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Introduction

The instantaneous reversal of the motion of every moving particle of a
system causes the system to move backwards, each particle along its path
and at the same speed as before…

(Thomson, 1874)

Until very recently, the foundations of statistical mechanics were far from satis-
factory (Evans, Searles, and Williams, 2009a). Textbooks approach the derivation
of the canonical distribution in one of two ways. A common approach is to postu-
late a microscopic definition for the entropy and then to show that the standard
canonical distribution function can be obtained by maximizing the entropy sub-
ject to the constraints that the distribution function should be normalized and
that the average energy is constant. The choice of the second constraint is com-
pletely subjective due to the fact that, at equilibrium, the average of every phase
function is fixed. The choice of the microscopic expression for the entropy is also
ad hoc.This “derivation” is therefore flawed.
The second approach begins with Boltzmann’s postulate of equal a priori

probability in phase space for the microcanonical ensemble and then derives
an expression for the most probable distribution of states in a small subsystem
within that much larger microcanonical system. A variation of this approach is to
simply postulate a microscopic expression for the Helmholtz free energy via the
partition function.
The so-called Loschmidt paradox, which so puzzled Boltzmann and his con-

temporaries, remained unresolved for 119 years after it was first raised. All the
equations of motion in mechanics (both classical and quantum) and electrody-
namics are time-reversal-symmetric. Time reversibility of the classical equations
ofmotion is trivial to demonstrate. ConsiderNewton’s equations ofmotion for the
positions 𝐪i of N identical particles subject to interatomic forces 𝐅i(𝐪1,… ,𝐪N ):

m
d2𝐪i(t)
dt2

= 𝐅i(𝐪), i = 1,… ,N (1.1)

As Loschmidt and Kelvin (separately) noticed (Loschmidt, 1876; Thomson,
1874), time reversal t → −t leaves Eq. (1.1) unaltered since (−1)2 = 1. This means
that if 𝐪(t); −𝜏 < t < 𝜏 is a solution of the equations of motion, then so too is
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𝐪(−t) ∶ −𝜏 < t < 𝜏 . Changing the direction of time inverts every velocity – as
per Kelvin’s quote above.
The Loschmidt Paradox can be stated quite simply. If all the laws of physics are

time-reversal-symmetric, how can one prove a time-asymmetric law like the sec-
ond “Law” of thermodynamics that states that the entropy of the Universe “tends
to a maximum” (Clausius, 1865; Clausius, 1872). Although there have been many
attempts over the last century to resolve this paradox, the matter was not really
settled until the first proof of a fluctuation theorem in 1994 (Evans and Searles,
1994).
A less well-known problem concerns Clausius’ inequality itself. In some ways,

this is an even more fundamental problem because it concerns thermodynamics
rather than statistical mechanics. Clausius’ inequality for the heat Qth transferred
to a thermal reservoir states that the cyclic integral ∮ dQth∕T ≥ 0. When this
inequality is, in fact, an equality (the process is quasi-static), we have the usual
argument that ∫ dQth∕Tth is a state function and represents the change in the
equilibrium entropy of the reservoir, Sth and T th is the equilibrium thermody-
namic temperature of that reservoir or set of reservoirs. Clausius went on to apply
his inequality to the system of interest (soi) and thermal reservoir (th). Indeed, in
his original papers he does not distinguish between the two systems.
Now comes the difficulty: when we have a strict inequality ∮ dQ∕T > 0, either

the system of interest or the reservoir (or both) is (or are) not in true thermody-
namic equilibrium (the process is not quasi-static). In this case, what is the tem-
perature? Clausius only defined the temperature for quasi-static or equilibrium
processes where the entropy is a state function. In the case of a strict inequality,
∫ dQ∕T is not a state function. It is path- and/or history-dependent.
For quasi-static processes (only!), the change in equilibrium entropies of two

equilibrium states can be obtained by considering ∫ dQth∕Tth for a reversible (i.e.,
infinitely slow) pathway between the two equilibrium states. However, if the initial
or final states are out of equilibrium or if the pathway connecting the two states is
irreversible, the entropy that Clausius defined is ill-defined and so too is the tem-
perature:T ≡ 𝜕U∕𝜕S|V , whereU is the internal energy, S the (undefined) entropy,
andV the volume.Thismeans that the Clausius inequality ∮ dQ∕T > 0 is without
meaning.
Clausius is famous for his declaration:

The energy of the Universe is constant. The entropy tends to a maximum.
(Clausius, 1865, 1872)

