)a ® |10)p + |41)a ® |11)8)/+/2.
We shall get back to this notion of hybrid entanglement in Chapter 8. Further, it is
useful to realize that the necessary precondition for secure QKD according to the
theorem of [19], namely, the presence of (effective) entanglement, can be satisfied
in the CV setting, in principle, for any channel losses: CV qumode entangled states
always remain entangled, although their entanglement decays exponentially in the
channel (see Chapters 2 and 3).

The preceding discussion highlights that entanglement (Section 1.5 and Chap-
ter 3) is the fundamental resource for quantum communication, even when it is not
directly used as a physical resource. Theoretical security proofs for unconditionally
secure QKD, both for qubits [55] and for qumodes [56], are also most conveniently
constructed with the help of entanglement distillation or quantum error correction
(Chapter 5).

There are, of course, many quantum communication protocols where physical
entangled states are used, the most prominent example of which is quantum tele-
portation (Section 1.6 and Chapter 4). In fact, quantum teleportation can be seen
as the fundamental protocol for quantum communication. This becomes particu-
larly clear when one attempts to extend quantum communication, including the
QKD schemes described above, to large distances, where, for instance, a physical
prepare-and-measure scheme over the entire channel distance would no longer be
feasible. In this case, physical entangled states should be distributed over smaller
channel segments and connected through teleportation. Eventually, quantum in-
formation can be teleported over the whole distance using the final, long-distance
entangled pair (see Figure 1.10). Such an approach to long-distance quantum
communication leads to the so-called quantum repeater which we shall discuss
now.
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Figure 1.10 Transferring quantum information over large distances combining short-distance
entanglement distribution, entanglement distillation, entanglement swapping, and quantum
teleportation.

1.7.2
Repeaters and Relays

Light is an optimal information carrier for communication, and one may send
quantum states encoded into a stream of single photons or a multi-photon pulse
through an optical channel. However, quantum information encoded into fragile
superposition states, for example, using photonic qubits or qumodes (Chapter 2), is
very vulnerable against losses and other sources of excess noise along the channel
such that the fidelity of the state transfer will exponentially decay with the length
of the channel.

In long-distance, classical communication networks, signals that are gradually
distorted during their propagation in a channel are repeatedly recreated through
a chain of intermediate stations along the transmission line. For instance, optical
pulses traveling through a glass fiber and being subject to photon loss can be ream-
plified at each repeater station. Such an amplification is impossible, when the sig-
nal carries quantum information. If a quantum bit is encoded into a single photon,
its unknown quantum state cannot be copied along the line due to no-cloning; the
photon must travel the entire distance with an exponentially decreasing probability
to reach the end of the channel.

The solution to the problem of long-distance quantum communication is provid-
ed by the so-called quantum repeater [2, 3] (Figure 1.10). In this case, prior to the
actual quantum-state communication, a supply of known quantum states, name-
ly, standard entangled states, is generated and distributed among not too distant
nodes of the channel. If a sufficient number of these imperfect entangled states are
shared between the repeater stations, a combination of entanglement purification
and swapping extends this shared entanglement over the entire channel. Through
entanglement swapping [57] (Chapter 4), the entanglement of neighboring pairs
is connected, gradually increasing the distance of the shared entanglement. The
entanglement purification [22] (Chapter 5) enables one to distill (through local op-
erations) a high-fidelity entangled pair from a larger number of low-fidelity entan-
gled pairs, as they would emerge after a few rounds of entanglement swapping
with imperfect entangled states and at the very beginning after the initial, imper-
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fect entanglement generation and distribution between two neighboring repeater
stations.

The essence of long-distance quantum communication as realized through the
quantum repeater model [2, 3] can be summarized as follows: provided sufficient
local quantum memories are available and some form of quantum error detection is
applied, quantum communication over arbitrary distances is possible with an in-
crease of (spatial or temporal) resources scaling only subexponentially with dis-
tance.

Note that the naive approach of dividing the total channel into several segments
that are connected through quantum teleportation without incorporating any form
of quantum error detection and without using quantum memories is not enough
to render quantum communication efficient with regard to resource scaling. In
this case, for instance, the probabilistic distribution of entangled pairs over the in-
dividual segments of the channel (Figure 1.10) must succeed at once. The number
of pairs created over a total channel of length L per unit time interval (basically
given by Lo/c with ¢, the speed of light in the channel and Ly, the length of each
segment) is then proportional to

L/Lo)—1

Pt IO (1.114)

distr
where Pgigy is the success probability for obtaining an entangled pair in one seg-
ment, Pgyp is the probability for a successful entanglement connection (swap-
ping), L/ L, is the number of segments, and so (L/Lo)—1 is the number of necessary
swapping events. When either the distribution or the swapping is probabilistic,”
Pgise < 10T Pgyap < 1, the pair creation rates will exponentially decay with the
total distance L; even when, quite unrealistically, the initially generated pairs are
perfectly entangled. Thus, in principle, if perfect local operations were available,
the final pairs would have unit fidelities too with no need for any quantum error
detection. This is the so-called quantum relay.”

Once perfect quantum memories are available, the exponential decay of the pair
creation rate can be circumvented. For example, consider two neighboring seg-
ments. The time it takes in one segment to distribute a single pair is on average
(Lo/c)/Paise = To. Now, a simultaneous distribution attempt in two segments will
be successful in either one segment after approximately half that time period. The
pair that is created first can then be stored in a quantum memory until the oth-
er segment has an entangled pair as well, after another waiting time of about Tj.
Thus, after a time of roughly 3T,/2, two pairs will be present next to each other
in the two neighboring segments [47] and one can proceed with the entanglement

27) Which is usually unavoidable, see the an exponentially decaying fidelity requiring
discussions on the postselected generation efficient quantum error detection techniques,
and swapping schemes for polarization- which are hard to obtain in the CV setting
encoded DV photonic qubits (Chapters 3 (Chapter 5).
and 4). However, using CV qumode 28) Which, in the optical context (Chapter 2),
entangled states, entanglement generation may still help to enhance practicality of a
and distribution (Chapter 3) as well as scheme, for instance, in order to resolve
entanglement swapping (Chapter 4) are single-photon signals against detector dark

deterministic. In this case, the problem is counts [47, 58-60).
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swapping, with a total time of (3Ty/2)/Pswap = T to obtain one pair over double
the elementary distance, 2 L.

In order to obtain two already swapped pairs (so each distributed over a distance
of 2Ly) next two each other, it will then take roughly a time of 3T;/2, and the
corresponding next swapping step will lead to an entangled pair over distance 4L,
after a total average time of about (3T;/2)/Psyap. Therefore, recursively, we end
up having an average time of (3/2)" To/P{,,, with L/Lo = 2", for obtaining one
pair over the total distance L. Compared with Eq. (1.114), this translates into a rate
(number or pairs per time unit) proportional to

2 n 2 log; (L/Lo)
Pyistr (E Pswap) = Pyistr (3 Pswap)

o (L/ Lo)e82 (% Poven) (1.115)

This is the quantum repeater in its simplest manifestation (using ideal memories
and without purification), achieving a rate that scales only polynomially with the
total distance L. The above approximation on the rates is good for small probabili-
ties Pgistr and Pgyap. In the limit of unit Pgiser and Pgyap, of course, there is no need
for memories and the relay performs as well as the repeater.

1.7.3
Shannon Theory

Prior to those proposals for the above-mentioned applications through which Alice
and Bob take advantage of using quantum resources, earlier treatments of quan-
tum communication aimed at deriving the fundamental limits imposed by quan-
tum theory on the classical communication by means of quantum signals. A very
famous result in this context is that from Holevo [61], sometimes referred to as the
fundamental law of quantum communication [62]. It places an upper bound, the
so-called Holevo bound, on the mutual information of Alice and Bob,

I(A:B) < S(3) ~ Y paS(ha) < S(7), (L.116)

where S(p) is the von Neumann entropy from Eq. (1.22), p is the mean channel
state, and p, are the signal states with a priori probabilities p,. In this relation,
equality is attained when Alice sends pure orthogonal signal states.”

29) In classical information theory [63], the channel is quantified by the so-called mutual
information content of a message depends information I(A : B) = I(A)+ I(B)— I(A, B).
on the probabilities p, for the occurrence Here, the sum I(A) + I(B) contains joint
of a letter drawn from an alphabet A. information in both alphabets, double
The less frequent a letter occurs, the counting the part which is mutual to
more information it carries. The average both alphabets. By subtracting the actual
information content per letter is then expression for the joint information
I(A) = —>_, palog, ps in units of bits. I(A,B) = — > ., Pab log, pap, Where
For two parties, a sender and a receiver the joint alphabet AB has letters with
corresponding to two alphabets A and B, probabilities pgp, the mutual information is

the information in the communication obtained.
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Even assuming an ideal (noiseless) channel, any attempt by Bob to retrieve the
classical information sent from Alice introduces noise when the signal states are
non-orthogonal. In fact, there is an optimal, accessible information, depending on
the measurement strategy that Bob employs. The most general measurement strat-
egy is described by a POVM {E,} with > Ey = 1. The accessible information is
typically hard to compute.

When Bob is presented with a state f, representing letter a from Alice’s alphabet,
he will instead find letter b from his own alphabet with a conditional probability
given by pyls = Pap/pa = Tr(Eyp,). From this, one may usually compute the
mutual information I(A : B) = I(A) + I(B) — I(A,B) = >, Pab 108, (Pab/(PaPb))-

Now, the information-theoretic condition for secure communication, that is, for
enabling extraction of a secure key using privacy amplification [64] and error correc-
tion techniques [65], is given by the following relation for the mutual information
between the three participants, Alice, Bob, and Eve,

I(A: B) > max{I(A: E), [(E: B)} . (1.117)

In other words, the mutual information between Alice and Bob, I(A : B), must
exceed the information that either of them shares with Eve.*”

Finally, there is another entanglement-based quantum communication scheme
which is kind of complementary to quantum teleportation. In this so-called super-
dense coding [67], the roles of the classical and quantum channels are interchanged
relative to those in quantum teleportation. Instead of reliably transferring quan-
tum information through a classical channel using entanglement as in quantum
teleportation, in a superdense coding scheme, the amount of classical information
transmitted from Alice to Bob is increased when Alice sends quantum informa-
tion, namely, her half of an entangled state shared with Bob through a quantum
channel to Bob.