Hedid not recognize the fact that he only defined the entropy (and temperature)
for reversible processes. This particular difficulty was first discussed in the late
nineteenth century by Bertrand (1887) and early in the twentieth century by Orr
(1904), Orr (1905), Planck (1905), and Buckingham (1905).
“There are three things in Prof. Orr’s article (Orr, 1904) which stand out as of

particular importance. (1) He says in substance, though with great moderation,
that all proofs of the theorem … when the integral is taken round an irreversible
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cycle, are rubbish.” Buckingham later discusses problems with writing textbooks
while being aware at the time, of some of the difficulties mentioned above. Buck-
ingham continues: “The question how a treatise should be written is not so easily
answered. … I do not know of a single book which today deserves the title of
‘Treatise on Thermodynamics’.” He concluded: “We must leave the question of
the proper method for a treatise to the future when the difficulties which now
beset us may have vanished.” (Buckingham, 1905)
In 1905, Planck responded to Orr (Planck, 1905) agreeing with Orr’s concerns

on the definition of temperature and saying in part that: “If a process takes place so
violently that one can no longer define temperature … , then the usual definition
of entropy is inapplicable.”
These particular difficulties were only exacerbated in 1902 with the publication

(and subsequent circulation) of Gibbs’ seminal treatise “Elementary Principles
in Statistical Mechanics” (Gibbs, 1981). In his treatise, Gibbs showed that the
microscopic expression he identified at equilibrium, as the thermodynamic
entropy SG(t) ≡ −kB ∫ d𝚪 f (𝚪; t) ln[ f (𝚪; t)], where f (𝚪; t) is the N-particle phase
space distribution function at time t, is in fact a constant of the motion for
autonomous Hamiltonian dynamics! If the initial distribution was not the equi-
librium distribution, the Gibbs entropy did not, as Clausius claimed, increase in
time until it reached its maximum and the system was effectively in equilibrium.
For these systems, the Gibbs’ entropy is simply a constant independent of time.
After Boltzmann’s death, this distressing state of affairs was reviewed without

satisfactory resolution by the Ehrenfests in 1911 (Ehrenfest and Ehrenfest, 1990).
(Paul Ehrenfest was a student of Boltzmann.) Indeed ,in the Preface to the
(English) Translation, Tatiana Ehrenfest confides: “At the time the article was
written [1911], most physicists were still under the spell of the derivation by
Clausius of the existence of an integrating factor for the … heat … it became
clear to me afterwards, that the existence of an integrating factor has to do only
with the differentials dx1, dx2,… , dxn of the equilibrium [T. Ehrenfest’s italics]
parameters dx1, dx2,… , dxn, and is completely independent of the direction
of time … Nevertheless even today [1959] many physicists are still following
Clausius, and for them the second law of thermodynamics is still identical with
the statement that entropy can only increase.”
The Ehrenfests’ article did point out that away from equilibrium entropy was

problematic and that for autonomous Hamiltonian systems the entropy defined
by Gibbs was indeed a constant of the motion. In Ehrenfest and Ehrenfest (1990,
p. 54), they agree with Gibbs that, “From Liouville’s theorem, Eqs. (26) and (26’),
it follows immediately that the quantity 𝜎 [i.e., SG above] … remains exactly con-
stant during the mixing process.” They go on to discuss Gibbs’ flawed attempts
to resolve the paradox by defining a coarse-grained entropy. This quantity’s time
dependence is determined by the grain size and is thus not an objective property
of the physical system of interest.
The theory of the relaxation to equilibrium has also been fraught with diffi-

culties (Evans, Searles, and Williams, 2009a). First, there was no mathematical
definition of equilibrium!The first reasonably general approach to this problem is
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summarized in the BoltzmannH-theorem. Beginningwith the definition of theH-
function, Boltzmann proved that the Boltzmann equation for the time evolution
of the single particle probability density implies, for uniform ideal gases, a mono-
tonic decrease of the H-function in time (Boltzmann, 1872) – see the review by
Lebowitz (1993) for a modern discussion of Boltzmann’s ideas.
However, there are at least two problems with Boltzmann’s treatment. First,

the Boltzmann equation is valid only for an ideal gas. Second, and more prob-
lematic, unlike Newton’s equations, Hamilton’s principle, or the time-dependent
Schrödinger equation, the Boltzmann equation itself is not time-reversal-
symmetric. It is therefore completely unsurprising that the Boltzmann equation
predicts a time-irreversible result, namely the Boltzmann H-theorem.
This leads to a second version of the irreversibility paradox (at least for ideal

gases): how can the time-irreversible Boltzmann equation, which leads easily to
the time irreversible Boltzmann H-theorem, be derived exactly for ideal gases
from time-reversible Newton’s equations? This issue was also discussed, without
resolution, in the Ehrenfest encyclopedia article (Ehrenfest and Ehrenfest, 1990).
Since our new proof of how macroscopic irreversibility arises from time-

reversible microscopic dynamics is valid for all densities, we do not need to
directly answer this question in this book. We do make the comment, however,
that it is thought that in the ideal gas limit, the Boltzmann equation is exact, but
its detailed derivation is beyond the scope of this present book.1)
The 1930s saw significant progress in ergodic theory with a proof that for a

finite, autonomous Hamiltonian system, whose dynamics preserves a mixing
microcanonical equilibrium distribution (i.e., a distribution that is uniform over
the constant energy phase space hypersurface), averages of physical properties
must, in the long-time limit, approach those obtained with respect to that
equilibrium microcanonical distribution, regardless of the initial distribution
(Sinai, 1976). Later in this book we will give a generalization of the ergodic theory
proof. We consider finite systems with autonomous dynamics that are mixing
with respect to some possibly thermostatted and/or barostatted equilibrium
distribution that is also a solution to the dynamics considered. We show that for
such systems, at sufficiently long times, averages of physical phase functions will
approach, to arbitrary accuracy, the equilibrium averages taken over their mixing
equilibrium distributions, irrespective of the initial distribution.
These proofs are, however, not very revealing. They tell us almost nothing of

the relaxation process, only that it takes place. Relaxation is inferred rather than
elucidated.
We go on to discuss a new set of theorems and results that, when taken

together, provide a completely new approach to establishing the foundations of
classical statistical thermodynamics and simultaneously resolving all the issues
mentioned above. Each of these theorems is consistent with time-reversible,

1) In Chapter 9, we do make some comments on the relationship between Boltzmann’s assumption of
molecular chaos (stosszahlansatz in German) and the axiom of causality. It is this assumption that
breaks time reversal symmetry in the Boltzmann equation.
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deterministic dynamics. Indeed, time reversibility of the underlying equations of
motion is the key component to proving these theorems. We do comment that
there are stochastic and/or quantum versions of some of the theorems. Each of
these theorems is exact for systems of arbitrary size: taking the thermodynamic
limit is not required. The theorems are valid for arbitrary temperatures and
densities. The theorems are exact arbitrarily near to, or far from, equilibrium.
Assumptions about being arbitrarily close to equilibrium, so that the response of
systems to external forces is linear, are not required. In the process of deriving
these theorems, the so-called “Laws” of thermodynamics cease to be unprovable
“Laws” and instead become mathematical theorems.
The first step toward understanding howmacroscopic irreversibility arises from

microscopically time-reversible dynamics came in 1993 when Evans, Cohen, and
Morriss (1993) proposed the first so-called fluctuation relation. By generalizing
concepts from the theory of unstable periodic orbits in low-dimensional systems,
these authors proposed a heuristic, asymptotic argument for the relative proba-
bility of seeing sets of trajectories and their conjugate sets of antitrajectories in
nonequilibrium steady states maintained at constant internal energy. In the fol-
lowing year, Evans and Searles (1994) published the first mathematical proof of a
fluctuation theorem. A generalized and detailed proof of the Evans–Searles fluc-
tuation theorem is given in Chapter 3.This proof concerns the relative probability
of fluctuations in sign of a quantity now known as the time-averaged dissipation
function. Unsurprisingly, fluctuation theorems lead to many new results. This is
what the present book sets out to describe. It used to be said that there are very
few exact results that are known for nonequilibrium many-body systems. This is
no longer the case.
In Chapter 3, we prove the second law inequality (Searles and Evans, 2004), and

the nonequilibrium partition identity (Morriss and Evans, 1985; Carberry et al.,
2004; Evans and Searles, 1995). These are simple mathematical consequences of
the fluctuation theorem. The second law inequality is, in fact, a generalization of
the second “Law” of thermodynamics that is valid for finite, even small systems,
observed for finite, even short, times. Classical thermodynamics applies to only
large, in principle infinite, systems either at equilibrium or in the infinitely slow,
or quasi-static, limit.
Dissipation was first explicitly defined in 2000 by Searles and Evans (2000a),

although it was, of course, implicit in the earlier proofs of the Evans–Searles fluc-
tuation theorems in 1994, et seq. It is also implicit in many of Lord Kelvin’s papers
in the late nineteenth century. The dissipation function has many properties, but
its original definition directly involved sets of trajectories and their conjugate sets
of time-reversed antitrajectories. For classical N-particle systems, the specifica-
tion of all the coordinates and momenta of all the atoms in the system completely
describes the microstate of a classical system. We define the phase space vector
𝚪 = (𝐪1,… ,𝐪N ,𝐩1,… ,𝐩N ) of the positions 𝐪i and momenta 𝐩i of the N particles.
We imagine an infinitesimal set of phases inside an infinitesimal volume dV𝚪(𝚪)
in phase space. For simplicity, we assume that the system is autonomous (i.e., the
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equations of motion for all the particles, �̇�(𝚪, t), do not refer explicitly to time
�̇�(𝚪); any external fields are time-independent).
As time evolves, this set will trace out an infinitesimal tube in phase space. We

follow this tube for a time interval (0, t). At time t, an initial phase space vector 𝚪
has evolved to the position St𝚪, where St is the phase space–time evolution opera-
tor. If we take the set of phase points inside the infinitesimal volume dV𝚪(St𝚪) and
reverse all the momenta leaving all the particle positions unchanged, we have the
phase vectorMTSt𝚪, whereMT is a time-reversal mapping:MT (𝐪,𝐩) = (𝐪,−𝐩).
If we now imagine following the natural motion of this mapped set forward