For instance, two bits of classical information can be conveyed by sending just
one qubit. Superdense coding relies upon the remarkable feature that, for instance,
all four two-qubit Bell states in Eq. (1.93) can be transformed into each other
through local Pauli operations. Thus, Alice, similar to what Bob does in quantum
teleportation, applies one of four possible operations to her half of a shared Bell
pair, thereby encoding two classical bits. Finally, Bob, similar to what Alice does in
quantum teleportation, performs a Bell measurement on his half of the entangled
pair together with Alice’s half to retrieve the bit values. Therefore, Alice has to send
her half through a quantum channel to Bob. In general, superdense coding aims
at increasing the capacity (the maximal mutual information) of a communication
channel using entanglement.

30) In a CV QKD scheme based upon distillation and quantum memories, which

coherent-state signals, initially, for losses in
the channel greater than 3 dB, the condition
I(A : B) > I(A : E) is always violated using
the classical standard techniques. However,
there are various methods to beat the 3 dB
loss limit. One method is using, in addition
to the classical techniques, entanglement

are both rather demanding in a realistic
implementation (see Chapter 5). Alternative
approaches include a “reverse reconciliation”
protocol [52] with Alice guessing what was
received by Bob instead of Bob guessing
what was sent by Alice, and another method
based upon postselection [66].
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Like quantum teleportation, superdense coding relies on preshared entangle-
ment. Thus, superdense coding is still in agreement with Holevo’s rule that, at
most, one classical bit can be transmitted by sending one qubit because, tak-
ing into account Bob’s half of the entangled state transmitted to him prior to
the actual communication (“offline”), in total, two qubits must be sent to Bob.
This entanglement-based superdense coding must not be confused with other
“quantum coding” schemes such as those introduced by Schumacher [68]. The
Schumacher protocols enable Alice and Bob to approach the Holevo bound even
for non-orthogonal or mixed signal states through appropriate encoding of the
classical information into these states. This type of quantum coding, including the
results of Holevo, may be considered as part of an extension of Shannon’s classical
information theory [69] to the quantum realm [4, 5].

Superdense coding, like quantum teleportation, can be similarly translated from
qubits to qumodes in a CV superdense coding protocol [70, 71].%"

Entanglement as a resource and quantum teleportation as a protocol are natural-
ly associated with quantum communication, as we attempted to illustrate in this
section. However, both are just as fundamental for quantum computation. This
subject is discussed in the next section and in more detail in Chapters 6 and 7.

1.8
Quantum Computation

The ultimate real-world application of quantum theory would be the quantum com-
puter. By processing quantum information encoded in a superposition of all possi-
ble classical inputs, a quantum computer is capable of simultaneously computing
each output value for every possible input — a notion called quantum parallelism.

This field of quantum computation was initiated through Deutsch’s work on
universal quantum computation from 1985 [72], based on earlier ideas of Feyn-
man [73]. Today, this field is divided into various subfields associated with comple-
mentary research efforts such as

e the search for quantum algorithms,
e proof-of-principle demonstrations of small-scale quantum circuits, and
e proofs of universality, fault-tolerance, and scalability.

Initially, quantum algorithms were only of interest to specialists in the field. How-
ever, when Shor discovered in 1994 how to factorize numbers into prime numbers
significantly faster than classically (in polynomial rather than exponential time) by
using a quantum algorithm [74], the possibility of realizing a quantum computer
became a security issue. Codes such as the famous RSA encryption, considered ef-

31) By utilizing the idealized, unphysical two-qumode entangled states of Eq. (1.95), similar to the
qubit case, CV superdense coding would approach, in this idealized limit, a capacity twice as big
as that theoretically attainable in the absence of entanglement [71].
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fectively secure based upon a mathematically unproven complexity assumption,*
became suddenly vulnerable; no longer due to the nonexistence of a mathematical
proof, but rather because of a new type of computer whose existence is permitted
by the laws of physics.

Ironically, the solution to the problem of unconditional security was also offered
by quantum theory in form of quantum key distribution, as discussed in the pre-
ceding section. Even a quantum computer cannot render quantum cryptography
insecure.

The probably most well-known quantum algorithms, besides Shor’s, are Grover’s
algorithm of 1996 for searching a database [75] and the Deutsch—Jozsa algorithm
of 1992 [76] which inspired the works of Shor and Grover. All these ideas have in
common that they illustrate the potential of quantum information processing to
provide solutions for problems that are defined in purely classical terms and (most
likely) cannot be solved efficiently through classical information processing. Simi-
lar to what quantum cryptography achieves for classical communication, quantum
algorithmic offers potentially better ways to perform certain classical computations;
even though at intermediate stages, both the communications and computations
would rely upon quantum resources and processing.

There are basically two main categories of quantum algorithms, namely, those
based upon the quantum Fourier transform corresponding to general implementa-
tions of the so-called hidden subgroup problem and quantum search algorithms [5,
77]. The Shor and Deutsch—Josza algorithms belong to the former category, while
the latter one consists of variations of the Grover algorithm. An example of a class
of algorithms that fit in neither of these two categories is quantum simulation. In
this case, the quantum computation is used to simulate a quantum system, as it
was originally envisaged by Feynman [73]. The notion of simulating a Hamiltoni-
an is the most convenient starting point for defining quantum computation over
continuous quantum variables on qumodes. This will be discussed in Section 1.8.2.

Typically, however, a model of quantum computation or a specific algorithm will
be implemented on qubits. In this case, an algorithm for N qubits, computed in
a 2N-dimensional Hilbert space, will convert initially unentangled qubit product
states at some stages of the computation into a multi-party entangled state of many
qubits. It was already mentioned in Section 1.1 that entanglement can be a suffi-
cient resource for quantum computation, and the engineering and exploitation or
consumption of (multi-party) entangled states for quantum information process-
ing will be the central topic of the remainder of this book. However, we may as well
ask: is entanglement also a necessary resource for quantum computation?

Indeed, the answer to this question is neither a clear yes nor a clear no. First
of all, we may simply redefine the total physical system and replace the tensor-
product Hilbert space of the N qubits, ® VH, (where H} denotes a Hilbert space
of dimension k), by an equivalent (isomorphic) Hilbert space for a single d =
2N.level qudit system, H,~. Eventually, we may argue that it is not some form
32) That is, assuming that these codes are too hard to break by a classical computer. For instance,

there is no classical algorithm known to factorize numbers in an efficient amount of time to break
the RSA encryption.
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of multi-party (multi-particle) entanglement, but rather the interference effect in
complicated superposition states of a single qudit (particle) which is responsible
for a quantum computational speed-up [78, 79]. However, should we always refer
to a single-particle state such as

1 1 - -
7 (110) +[01)) 7 (10) +11))
as an unentangled state? More specifically, one physical manifestation of this kind
of state would be a path-entangled state of two single-rail qubits, obtainable by
splitting a single-photon wave-packet at a beam splitter (see Chapters 2 and 3; Fig-
ure 3.2), where |10) = |1); ® |0), represents a possible state of the two spatial
modes one and two at the two output ports of the beam splitter. Alternatively, this
state may as well be interpreted as a simple one-qubit + X-stabilizer state in polar-
ization encoding (see Chapter 2), where this time, |10) = |1) 5 ® |0)y = |H) = |0)
stands for a possible state of two orthogonal polarization modes; in this case, the
horizontally polarized mode H is excited by a photon, while the vertically polarized
mode V is in the vacuum state. In either case, the single-photon system lives in a
(sub)space of two optical modes.

Regardless of whether the state in Eq. (1.118) is considered entangled or not,
extending the basis from two levels to 2V levels would clearly provide enough
(Hilbert) space to do quantum computation; either on a single 2V-level system or
on Ntwo-level systems.” However, there is a crucial difference in terms of physical
resources needed for realizing the quantum computations. For the N-qubit tensor-
product-based quantum computer, N physical qubits (for instance, N polarization-
encoded photons) will be needed, so that the physical resources scale linearly with
the number of qubits. In contrast, a 2N-level quantum computation in which,
by definition, the multi-party entangled states are disguised as single-particle su-
perposition states will always be at the expense of some exponential overhead in
terms of physical resources (for instance, exponentially many optical elements for
transforming 2V optical modes or an exponentially increasing measurement pre-
cision). One may then argue that it is actually the multi-particle entanglement in

(1.118)

33)

that interacts with the respective atom).
Most importantly, in an optical state like
that in Eq. (1.118), the two field modes

are entangled and not the photon with

the vacuum. Similarly, a low-squeezing
two-mode squeezed state, |00) + r|11) with
r < 1, has a small amount of entanglement
which is not between the two photons and

33) For a nice discussion on this issue,
see [80-82]. In [80], a simple argument
explains why a single-particle two-mode
state like that in Eq. (1.118) should be
considered entangled, provided the two
modes are spatially separated, which is
the case for path-encoding, but not for
polarization encoding. The two modes

of the path-entangled state may then be
distributed among two spatially separated
two-level atoms and map the two atoms
onto the clearly entangled two-particle state
(leg) + |ge)) /+/2 through local atom-light
interactions (here, the initial atomic ground
states |g) would only become excited, |e),
provided a photon is in the optical mode

the vacuum, but rather between the two
qumodes (see Chapters 2 and 3). Multi-party
entanglement between many qumodes will
be introduced in Chapter 3.

34) An example for the former type of quantum

computation will be presented in Section 2.8
using 2V optical modes for a single photon
and linear optical elements.
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the multi-qubit tensor-product approach that enables one to avoid the exponential
overhead [78, 79].*

Compared to discrete qubit encodings, qumodes naturally offer any desirable
amount of space to process quantum information. However, it is not obvious
whether and how such analog quantum information can be exploited. Unphysi-
cal qumode stabilizer states such as the position eigenstates |x) are not available
as a computational basis. Instead, Gaussian states such as squeezed states (see
Chapter 2) would have to be employed. These physical states, though producible
in highly efficient ways, can then only be measured at a finite resolution or in
a probabilistic fashion. For example, in order to implement a CV version of the
Deutsch—Josza algorithm, there would be an uncertainty-based trade-off between
a position x-encoding and a p-measurement resolution; thus, preventing a com-
putational speed-up [83]. In this case, the exponential overhead can be thought of
as the requirement of an infinite measurement precision or the preparation of a
quantum state with infinite energy. In many cases, it is not even clear how to recast
a given computational problem and the corresponding quantum algorithm in the
CV setting.