in time from time t to 2t, we arrive at the phase point StMTSt𝚪. Because the
equations of motion are time-reversal-symmetric, the final set of phase points will
have the same position coordinates but the opposite momenta to the original set
of time zero phases: StMTSt𝚪=MT𝚪. This is the fundamental property of time-
reversible dynamics discussed in Kelvin’s quote at the beginning of this chapter.
This time reversibility property is exploited directly in the definition of the dissi-
pation function. We will give a more detailed description of reversibility using a
more precise notation in Chapter 2 – especially in Section 2.1.
The time integral of the dissipation function is simply defined as the natural

logarithm of the probability ratio of observing at time zero the conjugate sets of
trajectories inside phase space volumes 𝛿V𝚪(𝚪), 𝛿V𝚪(MTSt𝚪):

lim
𝛿V𝚪→0

p(𝛿V𝚪(𝚪); 0)
p(𝛿V𝚪(MTSt𝚪); 0)

≡ exp
[
∫

t

0
dsΩ (Ss𝚪)

]
(1.2)

The small phase space volume 𝛿V𝚪(𝚪) defines an initial set of phase space trajec-
tories. The volume 𝛿V𝚪(MTSt𝚪) defines the conjugate set of the antitrajectories.
Going forward in time from 𝛿V𝚪(MTSt𝚪) is like going backward in time from
𝛿V𝚪(St𝚪) except that all the momenta are reversed. For Eq. (1.2) to be well defined
requires that the system should be ergodically consistent, that is, if the numerator
is nonzero for initial phases inside some specified phase space domainD, then the
denominator must also be nonzero. This condition ensures that the dissipation
function is well defined everywhere inside the ostensible phase space domain, D.
As ahistorical remark,we can see from the definition, Eq. (1.2), that ergodic con-

sistency guarantees the existence of (almost all) conjugate phase space trajectory/
antitrajectory pairs. However, the mere existence of these pairs of trajectories by
no means implies that the probability ratio of observing infinitesimal sets of these
conjugate trajectory pairs is unity, as Loschmidt tried to imply. Once you have
written down Eq. (1.2) for the relative probability of seeing a set of trajectories and
its conjugate set of antitrajectories, it seems obvious that Loschmidt’s assertion of
both sides of Eq. (1.2) equaling unity is wrong. One must not make the mistake of
discussing individual conjugate phase space trajectories rather than conjugate sets
of trajectories. The probability of observing any individual phase space trajectory
is precisely zero!Their rephrasing of Eq. (1.2) would have been ill defined, leading
to zero divided by zero on the left-hand side.
We will see in Chapter 5 that an equilibrium state is characterized by a set

of equations of motion and a phase space distribution for which the dissipation
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function is identically zero everywhere in phase space.Thus, for equilibrium states
alone the probabilities of observing every infinitesimal set of trajectories and its
conjugate set of antitrajectories are identical. Loschmidt’s assertion is correct only
for equilibrium distributions. Indeed, this gives statistical thermodynamics, for
the first time, a mathematical definition of an equilibrium system.
Although the definition of the dissipation function may appear rather abstract

and mathematical, it turns out that in the linear regime close to equilibrium the
average of the dissipation function is equal to a quantity that is familiar in lin-
ear, irreversible thermodynamics, namely the spontaneous entropy production.
For systems that are driven by an applied dissipative field (e.g., an electrically con-
ducting system being driven by an electric field), the average dissipation is equal to
the average power dissipated in the system divided by the thermodynamic tem-
perature of the surrounding thermal reservoir to which the dissipated work, on
average, eventually relaxes. A notable aspect of our exposition is the fact that
except at equilibrium, entropy plays no role. This neatly bypasses the objections
of Bertrand, Orr, and Buckingham to the Clausius inequality for non-quasi-static
processes.
The first theorem that referred to dissipation was the Evans–Searles fluctua-

tion theorem (Evans and Searles, 1994) (FT).This theorem considers systems with
time-reversible dynamics where the initial distribution of phases is even in the
momenta and which satisfies the condition of ergodic consistency. It states that
for such systems the ratio of probabilities that the time-averaged dissipation func-
tion Ωt takes on an arbitrary value in the range A± dA, compared to the negative
of that value −A± dA satisfies the following equation

p(Ωt = A)

p(Ωt = −A)
= eAt (1.3)

where p(Ωt = A) represents the ratio of probabilities that the time-averaged dissi-
pation functionΩt takes on an arbitrary value in the rangeA± dA.This shows that
the probability of positive dissipation is exponentially more likely than negative
dissipation and, moreover, the argument of the exponential is extensive in both
the number of particles in the system N and the averaging time t. Equation (1.3)
has been confirmed both by molecular dynamics computer simulations and in
actual laboratory experiments. The first unambiguous laboratory demonstration
of a fluctuation relation was conducted in 2002 using a colloidal suspension and
optical tweezers (Wang et al., 2002).
A trivial consequence of the FT is the second law inequality, which states

that, if we average the response of repeated experiments on our system with
macroscopically identical initial conditions, the so-called ensemble average of
the time-averaged dissipation ⟨Ωt⟩ is nonnegative:

⟨Ωt⟩ ≥ 0, ∀t (1.4)

This does not imply that the instantaneous ensemble-averaged dissipation is
nonnegative. This ensemble-averaged instantaneous dissipation ⟨Ω(t)⟩ may be
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positive or negative, but it is, of course, positive more often than it is negative in
order to satisfy Eq. (1.4).
The second law inequality also shows that

Ω(𝚪) = 0, ∀𝚪 ∈ D ⇔ ⟨Ωt⟩ = 0 (1.5)

The proof is rather straightforward. Obviously, the left-hand side implies the right.
Does the right imply the left? Suppose the ensemble-averaged time integral of the
dissipation is not identically zero everywhere. Average the dissipation over some
possibly short time interval (0,t). Ergodic consistency implies the existence of con-
jugate sets of trajectories with opposite values for the time-averaged dissipation
±(A + dA). Applying the FT to each conjugate set with time-averaged dissipa-
tion ±(A + dA) shows that positive dissipation is exponentially more likely than
negative for each value of |A| that is observed. If we now average over all pos-
sible values for |A| for which there is nonzero dissipation, we see that ⟨Ωt⟩ > 0.
For any nonequilibrium system, the ensemble average of the time-integrated dis-
sipation must be strictly positive. So, if the dissipation is nonzero anywhere in
the allowed phase space and the system is ergodically consistent, then the time-
averaged, ensemble-average dissipation must be strictly positive. The only states
where the ensemble-averaged, time-averaged dissipation is zero are equilibrium
states where the instantaneous dissipation is identically zero everywhere in the
allowed phase space.
The recently discovered dissipation theorem (Evans, Searles, and Williams,

2008a,b) (Chapter 4) states that the ensemble average of an arbitrary, integrable
function of phase B(𝚪) is related to the time integrals of the correlation function
of the dissipation function with the phase variable:

⟨B(t)⟩ = ⟨B(0)⟩ + ∫
t

0
ds⟨B(s)Ω(0)⟩ (1.6)

The dynamics employed for evaluating all functions on both sides of Eq. (1.6)
employs natural system dynamics including any external fields and/or ther-
mostats. This result is valid arbitrarily far from equilibrium and for systems of
arbitrary size. In systems where an externally applied field is responsible for
driving the system out of equilibrium in the weak field regime where the response
to this field is linear, Eq. (1.6) reduces to the very well known Green–Kubo linear
response equations (Evans and Morriss, 1990).
Since the instantaneous average dissipation is zero for equilibrium systems,

Eq. (1.6) shows that, in the absence of an external field, ensemble averages of
phase function never change for systems at equilibrium. It turns out that for
equilibrium systems the equilibrium distribution itself never changes.
Together with the definition of dissipation, a second very important defi-

nition is that of an ΩT-mixing system. A system is said to be ΩT-mixing if
infinite time integrals of ensemble averages of phase variables B(𝚪), represent-
ing physical observables like pressure, stress, energy, and so on, multiplied
by the dissipation function and evaluated at time zero are convergent:
(limt→∞

|||∫ t
0 ds ⟨B (s) Ω(0)⟩||| = const < ∞). A system of harmonic oscillators
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with zero friction is obviously not ΩT-mixing. ΩT-mixing is a more physically
relevant condition than the mixing condition met in ergodic theory. From
Eq. (1.6), we see that, if an autonomous system is ΩT-mixing, then at long times
the ensemble average of physical phase functions become time-independent at
long times. At long times, ΩT-mixing systems must therefore relax either toward
nonequilibrium steady states or toward equilibrium states. No other possibilities
exist.
If the infinite time integral of ensemble averages of time correlation

functions of physical phase functions all A(𝚪) and B(𝚪) is finite (i.e.,
limt→∞

|||∫ t
0 ds ⟨A (0)B(s)⟩||| = const < ∞) when the ensemble average of A(𝚪)

is zero, that is, ⟨A(𝚪)⟩ = 0, then the system is termed T-mixing. Obviously
all T-mixing systems are ΩT-mixing. ΩT-mixing systems are not necessarily
T-mixing. Note that any phase function with a nonzero ensemble average (say
Ã(𝚪)) can be transformed into one with zero average, Ã(𝚪) − ⟨Ã(𝚪)⟩ = A(𝚪).
The dissipation function, ergodic consistency, and the T-mixing condition hold

over some specified phase space domain D. For example, while particle momenta
may be unbounded, the particle coordinates are usually defined only over a fixed
region of the physical space. A system is said to be physically ergodic over some
specified phase space domain if time averages of phase functions representing
physical observables taken along almost any phase space trajectory equal late-time
ensemble averages taken over any ensemble of initial states.
T-mixing systems must be physically ergodic over that specified phase space