Besides quantum algorithmic, as listed at the beginning of this section, the two
other main directions of current research on quantum computation are experimen-
tal demonstrations of small-scale quantum circuits, and theoretical proofs of uni-
versal (potentially scalable and fault-tolerant) models and approaches for quantum
computation. The former topic will be addressed to a great extent in the remainder
of this book. Universality, in the context of both qubit and qumode encodings and
processing, shall be considered in the section after next. Now, we briefly introduce
two equivalent, but conceptually very different models for quantum computation.

1.8.1
Models

There are various models to describe quantum computations of which the most
common one is the circuit model [5]. It uses sequences of reversible, unitary gates
in order to transform an input quantum state into any desired output quantum
state. Although, finally, the output state must be measured for read-out, the largest
part of the computation is conducted in a measurement-free fashion. The circuit
model provides a natural language to describe quantum algorithms. Important no-
tions such as universality can be conveniently expressed in the circuit model, as we
will discuss in the next section.

A conceptually very different model for quantum computation is that of measure-
ment-based quantum computing. As opposed to the standard circuit model, in
measurement-based quantum computation, the quantum gates are embedded in-
to an entangled state prior to the actual computation — the gates are performed
“offline” on the entangled-state resource. This turns out to be of great importance

35) However, there are specific examples of quantum algorithms which neither require multi-particle
entanglement nor depend on an exponential overhead of spatial or temporal resources [79].
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for experimental realizations because even highly probabilistic gate implementa-
tions can be useful, provided they are applied to the off-line state and a successfully
transformed resource state is kept intact until its consumption during the on-
line computation. In order to render measurement-based quantum computation
(near-)deterministic despite the randomness induced by the measurements, typi-
cally, some form of measurement-dependent feedforward operations will be need-
ed. Since an online, measurement-based computation is no longer reversible, such
approaches to quantum computation are sometimes referred to as one-way models.

There are various specifications to measurement-based quantum computing.
One approach is based upon a generalization of standard quantum teleporta-
tion [84]. In the qubit case, a single-qubit (multi-qubit) state is then teleported
through a modified, unitarily transformed two-qubit Bell (multi-qubit entangled)
state such that the desired gate operation is affected on the output state. This
extension of the usual communication scenario for quantum teleportation with
an ideally exact state transfer from Alice to Bob to gate teleportations for com-
putation with a teleported state unitarily transformed depending on the modified
resource state illustrates the general importance of quantum teleportation. Gate
teleportation will be further discussed in Chapter 6.

In the standard version of gate teleportation, a nonlocal two-party Bell measure-
ment projecting onto an entangled-state basis is still needed, which can be a severe
complication for experimental implementations. However, there is an ultimate re-
alization of measurement-based quantum computing in which all entangling op-
erations are performed offline and for the actual computation, only local measure-
ments are needed. In such a cluster-based one-way quantum computation [1], a
multi-party entangled state is first prepared offline and the actual computation is
then conducted solely through single-party projection measurements on the in-
dividual nodes of that resource state — the cluster state. By choosing appropriate
measurement bases in each step, possibly depending on earlier measurement out-
comes, any unitary gate can be applied to an input state which typically becomes
part of the cluster at the beginning of the computation, see Figure 1.11.

The essence of cluster computation can be summarized as follows: the cluster
state is independent of the computation; universality is achieved through choice of

) e

+ ~
) S a e )
) e

) e

V) —

Figure 1.11 One-way cluster computation for
qubits. Certain single-qubit stabilizer states
become pairwise entangled to form a multi-
qubit cluster state (see Section 3.1). Local
projection measurements on the individual
qubits, potentially including feedforward with
a measurement order going from left to right,
are then enough to realize (universal) quan-

tum computation. A multi-qubit input state
|) attached to the left end of the cluster
could, in principle, be (universally) processed
with the output state occurring at the right
end of the cluster. The vertical edges allow for
two-qubit gates (more details can be found in
Section 7.1).

53



54

1 Introduction to Quantum Information Processing

measurement bases. A more detailed discussion of cluster computations on qubits
and qumodes can be found in Chapter 7. Next, we turn to the notion of universality.

1.8.2
Universality

The two models of quantum computation as introduced in the preceding section,
the circuit and the one-way model, are both known to be universal and in this sense,
they can be considered equivalent models. So what does universality mean? Usu-
ally, universality is associated with the ability to apply an arbitrary unitary operator
or matrix upon a given signal state, for instance, to an initial multi-qubit product
state. Under certain circumstances, in particular, in realistic situations including
experimental imperfections and errors, an exact implementation of a unitary ma-
trix is not achievable and hence the notion of approximate, asymptotic universality
becomes important. In this case, a universal set of elementary gates is considered
that allows for approaching any given unitary gate at any desired precision through
elementary-gate concatenations.

From a slightly different point of view, one may also think of universality as the
ability to simulate any given Hamiltonian. This Hamiltonian approach to univer-
sality turns out to be particularly useful for qumode systems where the available
transformations are naturally given in terms of interaction Hamiltonians which
are polynomials of the bosonic mode operators. One possible way to understand
this approach is to consider the following decomposition,*®

eiffatgiFitg—iHatg—iHit _ olH1 Halt? o) . (1.119)

Thus, by applying the Hamiltonians H; and H, for some short time, we can al-
so approximately implement the Hamiltonian —i[H;, H,], provided the interac-
tion times are sufficiently short. Once the simplest commutator can be simulated,
higher-order (nested) commutators are also available through further concatena-
tion. Provided nested commutation of a set of elementary Hamiltonians allows
one to generate an arbitrary Hamiltonian, the elementary set can be referred to as
a universal set. This type of asymptotic, approximate model for universal quantum
computation is applicable to both DV qubit [85] and CV qumode [86] systems on
their own as well as to hybrid systems combining qubits and qumodes (see Chap-
ter 8).

1.82.1 Qubits

Consider a single qubit and recall the discussion on single-qubit unitaries in Sec-
tion 1.3.1. In the box at the end of Section 1.3.2, it is shown that an arbitrary single-
qubit unitary can be expressed as e Ry(6), depending on four real parameters

36) Using e*eP = eATBelABI2 1 O([A, [A, B]},[[A, B], B]) and so etiHzigHitht —
eFilHi+H)te—{H2 HII/2 4 O(13), which is one of the well-known Baker-Campbell—
Hausdorff (BCH) formulas, also commonly used in quantum optics (see Chapter 2). Here and in
Eq. (1.119), we omitted the operator hats on the Hamiltonians.
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determining ¢, 6, and the real three-dimensional unit vector s. Now, we can de-
compose this arbitrary rotation into a sequence of rotations around two fixed axes,
for instance, the Z and Y axes,

e Rz(a)Ry(B)Rz(y) = € Z, Y3 Z,, , (1.120)

using the definitions given after Eq. (1.60), with real parameters ¢, a, 3, and y.
This can be easily seen by parameterizing an arbitrary, unitary 2 x 2 matrix with
orthonormal rows and columns and decomposing it into a product of matrices [5].

From the preceding discussion, we learn that the set {Zy, Yy} represents a uni-
versal set for single-qubit unitaries; any single-qubit unitary can be constructed
from a small sequence of Z and Y rotations. Moreover, the ability to perform these
rotations precisely with angles a, f, and y would mean that the set {Zy, Yp/} al-
lows for realizing any single-qubit unitary exactly. It can then be shown [5] that
arbitrary unitaries in a multi-qubit space can be exactly realized through this uni-
versal set for single-qubit unitaries, together with one fixed two-qubit entangling
gate such as the CNOT gate (see below). Hence, the set {Zy, Yo’} supplemented
by, for instance, the CNOT gate is universal for quantum computation in finite
dimensions.

So why would we have to consider asymptotic, approximate realizations of uni-
taries or Hamiltonians as, for example, described by Eq. (1.119)? The problem with
the set {Zy, Yy} is that it is continuous and so an arbitrary single-qubit rotation re-
quires infinite precision for every rotation. This is hard to realize, especially in an
error-resistant fashion. Therefore, it is useful to define a discrete, finite set of fixed
elementary rotations which then can no longer achieve any multi-qubit unitary ex-
actly as the whole set of unitary gates is continuous, but instead in an approximate
fashion at arbitrary precision. In order to be efficient, a sufficiently good approxi-
mation must not require an exponential number of elementary gate applications.””

A convenient universal set of gates is given by [5]

{H, Zxjp, Zapa, Cz} (1.121)

Here, H is the Hadamard gate, H|k) = (|0) + (—1)¥|1))/+/2, needed in order to
switch from gates diagonal in Z to gates diagonal in X. The two-qubit gate Cz acts
as an entangling gate, with

k@) — () k) el), kl1=01. (1.122)

For convenience, we repeat the definition Z, = e™1?%/2 for a single-qubit rota-
tion about the Z-axis by an angle 6 with the computational Pauli operator Z acting
as Z|k) = (—=1)¥[k); the conjugate Pauli operator X obtainable from Z through
Hadamard describes bit flip operations, X|k) = |k & 1). Note that removing the

37) Indeed, there is the important issue here as to whether the number of elementary gate operations
for simulating a given multi-qubit unitary scales subexponentially with the size of the exact circuit
for any desired accuracy. Many multi-qubit unitaries cannot be efficiently simulated [5].

38) However, removing Zy; from the elementary gate set would give the smaller set { H, Zy/4, Cz}
which is still universal, as we have Zy4 Znjs = Zy)2.
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gate Z 4 from the elementary gate set means that only the Clifford unitaries (Sec-
tion 1.3.1) can be realized, which are known to be insufficient for a quantum com-
putational speed-up over classical computation.*® For both universality and speed-
up when computing with stabilizer states such as |4+)®V, the non-Clifford phase
gate Z/4 must be included; otherwise, if only using the Clifford set { H, Z/2, Cz},
the stabilizer states remain stabilizer states at all times since Pauli operators are
only mapped back onto Pauli operators, see Egs. (1.64) and (1.65). Obviously, this
no longer allows for universality including universal state preparations. However,
why does it also prevent a speed-up compared to classical computations?