domain. If they were not, we could easily construct time correlation functions of
physical observables that would never decay to zero. Any initial static correlation
between the phase functions would be preserved forever, thereby violating the
condition of T-mixing.
Physically, ergodic systems need not be ergodic over phase space.Different initial

phase space vectors generate, via their different trajectories, different noninter-
secting sets of phase space subdomains – one subdomain corresponding to each
phase space trajectory and parameterized by time (0, ∞). If the time average of
physical properties along each of the different trajectories is independent of the
particular trajectory, the system may be physically ergodic but not ergodic over
phase space. This could occur because each trajectory shadows the other trajec-
tories in a densely woven “mat.” In this book, we will deal almost exclusively with
physical ergodicity, which we will refer to simply as ergodicity. On the rare occa-
sions that we refer to ergodicity over phase space, we will make that explicit at the
time. Of course, if a system is ergodic over phase space, it must also be physically
ergodic.
The equilibrium relaxation theorem (Evans, Searles, and Williams, 2009a,b)

derived in Chapter 5 states that autonomous N-particle T-mixing systems
that may be isolated or perhaps interact with a heat bath and whose initial
distributions are even functions of the momenta will, at sufficiently long times,
relax toward a unique equilibrium state and that

lim
t→∞

⟨Ω(St𝚪)⟩ = 0, ∀𝚪 ∈ D (1.7)
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For various forms of thermostat or ergostat, the unique forms of these equilibrium
distributions can be determined explicitly using the various individual forms of
the equilibrium relaxation theorem. Since any reasonably smooth deviation from
the unique equilibrium dissipation causes the ensemble-averaged dissipation to
be positive, the only conclusion from Eq. (1.7) is that, in the infinite time limit, the
system apparently relaxes to its unique equilibrium distribution.
For constant energy dynamics, the equilibrium distribution is uniform over

the energy hypersurface2) in phase space. The equilibrium relaxation theorem
therefore gives a proof of Boltzmann’s postulate of equal a priori probability
for constant energy systems. The relaxation theorem does not imply that all
relaxation processes are monotonic in time (i.e., averages of phase functions
change monotonically). This is just as well, since experience shows that most
relaxation processes are not monotonic. For thermostatted systems where the
number of particles and the volume are fixed, the unique equilibrium distribution
is the well-known canonical distribution postulated by Boltzmann and Gibbs.
An interesting result that we obtain from the equilibrium relaxation theorems

is that relaxation to equilibrium cannot take place in finite time. In a sense,
the equilibrium distribution is never reached. It is only averages of physical
properties that approach, in the infinite time limit, the values one would obtain
from a true equilibrium distribution. The actual time dependent phase space
distribution becomes, at long times, ever more tightly folded upon itself. It
never becomes a smooth equilibrium distribution. However, as the equilibrium
relaxation theorems prove, the ensemble-averaged dissipation does go to zero
in the infinite time limit and in that infinite time limit the distribution must be
the unique smooth equilibrium distribution at least as can be ascertained by
computing averages of physical phase functions like the dissipation function.
Having determined the equilibrium distribution for systems in contact with a

heat reservoir, we show that the standard expression for the change in the calori-
metric entropy of the system of interest, 𝛥Ssoi = ∫ dQsoi∕T , where dQsoi is the
change in the heat added to the system of interest, is, in fact, for quasi-static
processes (processes carried out in the infinitely slow limit) a path- and history-
independent state function. We show that the so-called integrating factor for the
heat, namely 1∕T , which generates the corresponding state function, is in fact
unique. No other integrating factor (e.g., 1∕T3) can generate a state function from
the heat. The integrating factor comes directly from the form of the equilibrium
canonical distribution function, which is itself unique.
For macroscopic systems, we also derive the fundamental equation for the first

and second “laws” of thermodynamics. This equation relates changes in the inter-
nal energyU to the equilibrium temperatureT appearing in the equilibriumphase
space distribution function, the change in the calorimetric entropy, the mechani-
cal pressure p, and the change in the volume dV :

dU = TdS − pdV (1.8)

2) The “hypersurface” is defined as lim
𝛿E→0

{𝚪 ∶ E < H(𝚪) < E + 𝛿E}.
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In Eq. (1.8), all quantities are for the system of interest. This macroscopic result
is obtained entirely from microscopic or molecular expressions for the various
variables.
We also show the identity (up to an arbitrary additive constant) of the Gibbs

entropy and the newly defined irreversible calorimetric entropy. The equivalence
of changes in the Gibbs and irreversible calorimetric entropies is valid even for
irreversible processes where (and unlike Clausius) we take the temperature at any
point in a process to be the equilibrium thermodynamic temperature the system
would relax to if it was so allowed. The nonequilibrium temperature is, in fact,
the equilibrium thermodynamic temperature of the underlying equilibrium state
toward which the nonequilibrium system is trying to relax.
The derivation of Eq. (1.8) for quasi-static processes (only) is completely consis-