We know that a single-qubit Pauli operator is Clifford-transformed into another
Pauli operator. Hence, the evolution of the ith N-qubit stabilizer generator® corre-
sponding to an N-party tensor product of Pauli operators, g; = Xi1 ® Xi2®... Xin,
is specified through ~ N parameters. Here, X;; can be any one of the single-qubit
Pauli operators or the unity operator for the corresponding slot, including a sign
choice &+, with k = 1,2, ..., N. Therefore, one can keep track of the evolution of the
whole state by calculating the new stabilizer generators for every i = 1,2,..., N.
As a result, ~ N? parameters have to be calculated at every step of the evolution,
which can be done efficiently using a classical computer. The crucial element here
is that during the entire Clifford evolution, every N-qubit stabilizer state is uniquely
determined through N stabilizer generators (g1, g2, . .., gn), even though the state’s
stabilizer group has 2~ elements.

In general, any quantum computation solely using Pauli and Clifford gates
(which include the Hadamard and the Cz gates) on stabilizer states, measure-
ments in a Pauli basis, and classical feedforward can be efficiently simulated by a
classical computer. This is the so-called Gottesmann—Knill theorem.

Before we turn our attention to universal sets for qumodes, we give a few ad-
ditions to the preceding discussion. A more commonly used two-qubit entangling
gate is the CNOT gate acting on two computational basis (+ Z stabilizer) states as

k)@ |l) —> k) @[l & k), (1.123)

where, here again, @ denotes addition modulo 2. The CNOT gate can be obtained
from the Cz gate through local Hadamards,

(1® H)Cz(l ® H) = CNOT . (1.124)

We have used the CNOT gate already in the circuit of qubit quantum teleportation
of Figure 1.8, illustrating the usual convention for drawing this particular two-qubit
entangling gate.

While the Clifford gate Z, maps stabilizer states back onto stabilizer states, for
the non-Clifford gate Z 4, we obtain non-stabilizer states. In this case, for instance,
instead of Eq. (1.64), we have now

Zapl+) = (77410) + e FD)) 112

o= i/ (|0> + e+in/4|1)) V2. (1.125)

39) For a definition of stabilizers, see the discussion and the box in Section 1.9.
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The resulting non-stabilizer state (|0) + et%/4|1))/+/2 is sometimes referred to as
the “magic state” [87]. Here, the Heisenberg evolution of the stabilizer X under the
non-Clifford t/8-phase gate Zy4, Z;/4XZW/4 = 1/+/2(X — Y), using Eq. (1.61), no
longer gives a Pauli operator.

1.8.2.2 Qumodes

Consider now a single qumode and recall the discussion on single-qumode uni-
taries in Section 1.3.2. An arbitrary single-qumode unitary can be written as U =
e 1#H@8T) with a general Hamiltonian H(@, a) which is an arbitrary polynomial
of the mode operators. Decomposing such a general Hamiltonian evolution into a
set of elementary evolutions is a difficult task. In fact, for polynomials of arbitrary
order in the mode operators, when the unitary on the qumode becomes a non-
Clifford unitary, the Hamiltonian simulation will be, in general, only approximate
and asymptotic, as expressed, for instance, by Eq. (1.119).

However, in the case of a single-qumode quadratic Hamiltonian corresponding
to a Clifford unitary on the qumode, an exact decomposition similar to that in
Eq. (1.120) is possible,*’ consisting of single-mode position-squeezers $(r) and
phase rotations R(6) [recall the definitions in Section 1.3.2 and see Eq. (2.52)
through Eq. (2.56)],

R(¢)S(r)R(¢") -
More precisely, this decomposition only represents an arbitrary Clifford transfor-
mation up to displacements in phase space.” Therefore, the set { X(s), R(0), S(r)},
with the real parameters s, 6, and r, where we added the position-shift WH opera-
tor X(s), is universal for arbitrary single-qumode Clifford unitaries (or, equivalently,
Gaussian unitaries, see Chapter 2).

The three real parameters in Eq. (1.126) correspond to the three degrees of free-
dom needed for an arbitrary symplectic transformation on a single qumode. This
decomposition can be obtained through Bloch-Messiah reduction [89] and gener-
alized to an arbitrary number of qumodes (see Chapter 2). Note that the single-
qumode Clifford set {X(s), R(6), S(r)}, though consisting of a finite number of
elementary gates, is continuous, similar to the universal single-qubit set {Zy, Yy'}.
Therefore, again, an exact realization of a single-qumode Clifford unitary would
require infinite precision for implementing the parameters s, 6, and r, which cor-
respond to effective interaction and free evolution times in the quantum optical

(1.126)

40) Note that there are also exceptions of Gaussian transformations (see Chapter 2).

cubic or higher-order Hamiltonians
which are exactly decomposable into
lower-order Hamiltonians. For instance,
eIk ® it 2 gikE — eit(ﬁ+3m‘22/2)2’ where
the right-hand side has a fourth-order
Hamiltonian, while the left-hand side only
has second and cubic orders [88].

41) The qumode Clifford group is a group whose
generators are polynomials up to quadratic
order in position X and momentum p. Its
group elements correspond to the unitary

For the general case of N qumodes, the
Clifford group CI(N) is a semidirect product
of the symplectic group and the WH

group, CI(N) = Sp(2N,R) x WH(N).
According to our definition of the Clifford
group in Eq. (1.69), the group WH(N) is a
homogeneous space under the adjoint action
of CI(N), and one can construct a group
representation of Cl(N) on the vector space
of the Lie algebra wh(N).
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context. Rather than attempting to get rid of this type of infiniteness, the purpose
of constructing a universal single-qumode set (including non-Clifford unitaries) is
primarily to simulate Hamiltonians of arbitrary order while still using a finite set of
gates. As opposed to an exact Clifford simulation expressed by the symplectic trans-
formation in Eq. (1.126) plus an additional complex phase-space displacement,*”
where each elementary gate may have arbitrary strength, the universal simulation
is no longer possible without asymptotic concatenations like those in Eq. (1.119),
requiring near-unity gates for each individual step.

Once arbitrary single-qumode Hamiltonians are available (in the asymptotic
sense), it can be shown that, similar to the qubit case, arbitrary multi-qumode uni-
taries can be realized through the corresponding universal set for single-qumode
unitaries, together with one fixed two-qumode Clifford gate [86, 90]. A two-qumode
gate serving this purpose is the Clifford C gate used below. Since the Cz gate
itself can be decomposed into a circuit of two two-qumode beam splitters and
two single-qumode squeezers [89], the only entangling interactions needed for
universal multi-qumode processing are provided by passive beam splitting trans-
formations (see Chapter 2 for more details).

As a finite, elementary gate set for asymptotic simulations of arbitrary multi-
qumode Hamiltonians, one may choose [90]

{F, Z(5), Da(t), Ds(x), Cz}, (1.127)

with s, t,k € R. Now, F represents the Fourier transform operator that maps be-
tween the position and momentum basis states, F|x), = |x),. It is needed in
order to switch from gates diagonal in % to gates diagonal in p since all the remain-
ing gates are chosen to be diagonal in X. The entangling gate C is an x-controlled
p-displacement, Cz = exp(2i%; @ %,) = Z;1(X2) = Z,(%1), with

Czlx)xlp)p = %)xlp + x)p , (1.128)

or, C;fcl,z Cz = %12, C;ﬁl,z Cz = P12 + %21. The other X-diagonal gates are the
WH momentum shift operator, Z(s) = exp(2isx) with Z(s)|p), = |p + s),, and
the phase gates Dy (t) = exp(itx¥). The quadratic phase gate (k = 2) incorporates
single-qumode squeezing (together with a rotation) and is sufficient in order to
exactly simulate any multi-qumode Clifford (Gaussian) transformation (together
with F, Z(s), and Cz). In order to asymptotically achieve universal multi-qumode
processing including non-Clifford (non-Gaussian) unitaries, the additional cubic
phase gate (k = 3) is needed.” in an efficient way.

42) Obtainable from X(s) through Fourier example, in Eq. (1.131), the right-hand side
rotations ﬁ(—n /2). contains a quadratic squeezing gate; thus, we

43) Similar to the qubit case, while removing can still obtain arbitrary Clifford gates [88].
the non-Clifford phase gate D3 (t) renders From a practical point of view, however, it
the remaining Clifford set non-universal, is better to implement Clifford unitaries
removing the Clifford phase gate D, (t) whenever needed through Clifford gates (see

gives a smaller, but still universal set. For Chapter 2).
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Similar to the qubit stabilizer evolution under the qubit Clifford phase gate in
Eq. (1.65), here, we obtain the qumode stabilizer evolution,*

X(S) - DZ(t)X(S) DZ(t) = eit’A‘2 ‘X(S)e—it%2
= eitsZX(S)Z(tS) . (1.129)

The conjugate stabilizer is invariant, Z(s) — Dz(t)Z(s)DZ(t) = Z(s). These equa-
tions correspond to the following linear Heisenberg evolution equations for the
position and momentum of a single qumode,

% — DI()&Dy(t) = %,
b — DI(H)pDy(t) = p + t% . (1.130)

In contrast, the non-Clifford, cubic phase gate transforms the X stabilizer as*

X(s) = D3(t)X(s) D} (t) = €'’ X(s)e ¥
= X(s)Z(3ts*/2)e¥*’
= X(s)Z(3ts%/2) Dy(3ts) . (1.131)

Instead of a multiple of WH operators, a product of quadratic and linear gates is
obtained. The stabilizer Z(s) remains unchanged. This is similar to what we found
for qubits after performing the m/8-phase gate Z;/, on the Pauli X operator, which
no longer gave a Pauli product. On the level of the WH generators, that is, in the
Heisenberg evolution of the position and momentum operators, the momentum
is no longer mapped onto a linear combination of the generators,

% — DI()&Ds(t) = %,
3
p — Di(t)pDs(t) = p + Etfcz : (1.132)

The momentum transformation becomes nonlinear.*®

The Gottesmann—Knill theorem that we had introduced in the preceding section
for qubits applies to qumodes too [90]. In this case, the Clifford evolution of the sta-
bilizers is most conveniently expressed in terms of the linear evolution of the WH
generators % and p. Similar to the discussion for qubits, the ith N-qumode stabi-
lizer generator is determined through ~ N parameters. For instance, the N posi-
tions of an initial product state of N position eigenstates are each transformed into
position-momentum linear combinations with 2N real coefficients. Hence, the to-

44) Which corresponds to the inverse 46) In these Heisenberg equations, we
Heisenberg evolution, while the actual use our usual convention of & = 1/2.
Heisenberg evolution is D] (£) X(s) D, () = In general, using the commutator
DI (e~ P Dy(t) = e 2BHH = [%,ﬁ]A= jh, and so %%, p] = 2iA%
e™i!s" X(s) Z(—ts) using Eq. (1.130) and one and (%%, p) = 3ih%?, we obtain
of the BCH formulas. D, (1)F Da(t) = p+[p, it%?] = p+2hts and

45) While the actual Heisenberg evolution Dy (H)p Ds(t) = p + [p,it%%] = p + 3AtR2,
is D;‘(t)X(S)D;(t) — o itE o 2isitR} using the BCH formula e BAe® = A +
e—2is(p+313%)2) — X(S)Z(_3tsz/2)e—3its£2 [A, B]+1/2![[A, B], B]+1/3![[[A, B], B], B] +...

using one of the BCH formulas.
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tal evolution is completely specified through 2N? real parameters. For the more
interesting case of physical stabilizer states corresponding to Gaussian states (see
Chapters 2 and 3), instead of the 2 N? real coefficients, 2 N? complex coefficients are
needed, corresponding to 4 N? real parameters. The formalism of complex-valued
stabilizers for physical qumode stabilizer states and their Clifford evolution will
be discussed in Chapters 2 and 3. The Gottesmann—Knill theorem for qumodes
then states that Gaussian operations on Gaussian states can be efficiently simulat-
ed classically [90].

Similar to the qubit case, one may also consider a CNOT gate for qumodes. This
is defined as CNOT = exp(—2i%; ® p,) = X3(*1) = Zi1(—p2), corresponding to an
x-controlled x-displacement of mode 2 and a p-controlled p-displacement of mode
1: % — %1+ Xy, p1 — P1— P2, %1 — %1, and p, — p,. As opposed to the Cz gate,
CNOT is no longer symmetric under exchange of the two modes. The CNOT gate
can be obtained from the Cz gate through local Fourier transforms,

(1 ® FT)exp(2i%; ® %,)(1 ® F) = exp(—2i%; ® p) - (1.133)

Universal sets

®  Qubits
VH, Zxj2, Zaps, Cz}
single-qubit gates:  Z-Pauli (phase flip):
Z|£) =1F), ZIk) = (-1)*[k)
general Z-rotation:

Zg = exp(—if Z/2)

7t/4-phase gate:

20 ZZap =2, Z1,XZyy=-Y (Clifford)
7t/8-phase gate:

ZINZ 2 =2, Z1 X Zs = %(X —Y) (non-Clifford)
Hadamard:

H|k) = 10) + =1)*11) HXH=2Z, HZH=X (Clifford)

NG )
X-Pauli (bit flip):

Xk =lk®1), X[)==£|+)
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two-qubit gate:
Czlk) @ 1) = (—1)*k) ® |1)  (Clifford)
~~~~ Qumodes
{F, Z(s), D,(t), D3(k), Cz}
single-mode gates: WH-momentum shift:
Z@)lp) =1p+5). Z(s)lx) = |x)
general phase (momentum) gate:
D = expli f(%)], forexample Dy(t) = exp(itx¥)
quadratic gate:

DJ(H)%D(t) = %, DJ(t)pDa(t)

p +t& (Clifford)
cubic gate:

D;i‘(t)ch3(t) =%, D;(t)ﬁ D3(t) = p + =t&* (non-Clifford)

N W

Fourier:

T

FTpF =%, F'%F=—p (Clifford)
WH-position shift:

X(s)lx) = |x +5),  X(s)|p) = e |p)
two-mode gate:

Cz = exp(2ix ® X) : Cz1%)pos| P )mom = %) pos|P + %) mom >
CEQI,Z CZ = 921‘2 , C;ﬁl,Z CZ = ﬁl,Z =+ 5&2,1 (Chfford)

Again, similar to the qubit case, the “magic state” for qumodes is obtained by
applying the non-Clifford, cubic phase gate upon a zero-momentum eigenstate,

Ds(t)|p = 0) = e”’”%/daqx) = %/dxei“ﬂx) . (1.134)

This is the so-called cubic phase state [28].
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In the current section, we attempted to give an overview of various important no-
tions in quantum computation including those of universality and scalability in the
context of both qubit and qumode approaches. Universality in either approach will
require some form of nonlinearity which may only be indirectly incorporated into a
quantum computation through measurements or directly through some effective-
ly enhanced weak nonlinear interaction. In the former scenario, a measurement-
based model of quantum computation is applied, as we shall discuss in the context
of experimental implementations in Chapters 6 and 7. The idea of weak nonlin-
ear interactions is most intuitively realized in hybrid protocols in which both qubit
and qumode systems participate (see Chapter 8). Once universality is achieved, in-
cluding non-Clifford gates, in principle, a quantum computation can no longer be
simulated classically in an efficient way.

Even when universality can be attained in principle, scalability remains a subtle
issue. This issue will be part of the subsequent discussions on optical approaches
to quantum computation.

Another topic of great importance is fault tolerance. Without some form of (con-
catenated) quantum error correction, a quantum computer will remain a theoreti-
cal construct. As we discussed before, quantum communication too must rely upon
some form of quantum error detection when it is to be extended over larger dis-
tances. A complete treatment of fault tolerance for quantum information process-
ing and computation is beyond the scope of this introductory chapter on quantum
information. Nonetheless, in the next section, we shall at least mention the basic
concepts of quantum error correction.

1.9
Quantum Error Correction

Quantum information processing and computation became an area of practical
interest with potential real-world applications only after the discovery of quantum
error correction (QEC) codes [5, 21, 91, 92]. Shor’s code [21] was proposed at a
time when people believed that QEC unlike classical error correction would be
impossible. These initial doubts originated mainly from two supposed obstacles.

First, in classical error correction, the most natural way for protecting informa-
tion against errors is to use redundancy. However, to create redundancy in the quan-
tum case (by encoding qubits into multiple copies of the same qubits) appeared to
be forbidden even in principle by the quantum mechanical no-cloning theorem
(recall Section 1.1). Further, a second complication seemed to exist, following from
the fundamental nature of quantum information: encoded into complex-amplitude
superposition states, as opposed to classical digital information, quantum informa-
tion is inherently continuous. This even holds for just a single qubit.

Despite these initial doubts, Shor’s discovery and the many subsequent results
on QEC demonstrated that there are two specific solutions to the two main prob-
lems mentioned in the preceding paragraph. A kind of redundancy can be obtained
in the quantum case by encoding quantum information globally into entangled
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Figure 1.12 Basic elements of quantum error
correction. Most commonly, the signal state
|y) and a set of ancillae in some standard
initial state |A) are unitarily transformed into
an encoded state. After the effect of the errors,
typically assumed to occur individually and
independently on every subsystem, a unitary
decoding circuit and a subsequent syndrome

measurement of the ancillae reveal the type
and location (and, for example, for qumodes,
also the size) of the error. A final correction
operation on the signal system will then recov-
er the original state with a fidelity greater than
that for an unprotected signal state, depend-
ing on the correctable set of errors for the
specific code and on the actual error model.

states that are defined in a larger Hilbert space than the original signal space. These
encoded states do not correspond to multiple copies of the original state and so do
not violate no-cloning. For example, an arbitrary qubit state, |y) = a|0) + b|1),
may be encoded into an entangled state of three physical qubits as*’

ly) ® [0) ® [0) — a]000) + b|111) # [9) @ [¥) ® |9) . (1.135)

This encoding can be achieved by pairwise applying two CNOT gates upon the
signal qubit together with the first ancilla qubit as well as with the second one.
Eventually, local bit-flip errors occurring on exactly one of the three qubits can be
detected and corrected, as we shall discuss in more detail shortly. The detection
of the error will depend on some form of measurement, and it is this so-called
syndrome measurement step which enables one to correct arbitrary, even continu-
ous errors. This effect is called discretization of errors because a continuous error
is reduced to a finite, discrete set of Pauli errors. We will illuminate this essential
feature of QEC in the following section. Figure 1.12 shows the basic elements of
QEC as applicable to both qubits and qumodes.

1.9.1
Discretization

In the preceding section, we wrote universal sets for qubits and qumodes in terms
of single-variable gates, that is, gates diagonal in the computational variables Pauli
Z and position %, respectively. For universality, at least one diagonal gate needed to
have a rotation angle # kt/2 on the Bloch sphere for qubits and a Hamiltonian of
> quadratic order for qumodes. In addition, the Hadamard and the Fourier gates
were required in order to affect multi-variable gates.

The simplest manifestation of a QEC code also works with single-variable gates.
However, quite remarkably, universality, that is, universal protection against ar-
bitrary single-variable errors (including non-Clifford-type errors) follows directly

47) Recall the discussion of the preceding section. The state in Eq. (1.135) may as well be interpreted
as a certain superposition state of an eight-level particle. However, in this case, encoding,
occurrence of local errors, and syndrome identification lack the nice physical and operational
meaning of the multi-particle scenario.

63



64

1 Introduction to Quantum Information Processing

from the ability of a code to correct the simplest single-variable errors, for instance,
Pauli X bit-flip errors for qubits and WH X(s) position shift errors for qumodes.
Let us see how this works.

Consider a single qubit in an arbitrary state, |1) = a|0) + b|1). First, the error
model shall be described by a simple one-qubit bit flip Pauli channel, with £(p) =
(1—p)p+ pXpX (see Section 1.4.1): with probability p a bit flip occurs; otherwise,
the state remains unchanged. So the error set is discrete and finite, consisting only
of Pauli X errors. Hence, the correctable error set should contain at least one-qubit
X errors. Using the encoded state in Eq. (1.135) and applying the channel map
upon every physical qubit independently gives the output density operator,

3
(1 - p)3ﬁenc + P(l - p)z Z Xklaench
k=1

3
+p7(1=p) D (X1 ® Xi)Penc(Xi ® Xi) + P’ X¥penc XB2, (1.136)
I<k=2

Wwith fenc = (2/000) + b|111))(a™* (000| + b™(111]). Now, if we were able to discrim-
inate the orthogonal subspaces spanned by {|000), [111)} and {X}|000), X|111)}
with k = 1,2, 3, without changing the original amplitudes of the corresponding
terms, we could at least identify the errors up to O(p?). In fact, the three-qubit code
achieves exactly this. It uses four orthogonal subspaces, each two-dimensional with
enough space to preserve the original qubit, which correspond to the four cases of
no error at all and a bit-flip error occurring on any one of the three qubits. As a
result, through the three-qubit repetition code, the effective error probability is re-
duced from p to p?. Higher repetitions may lead to even better error suppression.

From this, it also becomes clear why two physical qubits are not enough for
such a bit-flip code: in the four-dimensional physical Hilbert space of two qubits,
there are only two possible orthogonal, two-dimensional subspaces; not enough
for obtaining and discriminating all the three cases of an error occurring on either
qubit ({X;|00), X;|11)}), with k = 1, 2, and no error happening at all ({|00), |11)}),
which would require six physical dimensions. However, if we are satisfied with
only detecting whether an error occurred (without correcting it), two qubits would
be enough since the no-error subspace {|00), |11)} can still be discriminated from
the error subspaces { X;|00), Xj|11)}. In general, this dimensional argument tells
us how many physical qubits will be needed for a given error model and a desired
correctable error set.

Now, let us consider a channel which is more general than the bit-flip channel
and allow for an arbitrary X-error, that is, an arbitrary X-rotation Xy = e 10X/2 =
cos(6/2)1 —isin(#/2) X. In this case, using again the three-qubit code, we would
still be able to correct the dominating errors by discriminating the orthogonal sub-
spaces {|000), |111)} and { X} |000), X;|111)} with k = 1, 2, 3. In fact, the syndrome
measurements that achieve this discrimination will reduce the total density oper-
ator again to terms which have no error at all or a bit flip on exactly one qubit in
the leading order. More precisely, only terms like p (1 — p)? cos?(6 /2)enc and p(1—
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p)? sin2(6 /2) Xy fenc X with k = 1,2, 3 will remain after the syndrome detection,
and the off-diagonal terms like, for instance, p(1 — p)2icos(6 /2) sin(6 /2)1penc Xk
vanish. In other words, even though the original error is a continuous X-rotation,
due to the syndrome measurement, this error will become a simple Pauli X error or
result in no error at all. The final correction operation then works as before by just
unflipping the corrupted qubit.

Now, consider a single qumode in an arbitrary state, [y) = [dxy(x)|x). A
(perfectly) repetition-encoded three-qumode state in this case becomes

/dxzp(x)|x) ® |x) ® |x) . (1.137)

Now, whenever exactly one qumode is subject to an arbitrary X-error, acting as
ef(P), the syndrome detection discriminating between the subspaces { X (s)|xx x|
Vx € R} with k = 1,2,3 and s € R would result in a state where exactly one
qumode is corrupted by a simple position shift. Since the location and the size of