tent with Tatiana Ehrenfest’s statement quoted above that, effectively, Eq. (1.8) is
“completely independent of the direction of time” (Ehrenfest and Ehrenfest, 1990).
In Chapter 6, we discuss the steady-state relaxation theorem. For systems that

are initially in equilibrium for the zero-field dynamics, if a dissipative field is then
applied to the system and it is T-mixing, the systemwill eventually relax to a physi-
cally ergodic, nonequilibrium steady state. At long times, time averages of physical
phase functions equal late-time ensemble averages. Further we will show that, if
the initial equilibrium distribution is perturbed by some reasonably smooth devi-
ation function (even in the particlemomenta), the final steady state is independent
of the initial perturbation.
Also in Chapter 6, we discuss asymptotic steady-state fluctuation theorems

(Searles and Evans, 2000b; Williams, Searles, and Evans, 2006; Searles, Rondoni,
and Evans, 2007). For T-mixing systems, these steady-state fluctuation relations
are valid even for large deviations from the mean behavior of the system.
In Chapter 7, we describe more theoretical applications of the fluctuation, dis-

sipation, and relaxation theorems. A proof is given of the zeroth law of thermo-
dynamics (Evans, Williams, and Rondoni, 2012); a discussion is given of heat flow
and (Evans, Searles, andWilliams, 2010) temperature quenches from the point of
view of nonequilibrium statistical mechanics. A discussion is given on the relax-
ation of a color field gradient in a system where the Hamiltonian is color blind. In
the linear response regime, as far as its Hamiltonian can sense, the system is in
equilibrium. Finally, we give a derivation of an instantaneous fluctuation theorem
(Petersen, Evans, and Williams, 2013).
In Chapter 8, we discuss the Crooks fluctuation relations (Crooks, 1998) and

the Jarzynski equality (Jarzynski, 1997). These relations show how equilibrium
free energy differences can be computed from nonequilibrium path integrals of
the work. Using various generalizations of these relations we give a mathemati-
cal proof of Clausius’ inequality for thermal reservoirs in contact with our system
of interest. We consider a set of large thermal reservoirs at a set of temperatures.
Because the reservoirs are large compared to the system of interest, they can be
regarded as being in thermodynamic equilibrium.We prove (Evans,Williams, and
Searles, 2011) for systems that have a periodic response to some cyclic proto-
col, the ensemble average of the cyclic time integral of the heat transferred to
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the reservoirs divided by the corresponding reservoir temperature is nonnega-
tive. Clausius proved his inequality by assuming the second law of thermodynam-
ics – the impossibility of constructing a perpetual motion machine of the second
kind. Our proof makes no such assumption. Since Clausius’ inequality is often
taken as the most fundamental statement of the second law, our proof constitutes
a direct proof of this statement of the second “Law.” We show that it is true only
if the system responds periodically to the cyclic protocol (not all systems do this
of course), and it is true only if we take the ensemble-averaged response. A single
cycle for an individual system, if it is small, may not satisfy Clausius’ inequality as
it applies to the reservoir.
We also show that, if the reservoirs are small and cannot be regarded as being

in thermodynamic equilibrium, the ensemble average of the cyclic integral for the
reservoir still satisfies Clausius’ inequality. Of course, it only applies if the system
responds periodically. At each point in the cycle, the temperature appearing in
our generalization of Clausius’ inequality is the equilibrium temperature that the
entire system would relax to, if the execution of the protocol is stopped and the
entire system is allowed to relax to equilibrium.
An immediate consequence of our proof of Clausius inequality for the reser-

voir is that the change in the entropy of the “universe”: dQth∕Tth + dQsoi∕Tsoi = 0,
where “soi” denotes the system of interest, which, by construction, is in thermal
contact with the thermal reservoir “th,” and is precisely zero. This result is valid
for both quasi-static and nonequilibrium processes far from equilibrium using the
irreversible calorimetric definition of the entropy. Since we have already proved
the equivalence of changes in the irreversible calorimetric and Gibbs entropies,
this new result is consistent with the observation made by Gibbs that the Gibbs
entropy for an autonomous Hamiltonian system is a constant of the motion.This,
of course, contradicts the claim by Clausius that the entropy of the “Universe”
tends to a maximum. Furthermore, because we give meaning to temperature far
from equilibrium, unlike Clausius’ original inequality our result is well defined
away from equilibrium and is immune to the criticisms made by Bertrand (1887),
Orr (1904), and Buckingham (1905) of the original Clausius inequality.
Entropy and dissipation are thus seen to be completely complementary. Away

from equilibrium, dissipation is the function that is central to all the theoretical
results while entropy plays only a trivial roll. At equilibrium or in the quasi-static
limit, dissipation is zero by definition, while entropy is one of the key quantities in
equilibrium thermodynamics.
In Chapter 9, we revisit the proof of the Evans–Searles FT and discuss the role