this position shift will be known from the syndrome measurement, the original,
uncorrupted state can be recovered through a simple displacement operation on
the corresponding qumode. For example, /() acting upon qumode 1 leads to

PN PN 1 .
ifien) [ ¢ — elf(P1) f d _— f dpe=2ixp
e e e
f XY (x)|xxx) ¥ = [ dp |pxx)
1 o
= — [ dxdpy(x)e 2P/ pxy
o= [ axpui px)
1 ) .
=~ / dxdydpp (x)eX0 P/ )| pxx) . (1.138)
The syndrome identification amounts to projecting qumodes 1 and 2 as well as
qumodes 2 and 3 onto the two-qumode projectors [ dz|z,z — uy)(z, z — ug| with
syndromes u; and u,. In terms of the position operators, this corresponds to mea-
surements of the relative positions %; — %, and %, — X3 with outcomes u; and u,,

respectively. When the error el/(?) occurred on qumode 1, we will always obtain
u, = 0, whereas the other projector gives

/dz|z, z—u){z,z— uﬂ% f dxdydpy (x)eX0=IPelf(P)|yx x)

= % /dxdydpw(x)eZi(Y_")peif(p)é(y — U1 —x)|y,y — u1, %)

= %/dxdpw(x)emlpeiﬂmx + U, x, x)

= g(u1) / dxy(x)|% + ug, x,x) . (1.139)
Though the function g(u1) = (1/n [ dpe?*17el/(P)) is a measurement-dependent
prefactor, the conditional state for every syndrome u; becomes [dx(x)|x +

u1, %, x) which can be corrected as described above. Note that for simplicity,
we have used unnormalized states here and syndrome detections with infinite
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resolution. In the realistic case, the encoded state would correspond to a three-
mode Gaussian state” producible with two squeezed-state ancillary qumodes
using beam splitters (see Chapters 2 and 5). The infinitely precise measurement
should be more realistically described by a finite syndrome window with projec-
tors [, duy [dz|z,z — up)(z, z — ug|. So when, for instance, g(u1) = O(u,) for
the no-error case with e'/(?) = 1, we would obtain fff/z duig(us) [dxyp(x)|x +
u1, x,x) = [dxy(x)|x, x, x) as the final state.

To summarize, the mechanism for correcting arbitrary single-variable errors is
very similar for qubits and for qumodes. In either case, even when an arbitrary er-
ror diagonal in, for example, X (qubits) and p (qumodes) may disturb a quantum
state in infinitely many ways, the syndrome detection will map the original error
onto a simpler error from a smaller error set: for qubits, this would be a flip in the
Z basis; for qumodes, a shift in the % basis. Although this guarantees that even
non-Clifford-type single-variable errors can be corrected by simple means, it does
not yet allow for the correction of multi-variable errors including two or more non-
commuting variables such as X and Z for qubits, and % and p for qumodes. Such
full QEC codes, however, can be constructed by concatenating a single-variable
code using Hadamard and Fourier gates. The first and certainly most famous full
QEC code is Shor’s nine-qubit code [21]. A qumode version of this code and its
experimental realization will be discussed in Chapter 5.

On the level of arbitrary channel (CPTP) maps, the effect of discretization in a
QEC protocol can be understood by expanding an arbitrary qubit Kraus operator
in the Pauli matrix basis as in Eq. (1.77). Similarly, the WH shift operators serve
as a complete basis for arbitrary qumode CPTP maps, see Eq. (1.78). In either
case, syndrome detections of Pauli and WH errors will then always remove the
offdiagonal terms of the channel output matrix and the remaining terms can be
easily corrected. In the qumode case, the reduced error set is, of course, not really
discrete. It is, nonetheless, smaller and simpler, containing only phase-space shift
errors.

Although universal QEC of arbitrary, multi-variable errors occurring on a subset
of the physical qubits or qumodes is possible, a subtlety remains when compar-
ing qubit and qumode QEC. This complication arises for the realistic scenario of
multi-channel errors. Typically, not only a single qubit or qumode will be subject to
an error. Usually, every subsystem will be corrupted, and so a hierarchy of errors
in terms of the frequency of their occurrence or their size will become important.
For instance, as we have seen for qubits, multiple-qubit bit-flip errors may simply
be neglected when their probability scales as p? compared to the single-qubit error
probability p. Similarly, an amplitude damping error may be corrected up to an or-
der O(y?) in the damping parameter (see Section 1.4.1 and Chapter 2) [5]. Howev-
er, for qumodes, amplitude damping becomes a Gaussian channel (see Chapter 2)
and, as such, it may simply no longer be correctable when the damping occurs
on every encoded qumode in every channel [93]. Nonetheless, whenever a stochas-
tic channel leads to a hierarchy of errors, arbitrary multi-variable, multi-channel

48) When the signal state [y) = [ dx(x)|x) is a Gaussian state, which is not a requirement here.
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errors can be suppressed through the standard QEC codes, both for qubits and
qumodes [94]. In either case, whether a QEC code is useful at all and whether it
is efficient depends on the correctable error set (for instance, the set of arbitrary
single-channel errors) and the given channel error model. The only basic assump-
tion typically is that the errors act independently on the individual subsystems.

1.9.2
Stabilizer Codes

A particularly important class of QEC codes is that of so-called stabilizer codes [95,
96], the quantum analogue of classical additive codes. Stabilizer codes are general-
izations of stabilizer states. This shall become clear in the present section.

In the DV setting, through an [N, k] stabilizer code, k logical qubits are encod-
ed into N physical qubits. The stabilizer group S, an abelian subgroup of the N-
qubit Pauli group® with (N — k) stabilizer generators (gi, g2, ..., gn—&), defines
the codespace which is spanned by the set of simultaneous +1 eigenvectors of S.
Measuring the N — k stabilizer generators, yielding 2NV~ classical syndrome bit
values, reveals which orthogonal error subspace an encoded input state is mapped
onto. Signal recovery is then achieved by mapping the state back into the codespace
with stabilizer eigenvalues +1.

Let us illustrate these definitions and notions for the three-qubit code of the pre-
ceding section. This code represents a very simple example of a stabilizer code. In
this case, k = 1 logical qubit is encoded into N = 3 physical qubits. The corre-
sponding [3, 1] code is defined through the minimal set of N — k = 2 independent
stabilizer generators (g1 = Z® Z®1,g, = 1 ® Z ® Z). This set uniquely defines
the stabilizer group S for the corresponding stabilizer code with a two-dimensional
codespace spanned by {|000), )}. Since S is abelian, and we have [g1, g;] = 0,
the basis vectors [000) and |111) can be simultaneous eigenvectors of g; and g,
with eigenvalue +1.

The effect of the bit-flip channel on the three physical qubits of the repetition
code, as described in the preceding section, can now be equivalently expressed in
terms of the stabilizers. Up to order O(p?), including only linear terms in p, we

obtain the following stochastic transformations of the stabilizer generators,

(Z1Zy, Z273) — (Z1Z3, Z,Z3) ;  with probability (1 — p)*,

(2125, 2 Z3) — (— 2125, 2, Z3) ; p(1-p)*,

(2129, Zy23) > (~Z1Z3,— 22 Z3) ; pl-p),

(2125, 2 73) — (Z1 Zy, — 25 Z3) ; p(1—p)*. (1.140)

The first case in the top row corresponds to the no-error case; the encoded state
remains in the original codespace. In the other three cases, the encoded state is
subject to a bit flip on any one of the three qubits; hence, the encoded state is

49) Which itself is formed by a tensor product of the one-qubit Pauli group. Recall from footnote 14
on page 19 that we omit all unnecessary prefactors of Pauli operators such as (£1i).
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mapped into one of the orthogonal subspaces { X;|000), X;|111)} with k = 1,2, 3.
These three error subspaces are each uniquely determined through the new sta-
bilizer generators, as shown in Eq. (1.140), and are each spanned by a new two-
dimensional set of simultaneous +1 eigenvectors. The syndrome measurement
will then reveal the change of the eigenvalues with respect to the original stabiliz-
ers, that is, those of the codespace, g; and g,. There are four syndrome outcomes
corresponding to the four cases of no error at all (g = +1, g, = +1), a bit flip on
qubit 1 (g1 = —1,g, = +1), a bit flip on qubit 2 (g = —1,g, = —1), and a bit
flip on qubit 3 (g1 = +1, g, = —1). Thus, measuring the N — k = 2 stabilizers
of the code uniquely determines the error. Mapping the state from one of the or-
thogonal error subspaces back into the original codespace enables one to recover
an uncorrupted version of the encoded state. This is a general feature of stabilizer
codes.

The three-qumode repetition code can be similarly expressed in terms of sta-
bilizers. In this case, we need N — k = 2 products of WH operators, (gi(s) =
Z(s) @ Z(—s) ® 1, g2(5) = 1 ® Z(s) ® Z(—s)), in order to represent the stabilizer
group and uniquely define a one-qumode codespace as a subspace of the whole
three-qumode space. This infinite-dimensional subspace is spanned by the basis
vectors {|xxx)|Vx € R}, which are simultaneous +1 eigenvectors of the stabiliz-
ers gi(s) and g,(s). More conveniently expressed in terms of the WH generators %
and p, we have N—k = 2 so-called nullifier conditions, % —%; = Oand %,— %3 = 0
since these combinations must have {|xxx) |Vx € R} as their simultaneous zero-
eigenvectors. The syndrome information now becomes continuous, corresponding
to the eigenvalues of % — X, = u; and %, — X3 = u, after an error occurred on
any one of the three qumodes. Every pair of these eigenvalues uniquely determines
one of the orthogonal error subspaces, {Xj(s)|xxx)|Vx € R} with k = 1,2, 3 and
s € R, into which the encoded state is mapped by the channel. Compared with the
qubit case in Eq. (1.140), the stabilizer map now becomes

(Z1(5) Z2(=5), Za(s) Z3(—5))
— (€77 Zy(5) Zy(—s), € H2 2, (5) Z3(—3)), (1.141)

with the syndrome information contained in the phase factors e 72*1 and e™215%2,
Though the syndrome is now continuous, the QEC mechanism is very similar to
the qubit case; however, the stochastic nature of the qubit channels, as illustrated
by Eq. (1.140), will be missing in the most important examples of qumode channels
(see Chapter 2).

We have used the notion of stabilizers and stabilizer states already at various
times. A stabilizer is a (not necessarily unitary) operator M that, for some vector
|), has the property M|y) = |y). If there is a commuting set of such stabilizers
{M;} such that M;|y) = |y), Vi, |3) may be a unique state vector or an arbitrary
vector in a uniquely defined subspace. In fact, the former case is a special case of
the latter one.

For instance, for N qubits, N — k Pauli generators will define a 2k_dimensional
subspace C of the 2V-dimensional N-qubit space. This subspace C represents a
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stabilizer code, and the stabilizer condition becomes M;|y) = |y), Viand V|y) €
C. Now, the special case with k = 0 means that C is specified through N Pauli
generators. In this case, C has a dimension such that M;|y) = |y), Vi uniquely
defines the rank-1 projector |y ) (| corresponding to a pure N-qubit state. These
definitions are similar for qumodes. Later, we shall use full sets of N Pauli and WH
stabilizers in order to define multi-party entangled N-qubit and N-qumode graph
states, respectively.

Stabilizers and stabilizer codes

stabilizer: any operator M such that M|y) = |y)
stabilizer code: any subspace defined by a commuting stabilizer set { M;}
stabilizer state: any such 1-dimensional subspace (pure-state projector)

®  Qubits

stabilizer codes:

any 2F.dimensional subspace C of the 2N-dimensional N-qubit space de-
fined through N — k Pauli stabilizer generators (g1, g2, - .., gn—&) such that
g, gj] = Oand gi|y) = |y), Vi, jand V|y) € C

stabilizer states:
any 2° = 1-dimensional subspace |y)(y| of the 2N-dimensional N-qubit
space defined through N Pauli stabilizer generators (gi, g2, ..., gn) such that

[gi-gj] = Oand gily) = |), Vi, j
~~~~ Qumodes

stabilizer codes:

any k-qumode subspace C of the infinite-dimensional N-qumode space de-
fined through N — k WH stabilizers (gi(s), g2(5),---, gn—k(s)) such that
(8i(s), g (s)] = O and gi(s)[%) = |), Vi, j; s € R,and V[y) € C

stabilizer states:
any 1-dimensional subspace |9 )(y| of the infinite-dimensional N-qumode
space defined through N WH stabilizers (gi(s), g2(s),.-.,gn(s)) such that

[8i(s), gj(s)] = Oand gi(s)[y) = |), Vi, j;s € R

A great advantage of QEC schemes is that they are deterministic which makes
them directly applicable to quantum computation. However, this comes at a price.
Encoding logical quantum information into a sufficiently large physical system
will require expensive resources. Alternatively, probabilistic quantum error detec-
tion and, in particular, entanglement purification schemes [22] may be employed
in order to reduce the (spatial) resource consumption and the complexity of the
quantum circuits for implementing the protocol. This would then be more useful
for quantum communication applications, as described in Section 1.7.2. We shall
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discuss some experimental realizations of QEC and entanglement distillation in
Chapter 5.

1.10
Experiment: Non-optical Implementations

Quantum teleportation and quantum information processing were demonstrated
in various non-optical implementations. Among these, probably the most promi-
nent and fundamental concept was introduced by Cirac and Zoller for trapped
ions [97]. This concept was later extended to other physical systems such as neutral
trapped atoms [98] and quantum dots in electromagnetic cavities [99].

The approach by Cirac and Zoller is conceptually related to some of those hybrid
protocols which we will discuss in the final chapter of this book. More specifically,
the entangling gates between two electronic spin qubits (each defined on two inter-
nal energy levels of the ion) are not accomplished through direct interaction, but
they are rather mediated by a third “system”. In the Cirac—Zoller scheme, this third
system is a phononic qubit (defined on two vibrational energy levels of the ion) and
it acts as a kind of quantum bus — a so-called qubus.

Later, in the quantum optical context, we shall present the notion of optical, hy-
brid qubus computation, where the qubus is represented by the continuous phase-
space variables of a photonic qumode instead of the qubit-subspace of a phonon-
ic qumode. An introduction to quantum optical encodings in terms of photonic
qubits and qumodes shall be postponed until the following chapter. The motiva-
tion of the current section is to at least mention that many of the concepts and
protocols discussed so far and applied to quantum optical implementations in the
remainder of this book have their counterparts and analogues in implementations
that employ non-optically encoded qubit, qumode, and qubus systems using, for
instance, nuclear magnetic resonance, superconducting materials, or ion traps.

In this section, we will first explain how to implement a CNOT gate using the
Cirac—Zoller scheme, for which we take Schmidt—Kaler’s experiment [100] as an
example. Then, we shall describe a teleportation experiment by Riebe et al. [101] as
an example for a possible application.

In Schmidt-Kaler's CNOT-gate experiment, they used *’Ca™ ions in a lin-
ear Paul trap [100]. The quantum mechanical energy levels are shown in Fig-
ure 1.13 [100, 102]. The essence of this scheme is a conditional sign flip operation
Rphase of the single-ion “computational bases” (| D,0),|D, 1),]S,0),|S,1)). More
precisely, we have

Rphase|DyO = |D, 0) )
-|D,1),

)
Rphase| D, 1) =
Rphase| S, 0) = —|S,0)
Rphasel S, 1) = —15,1), (1.142)
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Figure 1.13 Quantum mechanical energy lev-  implement a qubit. (b) The lowest two num-
els of a 4°Cat ion for quantum information ber states, n, = 0,, 1,, of the axial vibrational
processing [100, 102]. (a) The lower and up- motion in the trap. (c) The combination of
per electronic states Sy (m = —1/2) and electronic states. The notation is |electronic
Dsj2 (m = —1/2) of the narrow quadrupole level, vibrational motion number).

transition at 729 nm provide the two levels to

where D and S denote the upper and lower electronic levels of a 40Cat ion, and 0,1
denotes the quantized number (phonon number) of the vibrational motion of the
trapped ions. This is the main trick for realizing the Cirac—Zoller scheme in this
system.

The operation Rphase can be realized with an effective 2mt-pulse on the two-level
systems (| S, 0)<>|D, 1)) and (| S, 1)<>| D, 2)), changing the sign of all “computation-
al basis” states except for | D, 0). Since the Rabi frequency depends on the number
of phonons of the trapped ions, we have to use a composite-pulse sequence [103]
instead of a single 2s-pulse. More precisely, the operation Rppase can be realized
through irradiation of four sequential pulses as follows:

Rphase = RT(m, 0)RT (% ;) RT(m,0)RT (% %) (1.143)

where
+ N R T
RT(0,9) = exp 13<e otht +e g b) . (1.144)
The operator 6T = |D)(S| represents the transition from |S) to | D), and, simi-

larly, 0~ = |S)(D] that from | D) to |S). The annihilation and creation operators
b and b, respectively, refer to the phonons in the ion trap and the parameter 6
corresponds to the strength and duration of the applied pulse. Finally, ¢ is the rel-
ative phase between the optical field and the atomic polarization [102]. Here, the
frequency of the optical field for R is blue-shifted from the | S) — | D) transition
by a single phonon energy.