played therein by the axiomof causality (Evans and Searles, 1996).Weprove that in
an anti-causal Universe there is an anti-second “Law” of thermodynamics and that
ultimately the explanation for the macroscopic irreversibility we see around us is
causality. In very few discussions of irreversibility is it realized that, if you apply a
time-reversalmapping to a system trajectory, not only do you reverse the direction
of the flow of heat and work but the causal response to some time-dependent
field becomes anti-causal! Fluxes respond to changes in field strength before those
changes occur!
If we watch a movie played backwards of macroscopic machines in motion, not

only will we see examples of “perpetual motion machines of the second kind” but
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we will also see a Universe where effect precedes the cause.The transient response
to a sudden application of a cause will have the opposite sign to that observed in
the forward movie, but that transient response will start before the change in the
cause has actually occurred!
For example, in a viscometer that is loaded with a viscoelastic fluid, the shear

stress in an anti-causal Universe not only has the opposite sign to that which it
has in our causal Universe but it will begin to respond (negatively) before a shear
rate is applied. Likewise, it will begin to decrease towards zero before, not after,
the strain rate has been set to zero!
In a causal Universe, one needs to compute the probabilities of events occurring

at a time t from the probabilities of prior events and not from the probabilities of
events at times later than t. This assumption of causality breaks the time rever-
sal symmetry of the whole system while retaining time-reversible equations of
motion.
The assumption of causality seems so ingrained and natural to the humanway of

thinking that we often do not realize that it is an assumption. It is this assumption,
or rather it is the use of this axiom in the proofs of the Evans–Searles and Crooks
FTs, that breaks the symmetry of time and leads to the second law inequality rather
than an anti-second law inequality.
The principle of least action, which is completely time-reversal-symmetric,

does not contain sufficient information to prove any fluctuation theorem. The
equations of motion of mechanics must be supplemented with the axiom of
causality to predict the operation of machines, engines, and devices in the real
world. The axiom is constantly being applied without us even noticing, precisely
because it seems so natural. The response of a system (engine) at a given time
is obtained by convolving the response function for the system with the time-
dependent driving force backward over the past history andnot over its future.The
underlying equations of motion themselves retain their time reversal symmetry.
A clear example of the unrecognized application of the axiom of causality

is in the Mori–Zwanzig projection operator formalism – see Zwanzig (2001,
Chapter 8). This formalism leads in the linear response limit, to an exact refor-
mulation of the response of a system to time-dependent dissipative fields in the
form of a frequency- and wave vector-dependent generalized Langevin equation.
In the time domain, the memory kernel associated with the generalized friction
coefficient is convolved backward in time with the time-dependent driving force.
This breaks the time reversal symmetry inherent in the equations of motion
themselves.The temporal convolution is over the half space that describes history
rather than the future. The spatial convolution, on the other hand, is over all
physical space: ±∞ in each Cartesian dimension.
The axiom of causality is also met in electrodynamics where Maxwell’s

equations permit two solutions for the vector potential: the advanced and the
retarded vector potential. In a well-known textbook, they state with little fanfare:
“We can now neglect the term V ′

2 … for it would make the effect appear before
the cause” Corson and Lorrain (1962, p. 445). Panofsky and Phillips (1969) are
a little more equivocal on the subject: “but only the minus sign appears to have
physical significance”; “the advanced potential … appears to violate elementary
notions of causality.”
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It is interesting to re-examine the Boltzmann equation in the light of these
observations. In writing the collision integral in the Boltzmann equation, it is
assumed that, before collisions of ideal gas atoms, the positions and momenta
are uncorrelated. After the collision there is correlation. The collision causes the
post-collisional correlation.The cause of correlation is the collision, which occurs
before the effect, which is correlation. In a causal Universe, the cause precedes the
effect.This is consistent with the assumption of molecular chaos: stosszahlansatz.
If one assumes that the positions and momenta are correlated before the colli-

sions, then one forms an anti-Boltzmann equation.This is exactly what one would
expect if theUniversewas, in fact, anti-causal where the coordinates andmomenta
before the collision are affected by the later collision.The effect precedes the cause,
which is the collision.
So in an anti-causal Universe, dilute gases would be described by this anti-

Boltzmann equation and the signs of all the transport coefficients (e.g., shear
viscosity or thermal conductivity, etc.) would be opposite to those predicted from
the Boltzmann equation. This reversal of signs of the transport coefficients for
the anti-Boltzmann equation was first pointed out by Cohen and Berlin (1960).
The connection between causality and stosszahlansatz is new.
Finally, we argue that in an anti-causal Universe where the future influences

the present, the inevitable presence of innately random quantum processes in the
future, or indeed the exercise of free will in the future by intelligent beings, makes
the present state of the Universe undefined. We argue that the only possible Uni-
verse where time increases is, in fact, causal. If time were to decrease rather than
increase, an anti-causal Universe would appear identical to our own. So ultimately
we live in the only possible Universe and the causal second “Law” behavior is, on
average, the only physically possible behavior.
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