One can now verify Eq. (1.142) by using Eqs. (1.143) and (1.144). For example,

R*(m, R (% %) R*(m, R (% %) 15,0

R¥(m,0)RT (% %) R+ (,0)

x(cos T |S,0) —sin T |D 1))
22 22

Rphase| S, O)
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— Rt +L I
= RT(m, 0)R (ﬁZ)
T

T
X [icos —=|D, 1) —isin S,0
( zﬁl ) zﬁl >)

R+(n, 0) [icos T (cos L|D,1) + sin L|S,0))
22 242 242

isi ”( T _|s,0) —si “|D1))]
—18SINn —— | COS —— ) — S1in —— )
232 232 232

iR (m,0)|D, 1)
= —[5,0). (1.145)

By using the Rphase, We can build a CNOT gate Renor for the single-ion “compu-
tational bases”, that is,

TOX T
RCNOT =R (5: _5) RphaseR (57 E) , (1146)
where
0 . .
R(0,¢) = exp [i; (el¢’o+ + e_1¢’o_)] , (1.147)

and the R(#, ¢) transformation can be realized with a pulse irradiation on res-
onance with the |S) — | D) transition. The CNOT gate transforms the single-ion
“computational bases” as follows:

Revor|S,0) = —|D,0),
Renorl S, 1) = —[S, 1),
Renot| D, 0) = —1S,0),
Revor|D,1) = —|D, 1), (1.148)

where the phonon numbers n = 0 and n = 1 correspond to a logical bit of one and
zero, respectively. These relations can be checked using Eq. (1.147). For example,

Renor|S,0) = R (E,_E) Rphase R (n E) [S,0)

2" 2 272
T T .

=R (E_E) Rphase (cos 7 S,0) + sin Z|D,O))
Tw T LT

=R (5—5) (—cos Z'S’O) —smz|D,0))

- = (cos Z15,0) +sin £ D,0))
= —cos - (cos S, sin 7| D,
T T T
—sin—(cos—|D,0)—sin—|S,0))
4 4 4
= —|D,0). (1.149)

Finally, we can constructa CNOT gate for two ions |ionl, ion2) = |control, target),
where the logical zero and one are encoded into the S and D levels of the ions, re-
spectively. First, quantum information encoded into the electronic levels of the
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control ion is transferred onto the phonon levels (i.e., the vibrational qubit encoded
into the qubus mode) through the R (m,0) operation® (pulse irradiation) as
follows:

R (7, 0)(a|S,0) + B|D,0)) = ia|D,1) + B|D,0)
=|D) ® (ia|1) + B10)), (1.150)

where the phonon number is initially zero and we use the definition of R in
Eq. (1.144). Then, the single-ion CNOT operation Rcyor is performed on the target
ion. When the target ion is in the | S) state, the CNOT operation transforms the
state as follows:

RCNOT(ia|S, 1) + ﬂ|S,0)) = —ia|S, 1) — ﬂ|D,0) , (1151)

using Eq. (1.148). As a final step, the R (i, 0) operation is applied to the control
ion again. With this operation, the state of the control ion, whose electronic state is
|D) as in Eq. (1.150), is transformed as follows:

R (7, 0)(—ia|D, $,1) — B|D, D,0)) = —ia(—ilS, S,0)) — 8| D, D, 0)
—(alS$, ) + BID, D)) ® |0) ,

(1.152)

with the notation |control, target, phonon number). Similarly, we obtain the result

for the case with | D) as the initial target-ion’s state. Overall we have the following
input-output relation for the CNOT gate acting on a two-ion state |control, target):

S)——IS,S),
IS D) ~|S, D),
|D, S) — —|D, D),
|D, D) — —|D, S), (1.153)

corresponding to a CNOT operation for the logical states | S) = |0) and | D) = |1).
Moreover, the result of Eq. (1.152) means that one can create an entangled state of
two ions using this CNOT operation.

Figure 1.14 shows the experimental results of the CNOT gate performed by
Schmidt-Kaler et al. [100]. From the results, one can see that Eq. (1.153) is very
well experimentally verified. Schmidt—Kaler et al. also performed the CNOT ex-
periment for a |S + D, S) input. Figure 1.15 shows the corresponding results. In
this case, only the states | S, S) and | D, D) are observed with a probability of about
0.5. Phase coherence was also verified by applying an additional 7t/2 pulse on the
|S,0) — | D, 0) transition followed by a projective measurement [100].

Now, we will turn to a discussion of the experiments for quantum teleportation
between trapped ions performed by Riebe et al. [101].

50) The subscript ¢ denotes the operation on the control ion.
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Figure 1.14 State evolution of |control,
target) = |ion1, ion2) under the CNOT op-
eration [100]. First, the ions are initialized in
the states (b) |S, S), (¢) |S, D), (d) |D, S), or
(e) |D, D) (shaded area, t < 0). Then, the
quantum-gate pulse sequence (a) is applied:
(i) quantum information encoded in the elec-

Time (us)

tronic levels of the control ion is transferred
to the phonon levels (qubus mode) through
Rc+ (7, 0), (i) the single-ion CNOT operation
Renort is applied to the target ion, (iii) the
R (m, 0) operation is performed on the con-
trol ion again.

Figure 1.16 shows the quantum circuit for teleportation from ion 1 to ion 3 [101].
This circuit is realized using the same system (**Ca™) and techniques (pulse ir-
radiation) explained above for the CNOT gate. The pulse sequence for telepor-
tation is summarized in Table 1.1 [101]. First, ion 2 and ion 3 are prepared in
the Bell state |1 ),;5 = (|0),]1)3 + [1),]0)3)/+/2, the lifetime of which exceeds
100 ms.

Then, at any time within this lifetime, the actual teleportation step can be carried
out: ion 1 is prepared in an arbitrary input state through local rotations. In Riebe’s
experiment, the input state |y;,) was drawn from a set of four non-orthogonal
test states, {|1), |0), (|0) + [1))/+/2, (i|0) + |1))/+/2}. The Bell measurement is per-
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Figure 1.15 The CNOT operation for a |S + D, S) input [100].
PMT

Ux 2 [- Z ]'

PMT

Bell-state

=

o
©
]
o
[
a

lon 3

Figure 1.16 Quantum circuit for teleporta-
tion from ion 1to ion 3 [101]. The state to be
teleported (input state) is encoded in ion 1 by
the operation Uy. The Bell measurement is
performed through a controlled Z-gate (phase
gate) followed by m/2 rotations and state de-
tections of ions 1and 2. This implementation
uses a Bell basis rotated by /4 with respect
to the standard convention. Therefore, a 7t/2
rotation on ion 3 is required before the final

reconstruction operations Z and X. Grey lines
indicate qubits that are protected against light
scattering. lons 1 and 2 are detected by ob-
serving their fluorescence on a photomultipli-
er tube (PMT). For the fidelity analysis, U, is
applied to ion 3 and its quantum state is mea-
sured by resonance fluorescence using a CCD
camera. Here, the initial stateis [1) = |S)
(different from the CNOT-gate experiment
where the initial state is |0)).

formed by means of a controlled Z-gate (phase gate) followed by 7t/2 rotations and
state detections of ions 1 and 2, where the state detection is achieved by fluores-
cence detection from the S, state (logical |1)) with a photomultiplier tube (PMT).
Conditioned upon the measurement results, if necessary, an appropriate unitary
qubit rotation, —io,, —i0,,i0y, is applied in order to recreate the input state in
ion 3.

Figure 1.17 shows the results of the teleportation experiment. Here, the fidelities
between the input and the output (in|fout| ¥in) are shown. Whenever the fidelity
exceeds the classical boundary of 2/3, quantum teleportation is successful. The
fidelities of Figure 1.17 are clearly higher than 2/3 for any inputs, thus confirming
successful quantum teleportation. The fidelities for the output state without the
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Table 1.1 Pulse sequence for teleportation
from ion 1to ion 3 [101]. Here, the super-

same as before without the superscript for the
CNOT gate. The superscript H denotes the

script C denotes the carrier transition with no  carrier transition from the Sy (m = —1/2)
change of the motional states (phonon num- to the Dsj2 (m = —5/2) level in the Zeeman
bers). The corresponding operations are the manifold.
Action Comment

1 Light at 397 nm Doppler preparation
2 Lightat 729 nm Sideband cooling
3 Light at 397 nm Optical pumping

Entangle
4 R3+ (7t/2,37/2) Entangle ion 3 with motional qubit
5 RS (, 37/2) Prepare ion 2 for entanglement
6 R2+ (7t, t/2) Entangle ion 2 with ion 3
7 Wait for 1 uS-10000 uS  Standby for teleportation
8 Ril(m,0) Hide target ion
9 RE (D4, 0x) Prepare source ion 1 in state x

Rotate into Bell basis

10 RS (m,37)2) Get motional qubit from ion 2
11 R1+ (N2, 7)2) Composite pulse for phase gate
12 R1+ (7T, 0) Composite pulse for phase gate
13 R1+ (N2, 7)2) Composite pulse for phase gate
14 R1+ (7, 0) Composite pulse for phase gate
15 RE(m, m/2) Spin echo on ion 1
16 Ril(m ) Unhide ion 3 for spin echo
17 R§(m m/2) Spin echo on ion 3
18 Ri(m,0) Hide ion 3 again
19 R2+ (7T, /2) Write motional qubit back to ion 2
20 RE(m/2,3m/2) Part of rotation into Bell basis
21 RS (m/2,m)2) Finalize rotation into Bell basis

Read out
22 Ri(m0) Hide ion 2
23 PM Detection for 250 us  Read out of ion 1 with photomultiplier
24 Ri(m,0) Hide ion 1
25 Ri(m, @) Unhide ion 2
26 PM Detection for 250 us  Read out of ion 2 with photomultiplier
27 Ri(m,0) Hide ion 2
28  Wait 300 us Let system rephase; part of spin echo
29 Ri(m,m) Unhide ion 3
30 R§(m/2,37/2 + ¢) Change basis

Reconstruction

31 R§(m ¢) ioy = —io, conditioned on PM detection 1
32 R$(m w2+ ) —io, = —io, conditioned on PM detection 1
33 R§(m ) ioy conditioned on PM detection 2

34 R§(Vx,0x + 7+ ¢)
35 Lightat 397 nm

Inverse of preparation of x with offset ¢
Read out of ion 3 with camera




1.10 Experiment: Non-optical Implementations

1 T T T T
1> iI0> [1>+il0> 11>-10>
081 J
061 1
2
3 .
hel
i
0.4r1 1
0.2} J
0
Figure 1.17 Results of the teleportation ex- results obtained in quantum teleportation
periment [100]. The classical boundary of the and the white bars are the results when the
teleportation fidelity (2/3) is shown by the reconstruction operations are omitted.

dashed line. The gray bars correspond to the

final reconstruction operations are also shown in Figure 1.17. In this case, no more
than 1/2 should be obtained for the fidelity and indeed the experimental value was
49.6%.

In the following chapter, an introduction to optical quantum information pro-
cessing is presented. Most of those concepts, tools, and protocols presented thus
far will turn out to have their specific manifestation in the language of quantum
optics.
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